JPS62251405A - Water drip fining device for steam turbine - Google Patents

Water drip fining device for steam turbine

Info

Publication number
JPS62251405A
JPS62251405A JP9484586A JP9484586A JPS62251405A JP S62251405 A JPS62251405 A JP S62251405A JP 9484586 A JP9484586 A JP 9484586A JP 9484586 A JP9484586 A JP 9484586A JP S62251405 A JPS62251405 A JP S62251405A
Authority
JP
Japan
Prior art keywords
vibrators
vibrator
ultrasonic
steam turbine
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9484586A
Other languages
Japanese (ja)
Inventor
Shohei Yoshida
正平 吉田
Kuniyoshi Tsubouchi
邦良 坪内
Kiyoshi Namura
清 名村
Tetsuo Sasada
哲男 笹田
Kazuo Ikeuchi
和雄 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9484586A priority Critical patent/JPS62251405A/en
Publication of JPS62251405A publication Critical patent/JPS62251405A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To promote the reduction of erosion in a moving blade, by setting mutually opposed vibrators in a diaphragm and a supporting ring, which support stationary blade, and generating a stationary ultrasonic wave. CONSTITUTION:Vibrators 9', 9 are respectively set to a diaphragm 2 and a supporting ring 3, which support a stationary blade 1, and the vibrators 9', 9 are opposed to each other. While the vibrators 9, 9' are connected with a high frequency power source through high frequency power cables 11, 11', 12, 12'. And a stationary ultrasonic wave, which is generated between the vibrators 9, 9', makes fine a water drip jetted from a trailing edge of the stationary blade 1. In this way, erosion in a moving blade 4 can be reduced.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、蒸気タービンなどの相変化を伴うターボ機械
に係り、特に1作動流体中に発生する水滴の微細化に好
適な蒸気タービンの水滴微細化装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a turbomachine that undergoes a phase change such as a steam turbine, and is particularly suitable for reducing the size of water droplets generated in a working fluid. This relates to a miniaturization device.

〔従来技術〕 ・ 一般に、蒸気タービンの低圧段や原子力タービンの全段
落では、蒸気条件が湿り状態で運転されるため、内部の
作動蒸気中に相当量の水滴が発生し、さらに、この水滴
が流路壁面や翼面との衝突。
[Prior art] - In general, the low-pressure stage of a steam turbine and all stages of a nuclear power turbine are operated under humid steam conditions, so a considerable amount of water droplets are generated in the internal working steam, and furthermore, these water droplets are Collision with channel walls or wing surfaces.

集積、破砕等の作用を受け、数十11〜数百μの粗大水
滴へと成長する。この過程で、蒸気は水滴の加速や微細
化のためにエネルギを消散し、いわゆる湿り損失が増加
する。また、粗大水滴が高速で回転している動翼と衝突
すると二ローションによる浸蝕作用を生じるなど性能及
び信頼性の面から問題が多い。
Under the effects of accumulation, crushing, etc., it grows into coarse water droplets with a size of several tens of microns to several hundreds of microns. In this process, the steam dissipates energy due to the acceleration and atomization of water droplets, increasing the so-called wetness loss. In addition, there are many problems in terms of performance and reliability, such as when coarse water droplets collide with the rotor blades rotating at high speed, causing corrosion due to the two lotions.

ここで、第11図、第12図を用いて水滴の発生に伴う
タービン動翼の二ローションによる浸蝕現象及び湿り損
失の問題について簡単に説明する。
Here, with reference to FIGS. 11 and 12, a brief explanation will be given of the erosion phenomenon and moisture loss caused by two lotions on turbine rotor blades due to the generation of water droplets.

第11図は、静翼1とそれを保持するダイヤフラム2、
及び支持リング3.動翼4とそれを保持するディスク5
とからなる典型的な蒸気タービンの段落構造で、第12
図は第11図のI−1矢視図である。復水衝撃により発
生して段落を流下する水滴の一部は慣性力により静″R
1,1’の腹面に捕集され、集積されて水膜流6を形成
する。この水膜流6は、翼面上で複雑に挙動するととも
に、静翼1,1′の後縁部から水塊7となって噴出し、
粗大水滴8を形成する。このため、水滴の噴流や加速に
要するエネルギを必要とするなど、いわゆる、湿り損失
が増大する。さらに、前記の粗大水滴8は十分に加速さ
れずに動翼4,4′に到達する。第12図には、蒸気及
び水滴の速度三角形を示す。静翼出口部の蒸気の絶対速
度Vsに比較して、水滴の速度v4が小さいと、動翼4
.4′へ流入する蒸気の相対速度Ws、水滴の相対速度
W4は、周速Uとの関係から図示するような方向及び大
きさとなる。すなわち、水滴8は動翼4に対して蒸気の
速度Wsよりも大きな速度Waで、しかも、動翼4,4
′に背面側から衝突する。このことにより、動翼4,4
′の入口部でエロージョンによる浸蝕作用が発生するこ
とになる。
FIG. 11 shows the stationary blade 1 and the diaphragm 2 that holds it.
and support ring 3. Moving blade 4 and disk 5 that holds it
A typical steam turbine stage structure consisting of
The figure is a view taken along arrow I-1 in FIG. 11. Some of the water droplets generated by condensate impact and flowing down the paragraph become static due to inertia force.
1 and 1' and are collected and accumulated to form a water film flow 6. This water film flow 6 behaves in a complicated manner on the blade surface, and jets out as a water mass 7 from the trailing edge of the stationary blades 1, 1'.
Coarse water droplets 8 are formed. For this reason, so-called moisture loss increases, such as requiring energy for jetting and accelerating water droplets. Furthermore, the coarse water droplets 8 reach the rotor blades 4, 4' without being sufficiently accelerated. Figure 12 shows velocity triangles for steam and water droplets. If the velocity v4 of water droplets is small compared to the absolute velocity Vs of steam at the exit of the stationary blade 4,
.. The relative velocity Ws of the steam flowing into 4' and the relative velocity W4 of the water droplets have the directions and magnitudes as shown in the figure from the relationship with the circumferential velocity U. That is, the water droplets 8 are at a velocity Wa greater than the steam velocity Ws with respect to the rotor blades 4, and
′ collides with the rear side. Due to this, the rotor blades 4, 4
Erosion action will occur at the inlet of the hole.

このような粗大水滴に起因する性能及び信頼性 。Performance and reliability are caused by such coarse water droplets.

の問題を解決する従来の方法のひとつに、超音波を利用
した水滴の微細化方法が提案されている。
One of the conventional methods to solve this problem is to use ultrasonic waves to make water droplets smaller.

例えば、特開昭51−12005は、静翼を固定した内
側ケーシングの外周に超音波発生器を配置し、この超音
波発生器から超音波を段落内へ半径方向内に伝播させて
、段落内の翼面水膜流や粗大水滴を微細化させるもので
ある。しかし、段落内の粗大水滴は、空間的に分散して
流動しており、この粗大水滴を超音波により効果的に微
細化することは困難である。
For example, Japanese Patent Application Laid-Open No. 51-12005 discloses that an ultrasonic generator is arranged on the outer periphery of an inner casing to which stationary blades are fixed, and ultrasonic waves are propagated from this ultrasonic generator in the radial direction into the paragraph. This is to make the water film flow and coarse water droplets on the blade surface finer. However, the coarse water droplets within the paragraph flow in a spatially dispersed manner, and it is difficult to effectively refine the coarse water droplets using ultrasonic waves.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の従来技術において、超音波発生器から発生した超
音波は、内側ケーシングを透過して段落内に伝播される
が、蒸気の固有音響インピーダンスが非常に小さいため
超音波の段落内への伝播効率が悪くなり、タービン動翼
の浸蝕作用に直接かかわる静翼後縁部などから噴出して
飛翔する水滴を微細化するためには、超音波発生器に膨
大な電力を供給しなければならなかった。
In the above-mentioned conventional technology, the ultrasonic waves generated from the ultrasonic generator are transmitted through the inner casing and propagated into the paragraph, but the propagation efficiency of the ultrasonic waves into the paragraph is low because the specific acoustic impedance of the steam is very small. In order to miniaturize the water droplets ejected from the trailing edges of the stator blades, which are directly involved in the erosion of the turbine rotor blades, a huge amount of power had to be supplied to the ultrasonic generator. .

また、上記の従来技術では超音波発生器により内側ケー
シング自体を超音波で振動させ、段落内に超音波を伝播
させる方法も考えられるが、ケーシング自体を振動させ
るには、やはり、超音波発生器に大電力を供給しなけれ
ばならないという問題があった。
In addition, in the above-mentioned conventional technology, it is possible to use an ultrasonic generator to vibrate the inner casing itself with ultrasonic waves and propagate the ultrasonic waves within the paragraph, but in order to vibrate the casing itself, it is still necessary to use an ultrasonic generator. The problem was that large amounts of power had to be supplied to the

本発明の目的は、水1育を効率よく微細化してタービン
動翼のエロージョンによる浸蝕作用を軽減することが出
来、しかもエネルギ損失の少ない蒸気タービンを提供し
ようとするものである。
An object of the present invention is to provide a steam turbine that can efficiently atomize water to reduce the erosive effect of turbine rotor blades due to erosion, and that has less energy loss.

〔問題点を解決するための手段〕[Means for solving problems]

前記の問題点を解決して上記の目的(水滴を効率良く微
細化すること)を達成するため、本発明は、外周部に静
翼を列設したダイヤフラムと、外周部に動翼を列設した
ディスクと、前記の静翼の1端を支承して前記の動翼の
翼端に対向する支持リングと、上記の各構成部材を取り
囲むケーシングとを備えた蒸気タービンにおいて、前記
のダイヤフラム及びこれに固着された部材の何れか一方
に振動子を設置するとともに、前記の支持リング及びこ
れに固着された部材の何れか一方に振動子を設置し、上
記双方の振動子を設置し、上記双方の振動子を対向せし
め、かつ、上記双方の振動子の少なくとも何れか一方に
超音波領域の周波数の交番電圧を印加する手段を設けて
、前記双方の振動子の間に超音波の定常波を発生させる
ように構成したことを特徴とする特 〔作用〕 上記のような構成した本発明の装置において、前記の対
向せしめた双方の振動子によって超音波の定常波を発生
させると、静翼後縁部から噴出する粗大水滴が、上記の
超音波の定常波が発生している空間を通過する時1強力
な超音波の定常波により該粗大水滴は微細化される。こ
れにより、蒸気流と水滴との速度差を小さくし、タービ
ン動翼の二〇−ジョンによる浸蝕作用やエネルギ損失を
軽減することができる。
In order to solve the above-mentioned problems and achieve the above-mentioned purpose (to efficiently miniaturize water droplets), the present invention provides a diaphragm having stator blades arranged in rows on its outer periphery, and a diaphragm in which moving blades are arranged in rows on its outer periphery. a support ring that supports one end of the stationary blade and faces the blade tip of the rotor blade; and a casing that surrounds each of the components described above; A vibrator is installed on one of the members fixed to the support ring, a vibrator is installed on either one of the support ring and the member fixed to it, both of the vibrators are installed, and both of the above oscillators facing each other, and means for applying an alternating voltage with a frequency in the ultrasonic range to at least one of the two oscillators to generate an ultrasonic standing wave between the two oscillators. In the device of the present invention configured as described above, when an ultrasonic standing wave is generated by both of the opposed vibrators, the trailing edge of the stationary blade When coarse water droplets ejected from the space pass through a space where the above-mentioned standing waves of ultrasonic waves are generated, the coarse water droplets are made fine by the strong standing waves of ultrasonic waves. Thereby, the speed difference between the steam flow and the water droplets can be reduced, and the erosion effect and energy loss caused by the 20-johns on the turbine rotor blades can be reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図乃至第14図を用いて詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 14.

第1図は、典型的な蒸気タービンの一段落に本発明を適
用した例で、静翼1とそれを複数枚支持するダイヤフラ
ム2、及び支持リング3.動翼4とそれを複数枚固定し
て回転するディスク5等の主要構成部品は第11図に示
した従来例と同様である1本実施例では、このようなタ
ービン段落のダイヤフラム2、及び支持リング3におけ
る静翼1の下流位置に、圧電素子等からなる振動子9゜
9′を第1図に示すようにそれぞれ対抗する様態で配置
する。上記振動子9,9′は静翼支持リング3.静翼1
、及びダイヤフラム2に設けた絶縁孔17を通して、高
周波電力all、11’ 。
FIG. 1 shows an example in which the present invention is applied to one stage of a typical steam turbine, showing a stator blade 1, a plurality of diaphragms 2 supporting the vanes, and a support ring 3. The main components such as the rotor blades 4 and the rotating disks 5 on which a plurality of rotor blades are fixed are the same as those of the conventional example shown in FIG. At a downstream position of the stationary vane 1 in the ring 3, vibrators 9.9' made of piezoelectric elements or the like are arranged in opposing manner, as shown in FIG. The vibrators 9, 9' are connected to the stator blade support ring 3. static wing 1
, and high frequency power all, 11' through the insulating hole 17 provided in the diaphragm 2.

12.12’ により図示しないケーシング外部に配置
した高周波電源と接続するよう構成されている。
12 and 12', it is configured to be connected to a high frequency power source located outside the casing (not shown).

本特許では、第1図に示した振動子9.9′間の空間に
超音波の定常波を発生させ、静翼1の後縁端から噴出す
る粗大水滴を超音波の定常波によって微細化する。
In this patent, an ultrasonic standing wave is generated in the space between the vibrators 9 and 9' shown in FIG. 1, and coarse water droplets ejected from the trailing edge of the stationary blade 1 are made fine by the ultrasonic standing wave.

超音波の定常波が発生すると、振動子に供給する電力が
一定であっても定常の進行波に比して超音波の強さを著
しく大ならしめることが出来る6ごのため、粗大水滴の
微細化効率を格段に向上せしめ得る。
When a standing ultrasonic wave is generated, the intensity of the ultrasonic wave can be significantly increased compared to a steady traveling wave even if the power supplied to the transducer is constant. The conversion efficiency can be greatly improved.

次に、第2図を参照しつつ、超音波の定常波の発生方法
について説明する。第2図は、振動子9゜9′、高周波
電源10.10’及び高周波電力線11.11’ 、1
2.12’より構成される本特許の基本構成図である。
Next, a method for generating an ultrasonic standing wave will be explained with reference to FIG. Figure 2 shows a vibrator 9°9', a high frequency power source 10.10' and a high frequency power line 11.11', 1
2.12' is a basic configuration diagram of the present patent.

振動子9,9′は振動子間距離りを隔てて対向する様態
で配置されており。
The vibrators 9 and 9' are arranged facing each other with a distance between the vibrators.

高周波電源10.10’ からの高周波電力により図示
した矢印16,16’の方向に高周波数で振動する。振
動子9,9′の高周波振動により、振動子9,9′が対
向している空間に超音波14が発生する。この超音波1
4は、ある特定の周波数において超音波の定常波15を
発生する。
It vibrates at a high frequency in the direction of arrows 16 and 16' shown in the drawing due to the high frequency power from the high frequency power source 10 and 10'. The high-frequency vibrations of the vibrators 9 and 9' generate ultrasonic waves 14 in the space where the vibrators 9 and 9' face each other. This ultrasound 1
4 generates an ultrasonic standing wave 15 at a certain frequency.

前記の超音波14が定常波15を発生する条件は次式に
よって示される。
The conditions under which the ultrasonic wave 14 generates the standing wave 15 are expressed by the following equation.

ここで、fは周波数、Cは超音波の音速、Lは対向する
振動子間距離、nは正の整数である。上式は、対向する
振動子間の距離りが超音波の波長の整数倍である時、定
常波が発生することを意味しており、第1図に示すよう
に蒸気タービンの段落内部に適用した場合、振動子9.
9′間の距離及び超音波の音速は既知であるため、振動
子9,9′に印加する高周波数が(1)式の条件を満足
するように調節することにより、振動子9,9′間の空
間に超音波の定常波を発生させることが可能である。
Here, f is the frequency, C is the sound speed of the ultrasonic wave, L is the distance between opposing transducers, and n is a positive integer. The above formula means that a standing wave is generated when the distance between opposing oscillators is an integral multiple of the wavelength of the ultrasonic wave, and as shown in Figure 1, it is applied to the inside of a steam turbine stage. In the case, the oscillator 9.
Since the distance between the transducers 9' and the sound speed of the ultrasonic waves are known, by adjusting the high frequency applied to the transducers 9 and 9' so as to satisfy the condition of equation (1), the transducers 9 and 9' It is possible to generate a standing ultrasonic wave in the space between them.

例えば周波数を500KHzとし、かつ超音波の音速を
約340 m / sとすると、超音波の1/4波長は
0.17閣となり、周波数を一定にしても振動子9,9
′をこの範囲で移動すれば振動子9.9′間に超音波の
定常波を発生することが可能である。
For example, if the frequency is 500 KHz and the sound speed of the ultrasonic wave is approximately 340 m/s, the 1/4 wavelength of the ultrasonic wave is 0.17 mm, so even if the frequency is constant, the oscillators 9 and 9
If ' is moved within this range, it is possible to generate an ultrasonic standing wave between the transducers 9 and 9'.

また、第3図は振動子9.9′に印加する周波数と、振
動子9.9′から発生する超音波の強さとの関係を示し
たもので、横軸に印加周波数f、縦軸に超音波の強さ工
を示す、foは振動子9゜9′の共振振動数Ioはその
時の超音波の強さである。第3図から明らかのように振
動子9,9′に供給される電力が一定でも、振動子9,
9′の共振振動数foでは、超音波の強さはIoのよう
に、急激に増大する。そこで、この振動子9.9′の共
振振動数を、(1)式の、超音波の定常波が発生する速
波数fと一致するように構成すれば超音波の定常波の強
度をさらに強力にすることができ、水滴の微細化効率を
向上することが可能となる。
Figure 3 shows the relationship between the frequency applied to the transducer 9.9' and the intensity of the ultrasonic wave generated from the transducer 9.9', with the horizontal axis representing the applied frequency f and the vertical axis representing the applied frequency f. Fo is the resonance frequency of the vibrator 9°9', Io is the strength of the ultrasonic wave at that time. As is clear from FIG. 3, even if the power supplied to the vibrators 9 and 9' is constant, the vibrator 9,
At a resonant frequency fo of 9', the intensity of the ultrasonic wave increases rapidly as Io. Therefore, if the resonance frequency of this vibrator 9.9' is configured to match the fast wave number f at which the ultrasonic standing wave is generated in equation (1), the intensity of the ultrasonic standing wave can be made even stronger. This makes it possible to improve the efficiency of water droplet miniaturization.

第4図は、第1図の静翼1の後縁端部分を拡大したもの
で支持リング3に配置した振動子9.及び図示しないダ
イヤフラム2に配置した振動子9′は、エポキシ樹脂等
からなる絶縁耐水剤でモールドされ支持リング3、及び
ダイヤフラム2に配置される。
FIG. 4 is an enlarged view of the trailing edge of the stationary blade 1 shown in FIG. 1, showing the vibrator 9 disposed on the support ring 3. A vibrator 9' placed on the diaphragm 2 (not shown) is molded with an insulating waterproof agent made of epoxy resin or the like, and placed on the support ring 3 and the diaphragm 2.

周波数及び印加電圧の任意設定可能な高周波電源(図示
せず)をケーシング外に設け、高周波電力線11.11
’ 、12.12’ を介して振動子9.9′高周波電
圧を印加する。上記の高周波電力の周波数を適宜にmr
taシて超音波の定常波15を発生させる。
A high frequency power source (not shown) whose frequency and applied voltage can be arbitrarily set is provided outside the casing, and the high frequency power line 11.11
', 12.12' to apply a high frequency voltage to the vibrator 9.9'. Adjust the frequency of the above high frequency power to mr as appropriate.
A standing wave 15 of ultrasonic waves is generated.

前記の振動子9と同9′とを対向せしめるとは。What does it mean to have the vibrators 9 and 9' facing each other?

互いの振動子が発生する超音波の到達範囲内に相手の振
動子が位置していることを言い、必ずしも幾何学的に厳
密に正対していることを要しない。
This means that the other transducer is located within the reach of the ultrasonic waves generated by the other transducer, and does not necessarily have to be strictly geometrically facing each other.

要は定常波を発生せしめ得る状態に向き合ってぃれば良
い。
The key is to face a situation that can generate a standing wave.

上記の定常波が発生する空間は高速の蒸気が流動してい
るので、超音波が流される現象を無視できない場合もあ
り得る。このような場合は、蒸気流に流された超音波が
相手方の振動子に到達するよう、予め上流側に向けて偏
った方向に振動子を設置することが望ましい。
Since high-speed steam is flowing in the space where the above-mentioned standing waves are generated, there may be cases where the phenomenon of ultrasonic waves flowing cannot be ignored. In such a case, it is desirable to install the vibrator in advance in a direction biased toward the upstream side so that the ultrasonic waves carried by the steam flow reach the other vibrator.

一方、静翼1の腹面に捕集された水滴は、集積して水膜
流6を形成し、腹面に沿って流下する。
On the other hand, the water droplets collected on the ventral surface of the stationary blade 1 accumulate to form a water film flow 6, which flows down along the ventral surface.

後縁端に達した水膜は、静翼lの後縁端から水塊7とな
って蒸気中に噴出されて粗大水滴8を形成する。この粗
大水滴8が、前記の超音波の定常波15が発生している
空間を通過する時1強力な超音波の定常波15により、
粗大水滴8の液体中に負圧が生じ空孔が発生する。この
気泡は超音波の音圧の圧縮位相で圧縮され、ある半径以
上になると消滅しないで音場内、すなわち粗大水滴内で
振動する。気孔はこの振動中につぶれることがあり。
The water film that has reached the trailing edge becomes a water mass 7 from the trailing edge of the stationary blade l and is ejected into the steam to form coarse water droplets 8. When this coarse water droplet 8 passes through a space where the above-mentioned ultrasonic standing wave 15 is generated, the strong ultrasonic standing wave 15 causes
Negative pressure is generated in the liquid of the coarse water droplets 8, and voids are generated. This bubble is compressed by the compression phase of the sound pressure of the ultrasonic wave, and when the radius exceeds a certain radius, it does not disappear and vibrates within the sound field, that is, within the coarse water droplet. The stomata may collapse during this vibration.

このとき衝撃波が発生し、粗大水滴中に局部的に大きな
力が作用する。この衝撃波によって発生した大きな力が
粗大水滴8の表面張力よりも大きくなると粗大水滴8は
微細化して微小水滴19を形成する。一般に、静翼1の
後縁端から噴出する水滴径は、上記のような微細化手段
を施さない場合。
At this time, a shock wave is generated, and a large force acts locally on the coarse water droplet. When the large force generated by this shock wave becomes larger than the surface tension of the coarse water droplets 8, the coarse water droplets 8 become fine and form minute water droplets 19. In general, the diameter of water droplets ejected from the trailing edge of the stationary blade 1 is reduced when the above-mentioned miniaturization means are not applied.

数十μ〜数百μのとなるが、本実施例によってこれらの
水滴径を容易に数μ以下に微細化できることになる。一
方、第5図は、水滴径D−の大きさに対する水滴速度V
、と蒸気速度Vsとの関係を示す、水滴径D−の大きさ
が十数μ以下になると。
The diameter of these water droplets is from several tens of microns to several hundred microns, but according to this embodiment, the diameter of these water droplets can be easily reduced to several microns or less. On the other hand, FIG. 5 shows the water droplet velocity V with respect to the water droplet diameter D-.
When the water droplet diameter D-, which shows the relationship between , and the steam velocity Vs, becomes less than 10-odd microns.

蒸気流速Vsと水滴速度v4との差が小さくなる、換言
すると、十数μ以下の水滴は蒸気流線に従うため、下流
の動翼4への衝突が著しく減少し、浸蝕作用や制動損失
といった、性能及び信頼性を損う問題を軽減できること
になる。
The difference between the steam flow velocity Vs and the water droplet velocity v4 becomes smaller, in other words, water droplets smaller than 10 microns follow the steam streamlines, so collisions with the downstream rotor blades 4 are significantly reduced, resulting in erosion and braking loss. Problems that impair performance and reliability can be alleviated.

第6図は、本発明の第二の実施例を示す、前述の第一の
実施例では、振動子9を静翼支持リング3に、振動子9
′をダイヤフラム2に、対向せしめて配置し、振動子9
,9′間に超音波の定常波15を発生せしめたが、第6
図の実施例では、静讐古鉤11 ’/ /f Q +−
io −1+−値−エO+−’46−h x 4ts動
子20を、静翼1の後縁端部の半径方向任意位置に設け
た振動子支持板23に配置するよう構成したものである
。第7図は、第6図の振動子支持板23部分の拡大斜視
図である。振動子支持板23の形状は第7図に示すよう
に流体の損失低減のため、略流線形であることが望まし
い。一般に。
FIG. 6 shows a second embodiment of the present invention. In the first embodiment, the vibrator 9 is attached to the stator blade support ring 3, and
′ are arranged facing the diaphragm 2, and the vibrator 9
, 9', but the ultrasonic standing wave 15 was generated between 6th and 9'.
In the illustrated embodiment, Shizurei Kobari 11'/ /f Q +-
io -1+-value-eO+-'46-h x 4ts The rotor 20 is arranged on the vibrator support plate 23 provided at any position in the radial direction of the trailing edge of the stator blade 1. . FIG. 7 is an enlarged perspective view of the vibrator support plate 23 portion of FIG. 6. As shown in FIG. 7, the shape of the vibrator support plate 23 is preferably approximately streamlined in order to reduce fluid loss. in general.

蒸気タービンの動翼の浸蝕現象が発生する翼長範囲は、
動翼先端から動翼翼長の約1/4程度であることが知ら
れている。その理由は次の如く考えられる。第7図に示
す水膜流6が蒸気流の半径方向成分により半径方向外周
側に向って流れるため静翼1の半径方向外周側の腹側に
集積する水量が多くなり、この位置から噴出する粗大水
滴の数密度が高くなる。したがって、第8図に示すよう
に動翼の浸蝕現象の原因のひとつとなる湿り度Yが静翼
先端付近で大きくなり、その結果前述の如く。
The blade length range in which the erosion phenomenon of steam turbine rotor blades occurs is as follows:
It is known that the distance is about 1/4 of the blade length from the tip of the rotor blade. The reason may be as follows. Since the water film flow 6 shown in FIG. 7 flows toward the radial outer circumference side due to the radial component of the steam flow, the amount of water that accumulates on the ventral side of the radial outer circumference side of the stationary blade 1 increases, and is ejected from this position. The number density of coarse water droplets increases. Therefore, as shown in FIG. 8, the humidity level Y, which is one of the causes of rotor blade erosion, increases near the tips of the stator blades, and as a result, as described above.

動翼先端部の1/4の範囲に浸食が集中する。更に、動
翼の先端部では周速が速くなるため、水滴との衝突速度
が増大し、動翼の浸蝕作用を促進すると考えられる。一
方、一般に超音波は空中を伝幡すると減衰し、伝播距離
の2乗に反比例してその強度が弱くなる。上記した理由
より、第6図に示した振動子支持板23を、静翼1の先
端から、静翼1の翼長の1/4の位置に配置し振動子9
゜23の共振振動数で超音波の定常波を発生させれば、
静翼1の後縁から噴出する粗大水滴をより効率よく微細
化できる。また、本実施例では、振動子20を振動子支
持板23に配置したが、振動子20を省略し、Il動子
9からの超音波と、振動子支持板23に反射した超音波
とにより、振動子9と振動子支持板23との間に超音波
の定常波を発生させるよう構成しても粗大水滴の微細化
に効果がある。
Erosion concentrates in a quarter of the tip of the rotor blade. Furthermore, since the circumferential speed at the tip of the rotor blade increases, the collision speed with water droplets increases, which is thought to promote erosion of the rotor blade. On the other hand, in general, ultrasonic waves are attenuated when they propagate through the air, and their intensity decreases in inverse proportion to the square of the propagation distance. For the reasons mentioned above, the vibrator support plate 23 shown in FIG.
If we generate an ultrasonic standing wave with a resonance frequency of ゜23,
Coarse water droplets ejected from the trailing edge of the stationary blade 1 can be made finer more efficiently. Further, in this embodiment, the vibrator 20 is arranged on the vibrator support plate 23, but the vibrator 20 is omitted, and the ultrasonic waves from the Il oscillator 9 and the ultrasonic waves reflected on the vibrator support plate 23 are A configuration in which a standing ultrasonic wave is generated between the vibrator 9 and the vibrator support plate 23 is also effective in making coarse water droplets fine.

上記の例から容易に理解できるように、本発明において
振動子とは、電磁エネルギーを供給されて超音波を投射
する部材と、超音波を受けてこれを反射する部材との双
方を含む意である。
As can be easily understood from the above example, the term "oscillator" in the present invention includes both a member that is supplied with electromagnetic energy and projects ultrasonic waves, and a member that receives and reflects ultrasonic waves. be.

第9図は本発明の第三の実施例を示す、第一。FIG. 9 shows a third embodiment of the present invention.

第二の実施例では、超音波の定常波を半径方向に投射す
るよう構成していたが、この第三の実施例では超音波の
定常波を円周方向に発生させるように構成したものであ
る。第10図は第9図の■−■断面図である。本第三の
実施例では超音波の定常波を円周方向に発生させるため
に、静翼1の腹側、背側に半径方向に延びる振動子24
.25を配置する。振動子24.25は板状に構成され
In the second embodiment, the ultrasonic standing wave is projected in the radial direction, but in the third embodiment, the ultrasonic standing wave is generated in the circumferential direction. FIG. 10 is a sectional view taken along the line ■-■ in FIG. 9. In the third embodiment, in order to generate a standing ultrasonic wave in the circumferential direction, a vibrator 24 extending radially on the ventral and dorsal sides of the stationary blade 1 is used.
.. Place 25. The vibrators 24 and 25 are configured in a plate shape.

エポキシ樹脂等の絶縁耐水剤26.27によりモールド
され第10図に示す振動子24.25のようにそれぞれ
対向する様態で静翼1.1′に固定する。振動子24.
25は相対的に対向する位置に配置されていればよく、
その位置を限定する必要がないのは明らかである。振動
子24.25には、ケーシング外部の高周波電源により
、振動子24.25の共振振動数であって、かつ振動子
24.25間に超音波の定常波が発生するような周波数
を印加し、振動子24.25間、すなわち、静翼1,1
′の円周方向に超音波の定常波を発生させ、静翼1,1
′間の流路を通過する粗大水滴を微細化し、動翼の浸蝕
作用やエネルギ損失を低減し、性能向上を図るとともに
、信頼性の高い蒸気タービンを提供することができる。
They are molded with an insulating waterproof agent 26, 27 such as epoxy resin, and fixed to the stator vane 1.1' in such a manner that they face each other like vibrators 24, 25 shown in FIG. Vibrator 24.
25 may be placed at relatively opposing positions,
It is clear that there is no need to limit its location. A high frequency power source outside the casing applies a frequency to the vibrator 24.25 that is the resonant frequency of the vibrator 24.25 and that generates an ultrasonic standing wave between the vibrator 24.25, Between the vibrators 24 and 25, that is, between the stator blades 1 and 1
' generates an ultrasonic standing wave in the circumferential direction of the stationary blades 1, 1.
By making the coarse water droplets passing through the flow path between the rotor blades finer, it is possible to reduce erosion of the rotor blades and energy loss, improve performance, and provide a highly reliable steam turbine.

本発明の第1〜3の実施例で採用する振動子の材質は、
前述したように、圧電素子または電歪素子等を用いる。
The material of the vibrator used in the first to third embodiments of the present invention is as follows:
As described above, a piezoelectric element, an electrostrictive element, or the like is used.

圧電素子または電歪素子には1分極を消失し、圧電性を
失うキュリ一点と称する臨界温度が存在する。
A piezoelectric element or an electrostrictive element has a critical temperature called the Curie point at which it loses one polarization and piezoelectricity.

従って、本発明のようにこれらの素子をタービンケーシ
ング内で使用する場合、雰囲気温度よりも高いキューリ
一点を有する素子を使用しなければぼらない。
Therefore, when these elements are used in a turbine casing as in the present invention, it is necessary to use elements that have a single Curie point higher than the ambient temperature.

例えばチタン酸バリウムのキュリ一点は、約120℃で
あり、あまり温度を上げた状態で使用できないが、ジル
コン酸チタン酸鉛は200℃以上のキュリ一点を有する
ため高温湯での使用が可能である。いずれにしても、蒸
気タービン低圧段において作動蒸気が水滴を含む湿り蒸
気となる段落の雰囲気温度は100℃以下であるため、
本発明の振動子としては、チタン酸バリウム、ジルコン
酸チタン酸鉛等を使用することが可能である。
For example, the curri point of barium titanate is approximately 120°C, so it cannot be used at very high temperatures, but lead zirconate titanate has a curri point of over 200°C, so it can be used in hot water. . In any case, since the atmospheric temperature in the stage where the working steam becomes wet steam containing water droplets in the steam turbine low pressure stage is 100°C or less,
As the vibrator of the present invention, barium titanate, lead zirconate titanate, etc. can be used.

また、チタン酸バリウムは磁器であるため任意の形状に
焼結形成できるという利点がある。
Further, since barium titanate is porcelain, it has the advantage that it can be sintered into any shape.

ここで、超音波の指向性について簡単に述べると、一般
に、超音波の指向性は非常に良く、超音波の開き角θは
次式で表わされる。
Here, to briefly describe the directivity of ultrasonic waves, the directivity of ultrasonic waves is generally very good, and the opening angle θ of the ultrasonic waves is expressed by the following equation.

ここで、λは超音波の波長、Rは音源すなわち振動子の
半径である。(2)式は波長λが振動子の半径Rにくら
べ小さければθも小さくなり、超音波が鋭い指向性を持
つことを意味する1本特許のように高周波の音波の波長
を非常に短くなるので、振動子からの発生する超音波の
指向性は非常に鋭くなり、それゆえ強力超音波を集束し
やすく水滴の微細化に有利である。
Here, λ is the wavelength of the ultrasonic wave, and R is the radius of the sound source, that is, the vibrator. Equation (2) shows that if the wavelength λ is smaller than the radius R of the transducer, θ will also be smaller, which means that the ultrasonic waves have sharp directivity.As in this patent, the wavelength of high-frequency sound waves can be made very short. Therefore, the directivity of the ultrasonic waves generated from the vibrator becomes very sharp, which makes it easy to focus powerful ultrasonic waves, which is advantageous for making water droplets smaller.

また、さらに超音波を集束し水滴微細化効率を向上させ
るため、第4図に示した振動子9の形状を、第13図に
示すように、略円柱状に形成し振動面側29に半球状の
溝28を形成する。振動子9が矢印16のように振動子
9の厚み方向に振動すると、振動子9の振動面29から
発生する超音波は矢印30のようにある一点に集束する
ように発射される。そこで前述した(2)式の超音波の
開き角θを配慮し、半球状溝28を形成すれば開き角の
ない超音波を投射することも可能となり、水滴の微細化
効率を向上するのに有効である。また、振動子を第14
図に示す如き槌形弓形状振動子31.32のように形成
すれば、蒸気タービンのケーシング内部の水ti微細化
に、さらに有効となる。第15図は第14図に示す積形
振動子31゜32を蒸気タービンの内部の水滴の微細化
に適用した例である。すなわち、機影の振動子31を静
翼支持リング3の静翼下流位置に、積形振動子32をダ
イヤフラム2の静翼下流位置にそれぞれ対向するように
配置し、槌形振動子31.32間の空間に超音波の定常
波を発生させてこれを通過する水滴を微細化するもであ
る。@16図は、第15図の■−■断面図であるが、積
形振動子31゜32を図のように円周方向に延長させ、
積形振動子31.32により、複数枚の静翼の下流位置
に平面状な超音波の定常波を発生させるよう形成する。
In addition, in order to further focus the ultrasonic waves and improve the water droplet miniaturization efficiency, the shape of the vibrator 9 shown in FIG. 4 is formed into a substantially cylindrical shape as shown in FIG. A shaped groove 28 is formed. When the vibrator 9 vibrates in the thickness direction of the vibrator 9 as shown by the arrow 16, the ultrasonic waves generated from the vibrating surface 29 of the vibrator 9 are emitted so as to be focused at a certain point as shown by the arrow 30. Therefore, if the hemispherical groove 28 is formed by taking into account the aperture angle θ of the ultrasonic waves in equation (2) described above, it becomes possible to project ultrasonic waves without an aperture angle, which improves the efficiency of water droplet miniaturization. It is valid. Also, the 14th vibrator
If the vibrator is formed into a hammer-shaped bow-shaped vibrator 31, 32 as shown in the figure, it will be more effective in reducing the size of water inside the casing of a steam turbine. FIG. 15 shows an example in which the cubic vibrators 31 and 32 shown in FIG. 14 are applied to miniaturize water droplets inside a steam turbine. That is, the oscillator 31 of the aircraft shadow is arranged at a position downstream of the stator blade of the stator blade support ring 3, and the volume-shaped oscillator 32 is placed opposite the position downstream of the stator blade of the diaphragm 2, and the hammer-shaped oscillators 31, 32 A standing wave of ultrasonic waves is generated in the space between the two, and the water droplets that pass through it are miniaturized. @Figure 16 is a sectional view taken along ■-■ in Figure 15, where the cubic vibrator 31°32 is extended in the circumferential direction as shown in the figure.
The cubic transducers 31 and 32 are formed to generate a planar ultrasonic standing wave downstream of the plurality of stator blades.

この積形振動子31.32をダイヤフラム2及び支持リ
ング3の全周に配置し、隣接する積形振動子31.32
をそれぞれ高周波電力[33゜34に並列に連結するよ
う構成すれば、積形振動子31.32に高周波電力を印
加するための高周波電力線11.12及び絶縁孔17の
数を削減することが出来るとともに、一段落全周に超音
波の定常波を発生することが可能となり、蒸気タービン
内部の水滴の微細化により効果的であり、動翼の浸蝕や
制御損失等を低減でき、性能及び信頼性の高い蒸気ター
ビン装置を提供することが可能となる。
These cubic vibrators 31 and 32 are arranged around the entire periphery of the diaphragm 2 and the support ring 3, and the adjacent cubic vibrators 31 and 32
If configured to be connected in parallel to the high frequency power [33°34], it is possible to reduce the number of high frequency power lines 11, 12 and insulation holes 17 for applying high frequency power to the monolithic oscillators 31, 32. At the same time, it is possible to generate a standing ultrasonic wave around the entire circumference of the steam turbine, which is more effective in making the water droplets inside the steam turbine smaller, reduces rotor blade erosion and control loss, and provides high performance and reliability. It becomes possible to provide a steam turbine device.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明に係る蒸気タービンの水滴
微細化装置によれば、蒸気タービンなどの蒸気の相変化
を伴うターボ機械のケーシング内部に存在して二ローシ
ョンによる動翼の浸蝕現象や制動損失の原因となる水滴
、特にターボ機械の翼列後縁部から噴出する粗大水滴を
低電力で効率よく微細化することができるという効果が
ある。
As described in detail above, the water droplet atomization device for a steam turbine according to the present invention prevents corrosion of rotor blades due to the lotion present inside the casing of a turbomachine such as a steam turbine that undergoes a phase change of steam. This has the effect that water droplets that cause braking loss, particularly coarse water droplets ejected from the trailing edge of the blade row of a turbomachine, can be efficiently miniaturized with low power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例の構造を示す断面図、第
2図は本発明の基本構成の説明図、第3図は振動子の共
振点における音波の強さを説明する為の図表、第4図は
第1図の部分拡大図、第5図は水滴径とその速度の関係
を示す説明する為の図表、第6図は本発明の第二の実施
例の構造を示す断面図、第7図は第6図の部分拡大斜視
図、第8図は翼長と湿り度との関係を示す図表、第9図
は本発明の第三の実施例の構造を示す断面図、第10図
は第9図の■−■矢視矢視図工第11図型的な従来例の
蒸気タービンの段落内部流れ状況を示す図、第12図は
第11図の1−1矢視図である。 第13図及び第14図はそれぞれ前記と異なる実施例に
おける振動子の説明図である。 1.1′・・・静翼、2・・・ダイヤフラム、3・・・
支持リング、9.9’ 、20.24,31.32・・
・振動子、11.12・・・高周波電力線、13・・・
振動子間隔、15・・・超音波の定常波。 帛1目 筋2図 士。ナ d− 馬6図 右1区 高11図 も13図 (A)                     (
3)晒14目 (A) (B) z
Figure 1 is a sectional view showing the structure of the first embodiment of the present invention, Figure 2 is an explanatory diagram of the basic configuration of the present invention, and Figure 3 is for explaining the intensity of sound waves at the resonance point of the vibrator. Figure 4 is a partially enlarged view of Figure 1, Figure 5 is an explanatory diagram showing the relationship between water droplet diameter and its velocity, and Figure 6 shows the structure of the second embodiment of the present invention. 7 is a partially enlarged perspective view of FIG. 6, FIG. 8 is a chart showing the relationship between blade length and humidity, and FIG. 9 is a sectional view showing the structure of the third embodiment of the present invention. , Fig. 10 is a diagram showing the flow situation inside the stage of a conventional steam turbine similar to the ■-■ arrow view in Fig. 9, and Fig. 12 is the 1-1 arrow view in Fig. 11. It is a diagram. FIGS. 13 and 14 are explanatory diagrams of vibrators in different embodiments from those described above, respectively. 1.1'... Stationary blade, 2... Diaphragm, 3...
Support ring, 9.9', 20.24, 31.32...
- Vibrator, 11.12...High frequency power line, 13...
Transducer spacing, 15...Ultrasonic standing wave. Haku1mokusuji 2 Zushi. Nad- Horse Figure 6 Right 1st Ward High 11th Figure 13 (A) (
3) Bleaching 14 stitches (A) (B) z

Claims (1)

【特許請求の範囲】 1、外周部に静翼を列設したダイヤフラムと、外周部に
動翼を列設したデイスクと、前記の静翼の1端を支承し
て前記の動翼の翼端に対向する支持リングと、上記の各
構成部材を取り囲むケーシングとを備えた蒸気タービン
において、前記のダイヤフラム及びこれに固着された部
材の何れか一方に振動子を設置するとともに、前記の支
持リング及びこれに固着された部材の何れか一方に振動
子を設置し、上記双方の振動子を対向せしめ、かつ、上
記双方の振動子の少なくとも何れか一方に超音波領域の
周波数の交番電圧を印加する手段を設けて、前記双方の
振動子の間に超音波の定常波を発生させるように構成し
たことを特徴とする蒸気タービンの水滴微細化装置。 2、前記の対向せしめた双方の振動子は、少なくとも1
段落の静翼列の後端付近に配設したものであり、ダイヤ
フラムの外周に列設された静翼列の全周にわたつて超音
波の定常波を発生させるように構成したことを特徴とす
る特許請求の範囲第1項記載の蒸気タービンの水滴微細
化装置。 3、前記の振動子は圧電素子を用いたものであることを
特徴とする特許請求の範囲第1項又は同第2項に記載の
蒸気タービンの水滴微細化装置。
[Scope of Claims] 1. A diaphragm with stator blades arranged in rows on its outer periphery, a disk with rotor blades arranged in rows on its outer periphery, and a blade tip of the rotor blade that supports one end of the stator blade. A steam turbine comprising a support ring facing the diaphragm and a casing surrounding each of the above-mentioned components, in which a vibrator is installed on either the diaphragm or the member fixed thereto, and the support ring and A vibrator is installed on either one of the members fixed to this, both of the vibrators are made to face each other, and an alternating voltage having a frequency in the ultrasonic range is applied to at least one of the two vibrators. A water droplet atomization device for a steam turbine, characterized in that a means is provided to generate an ultrasonic standing wave between both of the vibrators. 2. Both of the opposed vibrators have at least one
It is arranged near the rear end of the row of stator blades of the paragraph, and is characterized by being configured to generate a standing wave of ultrasonic waves over the entire circumference of the row of stator blades arranged in rows around the outer periphery of the diaphragm. A water droplet atomization device for a steam turbine according to claim 1. 3. The water droplet atomization device for a steam turbine according to claim 1 or 2, wherein the vibrator uses a piezoelectric element.
JP9484586A 1986-04-25 1986-04-25 Water drip fining device for steam turbine Pending JPS62251405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9484586A JPS62251405A (en) 1986-04-25 1986-04-25 Water drip fining device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9484586A JPS62251405A (en) 1986-04-25 1986-04-25 Water drip fining device for steam turbine

Publications (1)

Publication Number Publication Date
JPS62251405A true JPS62251405A (en) 1987-11-02

Family

ID=14121372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9484586A Pending JPS62251405A (en) 1986-04-25 1986-04-25 Water drip fining device for steam turbine

Country Status (1)

Country Link
JP (1) JPS62251405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128387A2 (en) * 2008-05-30 2009-12-02 Siemens Aktiengesellschaft Method for reducing or avoiding water drop erosion in steam turbines and corresponding steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128387A2 (en) * 2008-05-30 2009-12-02 Siemens Aktiengesellschaft Method for reducing or avoiding water drop erosion in steam turbines and corresponding steam turbine
EP2128387A3 (en) * 2008-05-30 2012-05-30 Siemens Aktiengesellschaft Method for reducing or avoiding water drop erosion in steam turbines and corresponding steam turbine

Similar Documents

Publication Publication Date Title
US3804329A (en) Ultrasonic generator and atomizer apparatus and method
US5590849A (en) Active noise control using an array of plate radiators and acoustic resonators
US7884490B1 (en) Resonating blade for electric power generation
JPH1159594A (en) Airfoil having stall suppressing function due to forcing vibration
JP2002537184A (en) A passively driven acoustic jet controlling the boundary layer
CA2200296A1 (en) Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors
JPH10503817A (en) Airfoil noise control
US5618010A (en) Active noise control using a tunable plate radiator
US5818947A (en) Reducing flow-induced resonance in a cavity
CA2849200C (en) Bellows synthetic jet
JPS62251405A (en) Water drip fining device for steam turbine
US5420383A (en) Anti-sound arrangement for multi-stage blade cascade
US5392597A (en) Jet mixer noise suppressor using acoustic feedback
US5584447A (en) Noise control using a plate radiator and an acoustic resonator
Schulz et al. Active control of the blade passage frequency noise level of an axial fan with aeroacoustic sound sources
JPS61106901A (en) Steam turbine blade cascade device
Solomon et al. Control of supersonic resonant flows using high bandwidth micro-actuators
US8904801B2 (en) Device and method for controlling vortex structures in a turbulent air jet
US3861313A (en) Acoustical fuze activator
US10662876B2 (en) Turbomachine vane comprising an electroacoustic source with improved assembly mode, row of outlet guide vanes and turbomachine comprising such a vane
Lee et al. Vortex-Beam Acoustic Transducer for Underwater Propulsion
Yee et al. High-speed air microjet arrays produced using acoustic streaming for micro propulsion
Gallego-Juárez High power ultrasonic transducers for use in gases and interphases
JPS63113101A (en) Blade lattice device
Henderson An experimental investigation into the sound producing characteristics of supersonic impinging jets