JPS62250618A - Foil-wound transformer - Google Patents

Foil-wound transformer

Info

Publication number
JPS62250618A
JPS62250618A JP9336086A JP9336086A JPS62250618A JP S62250618 A JPS62250618 A JP S62250618A JP 9336086 A JP9336086 A JP 9336086A JP 9336086 A JP9336086 A JP 9336086A JP S62250618 A JPS62250618 A JP S62250618A
Authority
JP
Japan
Prior art keywords
winding
neck
electrostatic
foil
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9336086A
Other languages
Japanese (ja)
Inventor
Akifumi Inui
乾 昭文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9336086A priority Critical patent/JPS62250618A/en
Publication of JPS62250618A publication Critical patent/JPS62250618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To improve reliability on insulation among a shielding for relaxing an electric field and the neck sections of cooling ducts without damaging the field relaxing effect of the end section of a winding by notching one part of the shielding for relaxing the electric field for a section oppositely faced to the neck section of the cooling duct arranged on the outermost side in the cooling ducts incorporated into the winding. CONSTITUTION:Electrostatic shieldings 15 for relaxing an electric field are each mounted at upper and lower end sections on the outermost side of a high- voltage winding 5 consisting of a foil-wound winding. Cooling ducts 6 are incorporated into the high-voltage winding 5 in conformity with the rated capacity of the winding on its midway of the winding 5, and neck sections 7 projected from the high-voltage winding 5 are formed in order to cause a refrigerant to flow. One parts 16 of the electrostatic shieldings 15 of sections oppositely faced to the neck sections 7a disposed on the outermost side in the electrostatic shieldings 15 and the neck sections 7 are notched. Accordingly, insulating distances among the neck sections 7a of the cooling ducts 6 and the electrostatic shieldings 15 are ensured, thus improving reliability on insulation among the neck sections 7a of the cooling ducts 6 and the electrostatic shieldings 15.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、金属シートと絶縁シートとを重ねて巻いた箔
巻巻線を用い、しかも巻線内に冷却ダクトを内蔵させた
箔巻変圧器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention uses a foil-wound wire in which a metal sheet and an insulating sheet are wrapped in layers, and furthermore, a cooling duct is built into the winding. related to foil-wound transformers.

(従来の技術) 箔巻変圧器は、巻線の占積率が良く小形、軽量化ができ
る特徴がある。既に数KV、数100 KVA程度の比
較的電圧の低い小容量の変圧器では実用化されている。
(Prior Art) A foil-wound transformer has a good winding space factor and can be made smaller and lighter. It has already been put to practical use in small capacity transformers with relatively low voltages of several KV and several hundred KVA.

近年、その優れた長所に鑑み、より高電圧、大容量の例
えば275KV、300M V A扱変圧器への適、用
拡大が研究されているが、最大の技術的問題点はいかに
冷却能力を向上させ、高い絶縁能力を巻線に持たせられ
るかということと、短絡事故時の半径方向機械力に対し
て耐えさ1!1qるかということである。まだ、この様
な高電圧大容量変圧器は実用化に至ってないが、第3図
の如く、巻線内に冷却ダクトを内蔵させ、この冷却ダク
トに絶縁特性の優れた冷媒を送り込み、巻線損失から発
生する熱を冷媒の蒸発潜熱を利用して冷却する、いわば
ヒートパイプ方式の箔巻変圧器が有力である。
In recent years, in view of its excellent advantages, research has been conducted to expand its application to higher voltage, larger capacity transformers, such as 275KV and 300MVA, but the biggest technical problem is how to improve the cooling capacity. The two issues are whether the winding can be made to have high insulation capacity and whether it can withstand radial mechanical force of 1!1q in the event of a short circuit accident. Although such high-voltage, large-capacity transformers have not yet been put into practical use, as shown in Figure 3, a cooling duct is built into the windings, and a refrigerant with excellent insulation properties is fed into the cooling ducts, and the windings are A heat pipe-type foil-wound transformer, which uses the latent heat of evaporation of a refrigerant to cool the heat generated from loss, is a promising option.

即ち、この箔巻変圧器は、鉄心の脚部1に、金属シート
2と絶縁シート3を重ねて巻いて成る低圧巻線4と高圧
巻線5が巻装され、それらの巻線内には中空状の冷却ダ
クト6が内蔵されている。
That is, in this foil-wound transformer, a low-voltage winding 4 and a high-voltage winding 5, which are made by overlapping metal sheets 2 and insulating sheets 3, are wound around a leg 1 of an iron core. A hollow cooling duct 6 is built-in.

冷却ダクト6の中空部の薄い間隙内には、フロンR−1
13やフロリナートFC75等の冷媒が封入ざれており
、冷却ダクト6の巻線より突出し首部7よりポンプ8に
より冷媒が循環され巻線内の発熱を冷媒の蒸発潜熱で奪
い、その蒸気を凝縮器9内において冷却管10で冷却さ
せ凝縮させる様になっている。液化した冷媒は、冷媒タ
ンク11に貯められ、更に、ポンプ7で巻線内に送り込
まれるという冷却系が構成されている。
In the thin gap in the hollow part of the cooling duct 6, Freon R-1
A refrigerant such as 13 or Fluorinert FC75 is sealed, and the refrigerant is circulated by a pump 8 from a neck 7 that protrudes from the windings of the cooling duct 6. Heat generation in the windings is absorbed by the latent heat of evaporation of the refrigerant, and the vapor is transferred to a condenser 9. It is designed to be cooled and condensed by a cooling pipe 10 inside. A cooling system is constructed in which the liquefied refrigerant is stored in a refrigerant tank 11 and further fed into the windings by a pump 7.

冷却系を構成する導液管12はステンレス等の金属で作
られており、この導液管12と冷却ダクト6とはテフロ
ン樹脂等の絶縁パブ13を介して接続されている。また
、この導液管12は、タンク14等のアース電位にも接
続されている。一方冷却ダクト6は、巻線内に組み込ま
れている関係上、近接する巻線と同電位に電気的に接続
されている。更に、巻線各部の絶縁は、タンク14内に
封入されたSF6ガス等の絶縁ガスにより確保されてい
る。
The liquid guide pipe 12 constituting the cooling system is made of metal such as stainless steel, and the liquid guide pipe 12 and the cooling duct 6 are connected via an insulating tube 13 made of Teflon resin or the like. The liquid guide pipe 12 is also connected to the ground potential of the tank 14 and the like. On the other hand, since the cooling duct 6 is built into the winding, it is electrically connected to the same potential as the adjacent winding. Furthermore, insulation of each part of the winding is ensured by an insulating gas such as SF6 gas sealed in the tank 14.

また、高圧巻線5の上下の端部外周には端部からの絶縁
破壊を防止するための電界緩和用の静電シールド15が
設けられている。
Furthermore, electrostatic shields 15 are provided on the outer peripheries of the upper and lower ends of the high-voltage winding 5 to alleviate electric fields in order to prevent dielectric breakdown from the ends.

(発明が解決しようとする問題点) このにうな芯巻変圧器では、冷却特性が優れていること
から、高電圧・大容量変圧器への適用が考えられるが高
電圧変圧器になると、それだけ巻線端部にお(プる絶縁
の確保が困難となり、次の様な欠点があった。
(Problem to be solved by the invention) This core-wound transformer has excellent cooling characteristics, so it can be considered to be applied to high-voltage, large-capacity transformers. It was difficult to secure sufficient insulation at the ends of the windings, resulting in the following drawbacks:

即ち、高圧巻線5の端部には通常端部からの破壊を防止
するため、電界緩和を目的とした静電シールド15が取
り付けられている。静電シールド15の大きざ、形状及
び位置は高圧巻線5の定格電圧とタンク14等の接地物
までの絶縁距離、ざらに高圧巻線5の端部構造等により
決定される。一般に静電シールドは絶縁距離が確保され
た上でその大きざをある程度大きくすることにより、巻
線端部の電界を緩和する効果が大きくシールド表面の電
界も小さくなる。ところがこの静電シールド15はタン
ク14やその他の接地物と対向することはもとより、冷
却ダクト6の首部7ヤそれよりつながる導液管12と直
接対向する。すると静電シールド15と首部7や導液管
12の間の絶縁距離が確保できず電界が他の部分に比べ
非常に厳しくなる。また、首部7や導液管12の表面に
凹凸があると特にその電界強度が厳しくなり絶縁破壊の
おそれも生じる。
That is, an electrostatic shield 15 is usually attached to the end of the high voltage winding 5 for the purpose of alleviating the electric field in order to prevent damage from the end. The size, shape, and position of the electrostatic shield 15 are determined by the rated voltage of the high voltage winding 5, the insulation distance to a grounded object such as the tank 14, and roughly the end structure of the high voltage winding 5. In general, by increasing the size of an electrostatic shield to a certain extent after ensuring an insulation distance, the effect of alleviating the electric field at the end of the winding is increased, and the electric field on the surface of the shield is also reduced. However, this electrostatic shield 15 not only faces the tank 14 and other grounded objects, but also directly faces the neck 7 of the cooling duct 6 and the liquid guide pipe 12 connected therefrom. As a result, an insulating distance between the electrostatic shield 15 and the neck 7 and liquid guide tube 12 cannot be ensured, and the electric field becomes much more severe than in other parts. Furthermore, if there are irregularities on the surface of the neck portion 7 or the liquid guide tube 12, the electric field strength will become particularly severe, and there is a risk of dielectric breakdown.

これらを防止するため一つの手段としては首部7ヤ導液
管12の表面を滑らかにすることはもちろん首部7や導
液管12の形状を工夫したり、電界緩和用のシールドを
ざらに取りつけるなど、設計上あるいは製作上非常に複
雑となっていた。
One way to prevent this is to make the surfaces of the neck 7 and liquid guide tube 12 smooth, to devise the shapes of the neck 7 and liquid guide tube 12, and to roughly attach a shield to reduce the electric field. , which was extremely complex in terms of design and manufacturing.

本発明は上記の点に鑑みなされたもので、その目的とす
るところは巻線端部の電界緩和効果を損ねることなく電
界緩和用シールドと冷却ダクト首部間の絶縁信頼性を向
上させた箔巻変圧器を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a foil wrapping that improves the insulation reliability between the electric field mitigation shield and the cooling duct neck without impairing the electric field mitigation effect at the end of the winding. Our goal is to provide transformers.

(発明の構成) (問題点を解決するための手段および作用)本発明の箔
巻変圧器は、巻線に内蔵した冷却ダクトのうち最も外側
に配置される冷却ダクトの首部と対向する部分の電界緩
和用シールドの一部分を切り欠いたものである。これに
より冷却ダクトの首部と静電シールド間の絶縁距離が確
保され絶縁性が向上する。
(Structure of the Invention) (Means and Effects for Solving the Problems) The foil-wound transformer of the present invention has a cooling duct built into the winding, and a portion facing the neck of the cooling duct disposed at the outermost side. This is a cutout of a portion of the electric field mitigation shield. This ensures an insulation distance between the neck of the cooling duct and the electrostatic shield, improving insulation.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図において、箔巻巻線から成る高圧巻線5の最外側
の上下端部には夫々電界緩和用の静電シールド15が設
けられている。高圧巻線5の中には途中、巻線の定格容
量に合せて冷却ダクト6が内蔵され、ざらに冷媒を流す
ために高圧巻線5より突出させた首部7を有する。静電
シールド15とこの首部7のうち最外側に配置される首
部7aと対向する部分の静電シールド15の一部分16
を切り欠く。
In FIG. 1, electrostatic shields 15 for mitigating the electric field are provided at the outermost upper and lower ends of a high-voltage winding 5 made of a foil-wound wire. A cooling duct 6 is built into the high-voltage winding 5 in accordance with the rated capacity of the winding, and has a neck 7 projecting from the high-voltage winding 5 to allow the coolant to flow roughly. The electrostatic shield 15 and a portion 16 of the electrostatic shield 15 facing the outermost neck portion 7a of the neck portion 7.
Cut out.

第2図はこの静電シールド15と首部7aの部分を上部
より見た平面図を示ずものである。静電シールド15の
冷却ダクト首部7aと対向する部分16を切り欠いて構
成する。この切り欠く範囲は高圧巻線5の定格電圧・定
格容量等より決定され゛る静電シールド15ヤ冷却ダク
ト6、首部7aの大ぎざや位置により絶縁距離が確保さ
れるよう最適に決定される。
FIG. 2 does not show a plan view of the electrostatic shield 15 and the neck portion 7a seen from above. It is constructed by cutting out a portion 16 of the electrostatic shield 15 that faces the cooling duct neck portion 7a. The range of this notch is determined by the rated voltage and rated capacity of the high-voltage winding 5, etc., and is optimally determined by the position of the large knurling of the electrostatic shield 15, the cooling duct 6, and the neck 7a to ensure an insulation distance. .

以上の様に構成された本実施例の作用は次のとおりであ
る。高圧巻線5の最も外周に近い側に配置された冷却ダ
クト6の首部7aは高圧巻線5の端部の電界を緩和する
ために設けられた静電シールド15に最も近接する。こ
の最も近接する部の静電シールド15の一部分16を切
り欠くことにより冷却ダクト6の首部7aと静電シール
ド15の間の絶縁距離が確保され冷却ダクト6の首部7
aと静電シールド15の間の絶縁信頼性が向上する。ま
た、静電シールド15の一部分16は切り欠かれるがこ
の部分は冷却ダクト首部7aがすぐ近くに配置されるた
め、この冷却ダクト6の首部7aが巻線端部に対しては
静電シールド15の役割を果たし、高圧巻線端部の電界
緩和効果は、静電シールド15が切り欠かれても何ら支
障はない。むしろ冷却パネル6の首部7aと静電シール
ド15間の絶縁距離を確保するために静電シールド15
の内径を大きくし、高圧巻線5から遠ざけることは電界
緩和効果を小ざくする結果となることから本発明のよう
に静電シールド15を極力高圧巻線5に近づけ、首部7
aと隣接する部分の静電シールド15を切り欠くことに
より巻線端部の電界緩和効果を高め、ざらに首部7aと
静電シールド15間の絶縁信頼性も向上させることがで
きる。
The operation of this embodiment configured as described above is as follows. The neck portion 7a of the cooling duct 6 disposed closest to the outer circumference of the high voltage winding 5 is closest to the electrostatic shield 15 provided to relieve the electric field at the end of the high voltage winding 5. By cutting out a portion 16 of the electrostatic shield 15 at the closest portion, an insulation distance between the neck 7a of the cooling duct 6 and the electrostatic shield 15 is ensured.
Insulation reliability between a and the electrostatic shield 15 is improved. Further, a part 16 of the electrostatic shield 15 is cut out, but since the neck part 7a of the cooling duct is disposed close to this part, the neck part 7a of the cooling duct 6 is not connected to the end of the winding of the electrostatic shield 15. Even if the electrostatic shield 15 is cut out, there is no problem with the electric field relaxation effect at the end of the high-voltage winding. Rather, the electrostatic shield 15 is designed to ensure an insulation distance between the neck 7a of the cooling panel 6 and the electrostatic shield 15.
Increasing the inner diameter of the electrostatic shield 15 and moving it away from the high-voltage winding 5 will reduce the electric field relaxation effect. Therefore, in the present invention, the electrostatic shield 15 is moved as close to the high-voltage winding 5 as possible, and the neck 7 is moved away from the high-voltage winding 5.
By cutting out the portion of the electrostatic shield 15 adjacent to a, the electric field relaxation effect at the end of the winding can be enhanced, and the insulation reliability between the neck portion 7a and the electrostatic shield 15 can also be roughly improved.

また、静電シールド15を大きくする必要もないことか
ら巻線の小型化がはかれる。静電シールド15が大型化
すればするほどそのff1ffiも重くなり、支え構造
等も問題となるがここでは高圧巻線15に近接させるこ
とから支え構造自体も簡略化される。
Further, since there is no need to increase the size of the electrostatic shield 15, the winding can be made smaller. The larger the electrostatic shield 15 becomes, the heavier its ff1ffi becomes, and the support structure becomes a problem, but here, since it is placed close to the high-voltage winding 15, the support structure itself is simplified.

なお、本発明においては静電シールドと巻線の位置関係
には限定されることなく、静電シールドが巻線端部より
大きく突出して配置される場合等については冷却ダクト
6の首部7aと対向する部分の静電シールドを切り欠く
こと番こよりその効果はさらに顕茗となる。
Note that the present invention is not limited to the positional relationship between the electrostatic shield and the winding, and in cases where the electrostatic shield is arranged to protrude more than the end of the winding, etc. The effect becomes even more pronounced by cutting out the electrostatic shield in the area where the electrostatic shield is attached.

(発明の効果〕 以上説明したように本発明によれば、冷却ダクト首部に
対向する部分の静電シールドの一部分を切り欠くことに
より、静電シールドによる巻線端部の電界緩和効果を損
ねることなく冷却ダクト首部近傍の絶縁信頼性を向上し
、巻線の小型化・軽量化をはかることができ、経済的で
信頼性の高い箔巻変圧器を提供することができる。
(Effects of the Invention) As explained above, according to the present invention, by cutting out a portion of the electrostatic shield in the portion facing the neck of the cooling duct, the electric field relaxation effect of the electrostatic shield at the end of the winding can be impaired. It is possible to improve insulation reliability near the neck of the cooling duct, reduce the size and weight of the winding, and provide an economical and highly reliable foil-wound transformer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の箔巻変圧器の一実施例を示す断面図、
第2図は第1図の@巻変圧器の要部拡大平面図、第3図
は従来の箔巻変圧器の構成を示す断面図である。 1・・・鉄心の脚部    2・・・金属シート3・・
・絶縁シート    1・・・低圧巻線5・・・高圧巻
線     6・・・冷却ダクト7.7a・・・首部 
   15・・・静電シールド12・・・導液管   
   13・・・絶縁パイプ16・・・切り火ぎ部 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第 1 図 第2図 第3図
FIG. 1 is a sectional view showing an embodiment of the foil-wound transformer of the present invention;
FIG. 2 is an enlarged plan view of essential parts of the @-wound transformer shown in FIG. 1, and FIG. 3 is a sectional view showing the structure of a conventional foil-wound transformer. 1... Legs of iron core 2... Metal sheet 3...
・Insulating sheet 1...Low voltage winding 5...High voltage winding 6...Cooling duct 7.7a...Neck
15... Electrostatic shield 12... Liquid guide pipe
13...Insulated pipe 16...Kirihiki Department agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata No. 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  金属シートと絶縁シートとを重ねて巻いた箔状の巻線
を用い、この巻線内に冷却ダクトを内蔵した変圧器中身
を絶縁媒体と共にタンク内に封入した箔巻変圧器におい
て、箔状巻線の最外側端部に電界緩和用の静電シールド
を設け、巻線外部に突出した冷却ダクト首部に対向する
静電シールドの一部分を切り欠いたことを特徴とする箔
巻変圧器。
A foil-wound transformer uses a foil-like winding made by wrapping a metal sheet and an insulating sheet in layers, and has a cooling duct built into the winding.The foil-wound transformer has a cooling duct built into the winding. A foil-wound transformer characterized in that an electrostatic shield for mitigating the electric field is provided at the outermost end of the wire, and a portion of the electrostatic shield facing the cooling duct neck protruding outside the winding is cut out.
JP9336086A 1986-04-24 1986-04-24 Foil-wound transformer Pending JPS62250618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336086A JPS62250618A (en) 1986-04-24 1986-04-24 Foil-wound transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336086A JPS62250618A (en) 1986-04-24 1986-04-24 Foil-wound transformer

Publications (1)

Publication Number Publication Date
JPS62250618A true JPS62250618A (en) 1987-10-31

Family

ID=14080115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336086A Pending JPS62250618A (en) 1986-04-24 1986-04-24 Foil-wound transformer

Country Status (1)

Country Link
JP (1) JPS62250618A (en)

Similar Documents

Publication Publication Date Title
JPS62250618A (en) Foil-wound transformer
JPH03159210A (en) Foil-wound transformer
JPH02123712A (en) Foil-wound transformer
JPS6347914A (en) Foil-winding transformer
JPS6373511A (en) Foil-wound transformer
JPS61188913A (en) Foil wound transformer
JPS63111605A (en) Foil wound transformer
JPS5878406A (en) Foil wound transformer
JPH03289109A (en) Foil-wound transformer
JPH03159211A (en) Foil-wound transformer
JPS5955007A (en) Foil wound transformer
JPS6347912A (en) Foil-winding transformer
JP3653878B2 (en) Gas insulated induction winding
JPS5878407A (en) Foil wound transformer
JPS61105821A (en) Foil wound transformer
JPH0430168B2 (en)
JPS61188915A (en) Foil wound transformer
JPS6066414A (en) Foil-wound transformer
JPS6095907A (en) Foil wound transformer
JPS59197112A (en) Foil-winding transformer
JPS60241206A (en) Foil-wound transformer
JPS6147610A (en) Foil-wound transformer
JPS62281410A (en) Foil-wound transformer
JPS60241209A (en) Foil-wound transformer
JPS6060705A (en) Leaf-wound transformer