JPS62249067A - Multi-component simultaneous quantitative flow injection analyzing method - Google Patents
Multi-component simultaneous quantitative flow injection analyzing methodInfo
- Publication number
- JPS62249067A JPS62249067A JP9285486A JP9285486A JPS62249067A JP S62249067 A JPS62249067 A JP S62249067A JP 9285486 A JP9285486 A JP 9285486A JP 9285486 A JP9285486 A JP 9285486A JP S62249067 A JPS62249067 A JP S62249067A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- sample
- preliminary
- section
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000004401 flow injection analysis Methods 0.000 title claims description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 121
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 11
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 4
- 239000012491 analyte Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 239000000969 carrier Substances 0.000 abstract 1
- 238000004445 quantitative analysis Methods 0.000 abstract 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 14
- 239000008103 glucose Substances 0.000 description 14
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 9
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 210000003323 beak Anatomy 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明はフローインジェクション分析法に関し、特に
試料が含有する多成分を同時に分析できるフローインジ
ェクション分析法(以下FIA法と略称する)に関Tる
。Detailed Description of the Invention (a) Industrial Application Field This invention relates to a flow injection analysis method, and particularly to a flow injection analysis method (hereinafter abbreviated as FIA method) that can simultaneously analyze multiple components contained in a sample. Ru.
(ロ)従来の技術
FIA法としては従来、第5図に示すように試料インジ
ェクター(8a)より試料が圧入され、試料中の被定鼠
成分が、送液ポンプ(2a月こよって送られてくる反応
試薬含有のキャリヤー溶液(la)と反応コイル(4a
)において配合し、試薬と反応し、反応生成物が検出器
(5a)で検出されて定量が行われるのが基本的なもの
である。また2つ以上の流路を設けて試料の前処理を行
ったり、マーリングさせることによって試薬の減少を因
るなどの工夫も行われている。しかしながらいずれにし
ても定量画定される成分は一つである。多成分を同時に
定量する試みも行われており、例えば特異的に反応を行
わしめる二つ以上の流路を用いるMg/Sr系もしくは
Ca/Sr系の分析例〔エイチ・カゲノウおよびエイ・
ジエンセン、アナリテイカ・シミ力・アクタ、(H@K
agenow and AsJensen、Ana
l、Chim、Acta)114,229゜1980)
とかちるいは特異的に検知できる検出器を二つ以上用い
るHg/Zn系の分析例〔ディ・ツーレイおよびビイ・
デシイ、アナリデイカル・ケミストリイ(D、Hool
ey and R,Dessy。(b) Conventional technology In the conventional FIA method, as shown in Fig. 5, a sample is injected under pressure from a sample injector (8a), and the target component in the sample is sent by a liquid pump (2a). A carrier solution containing a reaction reagent (la) and a reaction coil (4a)
), the reaction product is reacted with a reagent, and the reaction product is detected by a detector (5a) and quantified. In addition, efforts have been made to pre-process the sample by providing two or more channels, or to reduce the amount of reagent by marling. However, in any case, only one component is quantitatively defined. Attempts have also been made to quantify multiple components simultaneously; for example, an example of analysis of Mg/Sr system or Ca/Sr system using two or more flow paths that cause specific reactions [H. Kagenou and H.
Jensen, Analytica Shimi-Riki Acta, (H@K
agenow and AsJensen, Ana
l, Chim, Acta) 114, 229° 1980)
Examples of Hg/Zn-based analysis using two or more detectors that can specifically detect
Deci, Analytical Chemistry (D, Hool)
ey and R, Dessy.
Anal、Chem、 )t 55.81J 1988
)があるが、これらはいずれも各試料に選択性の高い特
異的作用を利用するもので各試料に対する反応または検
出の独立性が維持されることが必須委件である。し、か
し実際には、例えばA成分に対して特異で独立的である
べき反応がB成分に対しても若干作用したり、逆にB成
分に対して特異で独立的であるべき反応がム成分に対し
ても若干作用するということがしばしば起こり、その結
果FIA法の成分同時定量の可能性が著しく制約されて
いたO
(/今 発明が解決しようとする問題点この発明はF
IA法における上記問題点を改善するためになされたも
のであって、試料中の多成分を同時に定1分析しつるF
IA法の提供を目的とするものである。Anal, Chem, )t 55.81J 1988
), but all of these utilize specific effects with high selectivity for each sample, and it is essential that the independence of reaction or detection for each sample is maintained. However, in reality, for example, a reaction that should be specific and independent to component A may also have some effect on component B, or conversely, a reaction that should be specific and independent to component B may also act slightly on component B. It often happens that FIA has a slight effect on FIA components, and as a result, the possibility of simultaneous determination of components using the FIA method is severely restricted.
This method was developed to improve the above-mentioned problems in the IA method, and is an F method that allows multiple components in a sample to be analyzed simultaneously.
The purpose is to provide IA law.
に)問題点を解決するための手段と作用この発明は、反
応試薬含有キャリヤーの送液部、第1〜n被定量成分含
有試料の導入部および反応コイルの予備反応部を順に連
結してなる第1′!fP備反応流路と、これと同じ構成
でさらにその出口側に送液遅延コイルを連結してそれぞ
れ形成された第2〜n予備反応流路とを並列して出口で
合流させ、その合流部に、反応コイルおよび検出器を順
に連結して構成された主反応流路を連結してなる分析装
置を用い、試料を第1〜n予備反応流路の試料導入部に
同時に圧入し、これらの流路を通過した各反応液を第1
〜n番の順に遅延させて互に混合することなく主反応流
路に導入 し、各予備反応流路に圧入された試料がそれ
ぞれの予備反応部とこれに続く主反応部とを通過する間
にそれぞれ異なる反応に付され、生成した各反応液を順
に検出器に送り、得られた各第1〜n予備反応流路と主
反応部とを通過した反応液のピーク高さP(1)〜P
(n)を検出し、下記連立方程式:%式%
但し01〜Cnは試料中の第1−n被定怠成分の未知濃
度を示し、Xの例えばX12は既知濃度の第1被定沌成
分含百標準液を第2予癩反応流路と主反発流路とを通過
させて検出されるピーク高さと第1被定量成分濃度との
関係を示す検凰直線の傾きであり予め測定される。B) Means and operation for solving the problems This invention is constructed by sequentially connecting a liquid feeding section for a carrier containing a reaction reagent, an introduction section for samples containing the first to nth quantified components, and a preliminary reaction section of a reaction coil. 1st! The fP pre-reaction flow path and the second to nth pre-reaction flow paths, each formed by having the same configuration and further connecting a liquid sending delay coil to the outlet side thereof, are arranged in parallel and merged at the outlet, and the merged portion is Using an analyzer in which a main reaction channel is constructed by sequentially connecting a reaction coil and a detector, samples are simultaneously pressurized into the sample introduction portions of the first to nth preliminary reaction channels, and these Each reaction solution that has passed through the channel is
The samples are introduced into the main reaction channel without mixing with each other in the order of ~n, and are introduced into the main reaction channel without mixing with each other, while the samples pressurized into each preliminary reaction channel pass through each preliminary reaction section and the following main reaction section. The reaction liquids that are subjected to different reactions and generated are sent to the detector in order, and the peak height P (1) of the reaction liquids that have passed through each of the first to n preliminary reaction channels and the main reaction section is ~P
(n) is detected, and the following simultaneous equation: % formula % However, 01 to Cn indicate the unknown concentration of the 1st to nth neglected component in the sample, and X, for example, X12 is the first chaotic component of known concentration. The slope of a test straight line indicating the relationship between the peak height detected by passing the 100% standard solution through the second preleprosy reaction channel and the main repulsion channel and the concentration of the first analyte component, which is measured in advance. .
を解いて、試料中の第1〜n被定鼠成分の濃度C1〜C
nを算出することからなる多成分同時疋社フローイン乏
エクション分析法を提供するものである0
この発明の分析法で分析されるiIa、料としては、例
えば各極糖類の混合液や各種金風イオンの混合液などが
挙げられる。Solve and calculate the concentrations C1 to C of the first to nth test components in the sample.
This invention provides a multi-component simultaneous flow-in fraction analysis method consisting of calculating Examples include a mixed liquid of wind ions.
この発明に詔いて試料は各予備反応流路に各試料導入部
から同時に圧入されるが、この試料導入部としては、各
予備反応流路毎の、一定量の試料を保持させるためのル
ープを具備する六万バルブと、これらのバルブに共通し
たシャフトとからなり、このシャフトを回転させること
によってループ内の試料をそれぞれの予備反応流路に同
時に導入する装置なと公知のものが挙げられる。According to this invention, the sample is simultaneously pressurized into each pre-reaction channel from each sample introduction section, but the sample introduction section includes a loop for holding a certain amount of sample for each pre-reaction channel. An example of this is a known device that consists of 60,000 valves and a shaft common to these valves, and that rotates the shaft to simultaneously introduce the samples in the loop into the respective preliminary reaction channels.
また第1〜n予備反応流路をそれぞれ通過した各反応液
は第1〜n番の順に遅延させてそれぞれ混合することな
く主反応流路に送るために第2〜nの予備反応流路には
それぞれ遅延コイルが設けられているが、この遅延送液
は各混合反応液の流坦を調節することによって行うこと
もできる。In addition, each reaction solution that has passed through the first to nth preliminary reaction channels is delayed in the order of the first to nth preliminary reaction channels and sent to the main reaction channel without being mixed. Each of the reactors is provided with a delay coil, but this delayed liquid feeding can also be performed by adjusting the flow rate of each mixed reaction liquid.
またこの発明において、各予備反応流路とこれに続く主
反応部を通過する試料は、各予備反応部と主反応部とを
通過する間にそれぞれ異なった反応に付されるが(同極
の反応でその進行の程度の!Aなるものでもよい)、こ
の反応としてはキャリヤー中に含有される反応試薬によ
る化学反応で主して行われるが、予備反応部と主反応部
に加熱手段を設けて化学反応を加速するとか、化学反応
の外に光線、放射線もしくは電磁波の照射による光化学
反応、電気化学的な酸化もしくは還元反応でであっても
よい。In addition, in this invention, the sample passing through each preliminary reaction channel and the main reaction section following it is subjected to different reactions while passing through each preliminary reaction section and the main reaction section (with the same polarity). This reaction is mainly carried out by a chemical reaction using a reaction reagent contained in a carrier, but heating means may be provided in the preliminary reaction section and the main reaction section. In addition to a chemical reaction, a photochemical reaction by irradiation with light, radiation, or electromagnetic waves, or an electrochemical oxidation or reduction reaction may be used.
なお上記加熱手段としては恒温!3など公知のものを用
いることができる。In addition, the above heating means is constant temperature! Well-known ones such as No. 3 can be used.
検出器としては試料の反応生成物の佐賀によって適切な
ものが選択され、吸光、けい光、電気化学特注などの検
出器が挙げられる。An appropriate detector is selected depending on the reaction product of the sample, and examples include absorption, fluorescence, and custom-made electrochemical detectors.
また前記連立方程式は、適当な計卜機を用いて自動的に
迅速に解くことができる。。Moreover, the simultaneous equations can be solved automatically and quickly using a suitable calculator. .
(ホ)実施例
この弁明の分析法をこの分析法に用いる分析装置の−か
1(第1医)によって説明する。(e) Example The analytical method of this defense will be explained using -1 (first doctor) of the analyzer used in this analytical method.
第1図において(l−1,1−2,1−8・・・・・・
、1−n)は反応試薬含有キャリヤー、(2−1,2−
2,2−8・・・・・・、2−n) は反応試薬含有
キャリヤー送液用ポンプ、(3)は試料圧入器、(4−
1,4−2,4−8・・・・・・、4−n)は遅延され
た試料尋人部、(5−1,5−2,5−8=、 5−n
311151〜n’P備反応部、(6−1,6−2,
6−8=・−6−n、 9 )は反応コイル、(7−i
、 7−2.7−8=T −n。In Figure 1 (l-1, 1-2, 1-8...
, 1-n) is a carrier containing a reaction reagent, (2-1,2-
2, 2-8..., 2-n) is a pump for feeding a carrier containing a reaction reagent, (3) is a sample presser, (4-
1, 4-2, 4-8..., 4-n) is the delayed sample interrogator, (5-1, 5-2, 5-8=, 5-n
311151~n'P equipped reaction section, (6-1, 6-2,
6-8=・-6-n, 9) is the reaction coil, (7-i
, 7-2.7-8=T-n.
LOン は fitム榴、 (8−2,8−8,8−4
・!・・・・8−n)は遅延コイル、(9−1,9−2
,9−8・叩・、9−n)は第1〜n予備反応流路、(
100)は主反応部、(101)は主反応流路、(10
2)は検出器である。LOon is fit, (8-2, 8-8, 8-4
・! ...8-n) is a delay coil, (9-1, 9-2
, 9-8・beat・, 9-n) are the first to nth preliminary reaction channels, (
100) is the main reaction section, (101) is the main reaction flow path, (10
2) is a detector.
次いでこの装置を用いて行なうこの発明の一例の分析法
を説明する。Next, an example of an analysis method of the present invention performed using this apparatus will be explained.
試料が各予備反応流路と主反応流路とをIBJ過する問
にそれぞれ異なる反応が付与されるように、各予備反応
流路の反応試薬と各恒温槽の温度とを選択し、その各反
応試薬含有のキャリヤー(1−111−2,1−8・・
・・・・、1−n)をそれぞれ送液ポンプ(2−1,2
−2,2−3・曲・、2−n)で送液し、各恒温槽を前
記の選択された温度番こ設定して定常状態にしておく。The reaction reagent for each preliminary reaction channel and the temperature of each constant temperature bath are selected so that different reactions are imparted to each sample as it passes through each preliminary reaction channel and the main reaction channel. Carrier containing reaction reagent (1-111-2, 1-8...
. . . , 1-n) are connected to the liquid feeding pumps (2-1, 2-n), respectively.
-2, 2-3, song, 2-n), and each constant temperature bath is set at the selected temperature to keep it in a steady state.
次いで試料圧入器(3)より第1〜n被定凰成分含有の
試料が各試料導入部を通じて同時に各予備反応流路に導
入される。そしてまず第1予備反応流路(9−1)に圧
入された試料はこれを通過して最初に主反応流路(10
1)に送られ、−万第2.・6.・・n予備反応流路に
圧入された試料は、それぞれの予備反応流路を通過しそ
れぞれの遅延コイル養こよって互に混合することなく第
2・・・・・・1番の順に主反応流路(101)に送ら
れる。そしてそれぞれの試料は各予備反応流路と主反応
流路とを通過する間にそれぞれ異なる反応が付与される
。そして順に検出器(102)に送られ検出されてピー
ク高さP(L)、P(2)、P(3)、・・・・・・、
P (n)が得られ排出される。Next, samples containing the first to nth analyte components are simultaneously introduced from the sample injector (3) into each pre-reaction channel through each sample introduction section. First, the sample press-fitted into the first preliminary reaction channel (9-1) passes through this and first enters the main reaction channel (10-1).
1) sent to -10,000th 2.・6. ...The samples pressurized into the pre-reaction channels pass through each pre-reaction channel and are fed to each delay coil to perform the main reaction in the order of No. 2... No. 1 without mixing with each other. It is sent to the flow path (101). Each sample is subjected to a different reaction while passing through each preliminary reaction channel and the main reaction channel. Then, the peak heights P(L), P(2), P(3), . . . are sent to the detector (102) and detected in order.
P (n) is obtained and discharged.
ここで得られたピーク高さP(1)、p(2)、P(3
)・・・・・・、P(n)において、その昼さは、例え
ばP 0.1のピークでは、第1予備反応流路と主反応
流路とのラインにおけるC1の寄与のほか、C2の寄与
、C8・・・・・・Cnの寄与が合計されたものであり
、またP(2)のピークでは、第2予備反応流路と主反
応流路とのラインにおけるCIの寄与NC2の命与、C
a・・・・・・Cnの寄与が合計されたものであり、以
下同様である。その結果、下記のj;うな連立方程式が
成立する。The peak heights P(1), p(2), P(3) obtained here are
)......, P(n), the daytime is, for example, at the peak of P 0.1, in addition to the contribution of C1 in the line between the first preliminary reaction channel and the main reaction channel, C2 , C8...Cn, and at the peak of P(2), the contribution of CI in the line between the second preliminary reaction channel and the main reaction channel is the sum of the contributions of NC2. Order, C
a...Contribution of Cn is totaled, and the same applies hereafter. As a result, the following simultaneous equations are established.
P (11= Xt t C1十X 12C2+−−−
−=+X1 nCnP (2) = X21 C1+
X22 C2+−=−・→−X2nCnP (n) =
Xnl cm + Xn2 cg +・−−−−−+
xnncnなお、第1〜第nの予備反応流路と主反応流
路とのそれぞれのラインでは、異なる反応もしくは同じ
反応でその程度の異なる反応が付与され、上記方程式の
係数Xtt〜Xnnは各々固有の値である、例えばX1
2は既知濃度の第1被定量成分含有標準液を第2予備反
応流路と主反応流路とを通過させて検出されるピーク高
さと第1被定量成分譲麿との関係を示す検量直線の傾き
であり、予め測定される。P (11=Xt t C10X 12C2+---
-=+X1 nCnP (2) = X21 C1+
X22 C2+-=-・→-X2nCnP (n) =
Xnl cm + Xn2 cg +・−−−−−+
xnncnIn addition, in each line of the first to n-th preliminary reaction channels and the main reaction channel, different reactions or reactions of different degrees are given to the same reaction, and the coefficients Xtt to Xnn in the above equation are each unique. For example, X1
2 is a calibration line showing the relationship between the peak height detected by passing a standard solution containing the first quantified component with a known concentration through the second preliminary reaction channel and the main reaction channel and the first quantified component Yumaro; is the slope of , and is measured in advance.
この連立方程式に実測されたP(1)〜P (n)を代
入することにより未知濃度C1xCnが算定される。By substituting the actually measured P(1) to P(n) into this simultaneous equation, the unknown concentration C1xCn is calculated.
実験例
第2図に示すこの発明に用いる分析装部の一例を用いて
、グルコースとマルトース含有の水m#Lの両成分を分
析した結果を示す。EXPERIMENTAL EXAMPLE The results of analyzing both components of glucose and maltose-containing water (m#L) using an example of the analyzer used in the present invention shown in FIG. 2 are shown below.
第2図において、
A1はホウ酸0.1M、ホウ酸ナトリウムNa2B40
70.05Mおよびアルギニン0.1%の水溶液B1は
過塩素酸0.01M水溶液、
A2と82はそれぞれA1とB1の送液ポンプ、A8と
88は予備反応流路AとBとへの試料導入用六方バルブ
、
A4と84 C−Jそれぞれ予備反応流路AとBの予備
反応部、
Cは主反応部であり、A5、B5およびC1は反応コイ
ル、
A6、B6およびC2は恒温槽、Dは検出器である。In Figure 2, A1 is boric acid 0.1M, sodium borate Na2B40
Aqueous solution B1 of 70.05M and 0.1% arginine is a 0.01M aqueous solution of perchloric acid, A2 and 82 are liquid pumps for A1 and B1, respectively, and A8 and 88 are sample introductions to preliminary reaction channels A and B. A4 and 84 C-J are the pre-reaction sections of the pre-reaction channels A and B respectively, C is the main reaction section, A5, B5 and C1 are the reaction coils, A6, B6 and C2 are the constant temperature chambers, D is the detector.
なお、予備反応流路Bの予備反応部B4と主反応部Cは
それぞれの恒温槽によって140℃に保持されるが予備
反応流路人の予備反応部A4は昇温されず掌編のま\で
ある。Note that the preliminary reaction section B4 and main reaction section C of the preliminary reaction channel B are maintained at 140°C by their respective constant temperature baths, but the temperature of the preliminary reaction section A4 of the preliminary reaction channel B is not raised and remains in the palm-knit state. .
なおこの実験例は還元糖がアルギニンを含むホウ酸ig
IhJa中で発蛍光体を生じ定凰可託であること(三上
博久および石田泰夫9分析化学、32゜E207,19
88年参照)と、マルトースが酸によって加水分解され
てグルコースを生じることを利用したものである。すな
わち、上記装置にマルトースとグルコースとの混合液の
試料が圧入さて発蛍光化され、−万予備反応流路Bに圧
入された試料中のマルトースが予備反応部B4において
過塩素酸で酸化されてグルコースを生成し、次いで主反
応部Cにおいて両成分が流路ムからのアルギニンによっ
て発蛍光化され、それぞれ検出器りで検出されるもので
ある。Note that this experimental example uses boric acid ig containing arginine as the reducing sugar.
Fluorophores are produced in IhJa and are stable (Hirohisa Mikami and Yasuo Ishida 9 Analytical Chemistry, 32°E207, 19
(see 1988) and utilizes the fact that maltose is hydrolyzed by acid to produce glucose. That is, a sample of a mixed solution of maltose and glucose is press-injected into the above-mentioned apparatus and fluoresced, and the maltose in the sample press-filled into the pre-reaction channel B is oxidized with perchloric acid in the pre-reaction section B4. Glucose is produced, and then in the main reaction section C, both components are made to fluoresce by arginine from the flow path, and each is detected by a detector.
(1)検を線の作成
a)グルコース誤度とピーク高さとの検怠線の作成
Al液を流量0.6111 /馴で、BL液を流量0.
4ml / saで送って定常状態として詔く。また実
線のようにセットした六方バルブA8とB8の一万から
矢印方向に0.2%グルコース水溶液を圧入して各バル
ブに付設されたループALとBLに同じ所7)[(10
μl)の前記水溶液を保持させる。次いでA8とB3の
バルブを同時に点線のように切換えることによってAL
とBL内の前記標準試料をそれぞれAM路とB流路に導
入する。まずA流路の予備反応部A4と主反応部Cを通
過した反応液がけい光検出器りで検出されて第8図に示
すalのピーク高さが得られ、次いでB流路の予備反応
部B4と主反応部Cとを通過した反応液の、86(1−
光源で励起されたときのけい光がけい光検出器りで検出
されて第8図のblのピーク高さくff)が得られた(
いずれも2回づつ測定。以下同じ〕。(1) Creating a test line a) Creating a test line between glucose error and peak height Al liquid at a flow rate of 0.6111/cm, BL liquid at a flow rate of 0.6111/cm.
Send at 4ml/sa and use as steady state. In addition, 0.2% glucose aqueous solution was injected in the direction of the arrow from the six-way valves A8 and B8 set as shown in the solid line, and the loops AL and BL attached to each valve were inserted into the same place 7) [(10
μl) of the aqueous solution is retained. Next, by switching the A8 and B3 valves at the same time as shown in the dotted line, the AL
and the standard samples in BL are introduced into the AM path and the B flow path, respectively. First, the reaction liquid that has passed through the preliminary reaction section A4 and the main reaction section C of the A channel is detected by a fluorescence detector, and the peak height of al shown in Fig. 8 is obtained, and then the preliminary reaction of the B channel is detected. 86(1-
The fluorescence when excited by the light source was detected by the fluorescence detector, and the peak height of bl (ff) in Figure 8 was obtained (
All measurements were taken twice. same as below〕.
次に同様にしてQ、4、Q、cs:$iよび0.8%グ
ルコース水水散液圧入してそれぞれ第8図のa 21.
b2ya8、B8.およびB4、B4のピーク為さが得
られた。Next, in the same manner, Q, 4, Q, cs: $i and 0.8% glucose aqueous dispersion were press-fitted, respectively, as shown in FIG. 8a21.
b2ya8, B8. and B4 and B4 peak values were obtained.
次にピークa1、B2、B8およびB4のチャート上の
高さくff1l)とグルコース良度0.2.0.4.0
.6および0.8%との関係を示す検患線G−Aを第4
図に示した。同様にピークbl、B2.b3$よびB4
のチャート上の高g (ff)とグルコース濃度0.2
.0.4.0.6および0.8%との関係を示す検原線
G−Bを第4因に示した。Next, the height on the chart of peaks a1, B2, B8 and B4 is ff1l) and the glucose quality is 0.2.0.4.0.
.. The fourth test line G-A showing the relationship with 6 and 0.8%
Shown in the figure. Similarly, peaks bl, B2. b3$ and B4
High g (ff) and glucose concentration on the chart of 0.2
.. The standard line GB showing the relationship with 0.4, 0.6 and 0.8% is shown as the fourth factor.
次にグルコースをマルトースに変えること以外は上記と
同様にして第8図に示すビークa5、b5.a6、b6
.a7、b7およびa8、b8を得、これからG−Aと
G−Bに対応する検量線M−AとM−Bを得第4図にし
た。各検量線の傾きは次のとおりであった。Next, beaks a5 and b5 shown in FIG. 8 are prepared in the same manner as above except that glucose is changed to maltose. a6, b6
.. A7, b7, a8, and b8 were obtained, and calibration curves M-A and M-B corresponding to G-A and G-B were obtained from these as shown in FIG. The slope of each calibration curve was as follows.
G−A229ff/%糖
G B 184.5 u
M−A40.5u
M−B 63,5u
(2) グルコースとマルトース含有水溶液の分析ク
ルコースを0.85%、マルトースを0.66%含有す
る水浴液の合成試料10μlづつを前記と同様にしてA
ラインとBラインに同時に圧入して第3図に示すビーク
aとbを得た(4回純返し)。G-A229ff/% sugar G B 184.5 u M-A40.5u M-B 63,5u (2) Analysis of aqueous solution containing glucose and maltose Water bath liquid containing 0.85% glucose and 0.66% maltose Add 10 μl of each synthetic sample to A in the same manner as above.
The beaks a and b shown in FIG. 3 were obtained by simultaneously press-fitting into the line and B line (returning was repeated 4 times).
上記のデータから下記連立方程式を作成し、Aビークの
高す(at)= G−A(7)傾き(229B/%)X
CG(グルコース磯度9%)
+M−Aの傾き(40,5Ja/%)
XCG(マルトース濃度9%)
Bビークの高さくJlml)=G−Hの傾き(184,
4,wI/%)XCG(同上)
+M−Bの傾きC68,5JII、’%)XCM(同上
)
これを解いた結果次のような算出結果が得られた。Create the following simultaneous equations from the above data and calculate A peak height (at) = G - A (7) slope (229B/%) x
CG (glucose level 9%) + M-A slope (40.5 Ja/%) XCG (maltose concentration 9%) B-beak height Jlml) = G-H slope (184,
4, wI/%)XCG (same as above) +MB slope C68, 5JII,'%)
含有′M(勾算出含有量(へ) 相対誤地%)グルコー
ス 0.85 0.826 0.7マルトース
0.65 0.646 0.6算出結果と含有量
とは良好な一致を示している。Content'M (gradient content (to) Relative error %) Glucose 0.85 0.826 0.7 Maltose
0.65 0.646 0.6 The calculation results and the content show good agreement.
(ホ)弁明の効果
この発明によれは多数の被定怠成分含有の試料の仮定員
成分を同時に分析することができる。(e) Effect of explanation According to the present invention, it is possible to simultaneously analyze the hypothetical constituents of a sample containing a large number of neglected constituents.
第1図はこの発明に用いる装置の一例の構成説明図、第
2図は実験例に用いた装置の構成説明図、第8因は実験
例で得られたビークチャート図、第4図は第8因で得た
データに基いて作成した検ぶ線を示すグラフ図、第5図
は従来のFIA法装置の一例の構成説明図である。
(1−1,1−2,1−8=z 1−n )=反応#A
某含有キャリヤー、
(2−1,2−2,2−8・・−・・、2−n)・・・
送液ポンプ、(3)・・・試料圧入器、
(4−1,4−2,4−8・・・・〜4−n)・・・試
料導入部、(5−1,5−2,5−3・・−・〜5−n
)・・・予備反応部、(6−1,6−2,6−3・・・
・〜6−へ9)・・反応コイル、(7−1,7−2,7
−8−−−−−17−n、10)=恒温槽、(8−2,
8−8、・・・・・、8−n)・・・遅延コイル、(9
−1,9−2,9−8・・−・・9−n)・・・予備反
応流路、(100)・・・主反応部、 (101)・
・・主反応派路、(102)・・・検出器。
婉1図
稟2図
第3図
一一一一一一時藺(分)Fig. 1 is an explanatory diagram of the configuration of an example of the apparatus used in this invention, Fig. 2 is an explanatory diagram of the configuration of the apparatus used in the experimental example, the eighth factor is a beak chart diagram obtained in the experimental example, and Fig. 4 is the diagram of the configuration of the apparatus used in the experimental example. FIG. 5 is a graph showing a line to be detected based on the data obtained from the eight factors, and is an explanatory diagram of the configuration of an example of a conventional FIA method apparatus. (1-1,1-2,1-8=z 1-n )=reaction #A
A certain containing carrier, (2-1, 2-2, 2-8..., 2-n)...
Liquid feed pump, (3)...sample injector, (4-1, 4-2, 4-8...~4-n)...sample introduction section, (5-1, 5-2 ,5-3...--5-n
)...preliminary reaction section, (6-1, 6-2, 6-3...
・~6-9)・・Reaction coil, (7-1, 7-2, 7
-8-----17-n, 10) = constant temperature bath, (8-2,
8-8,...,8-n)...delay coil, (9
-1,9-2,9-8...9-n)...Preliminary reaction channel, (100)...Main reaction section, (101)...
...Main reaction path, (102)...detector.婉1 字 2 fig. 3 11 11 1 1 藺 (minutes)
Claims (1)
量成分含有試料の導入部および反応コイルの予備反応部
を順に連結してなる第1予備反応流路と、これと同じ構
成でさらにその出口側に送液遅延コイルを連結してそれ
ぞれ形成された第2〜n予備反応流路とを並列して出口
で合流させ、その合流部に、反応コイルおよび検出器を
順に連結して構成された主反応流路を連結してなる分析
装置を用い、試料を第1〜n予備反応流路の試料導入部
に同時に圧入し、これらの流路を通過した各反応液を第
1〜n番の順に遅延させて互に混合することなく主反応
流路に導入し、各予備反応流路に圧入された試料がそれ
ぞれの予備反応部とこれに続く主反応部とを通過する間
にそれぞれ異なる反応に付され、生成した各反応液を順
に検出器に送り、得られた各第1〜n予備反応流路と主
反応部とを通過した反応液のピーク高さP(1)〜P(
n)を検出し、下記連立方程式: P(1)=X_1_1C_1+X_1_2C_2+・・
・・・・+X_1_nC_nP(2)=X_2_1C_
1+X_2_2C_2+・・・・・・+X_2_nC_
nP(n)=X_n_1C_1+X_n_2C_2+・
・・・・・+X_n_nC_n但しC_1〜C_nは試
料中の第1〜n被定量成分の未知濃度を示し、Xの例え
ばX_1_2は既知濃度の第1被定量成分含有標準液を
第2予備反応流路と主反応流路とを通過させて検出され
るピーク高さと第1被定量成分濃度との関係を示す検量
直線の傾きであり予め測定される。 を解いて、試料中の第1〜n被定量成分の濃度C_1〜
C_nを算出することからなる多成分同時定量フローイ
ンジェクション分析法。[Scope of Claims] 1. A first preliminary reaction flow path formed by sequentially connecting a liquid feeding section for a carrier containing a reaction reagent, an introduction section for samples containing the first to nth analyte to be quantified, and a preliminary reaction section of a reaction coil; , with the same configuration, the second to nth preliminary reaction channels, each formed by connecting a liquid sending delay coil to the outlet side, are arranged in parallel and merged at the outlet, and the reaction coil and the detection channel are connected in parallel at the outlet. Using an analyzer in which main reaction channels are connected in sequence, samples are simultaneously pressurized into the sample introduction portions of the first to nth preliminary reaction channels, and each sample passing through these channels is The reaction solutions are introduced into the main reaction channel in the order of numbers 1 to n without being mixed with each other, and the sample press-fitted into each preliminary reaction channel is transferred to each preliminary reaction section and the following main reaction section. The reaction liquids that are subjected to different reactions while passing through are sent to the detector in order, and the peak height of the reaction liquid that has passed through each of the first to nth preliminary reaction channels and the main reaction section is calculated. SaP(1)~P(
n) is detected and the following simultaneous equations are created: P(1)=X_1_1C_1+X_1_2C_2+...
...+X_1_nC_nP(2)=X_2_1C_
1+X_2_2C_2+...+X_2_nC_
nP(n)=X_n_1C_1+X_n_2C_2+・
... + This is the slope of a calibration straight line that indicates the relationship between the peak height detected by passing through the main reaction channel and the concentration of the first quantified component, and is measured in advance. Solve to find the concentration C_1~ of the first to nth quantified components in the sample.
A multicomponent simultaneous quantitative flow injection analysis method consisting of calculating C_n.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9285486A JPS62249067A (en) | 1986-04-22 | 1986-04-22 | Multi-component simultaneous quantitative flow injection analyzing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9285486A JPS62249067A (en) | 1986-04-22 | 1986-04-22 | Multi-component simultaneous quantitative flow injection analyzing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62249067A true JPS62249067A (en) | 1987-10-30 |
Family
ID=14066011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9285486A Pending JPS62249067A (en) | 1986-04-22 | 1986-04-22 | Multi-component simultaneous quantitative flow injection analyzing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62249067A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008113A (en) * | 2008-06-25 | 2010-01-14 | Hitachi High-Technologies Corp | Flow injection analyzer |
-
1986
- 1986-04-22 JP JP9285486A patent/JPS62249067A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008113A (en) * | 2008-06-25 | 2010-01-14 | Hitachi High-Technologies Corp | Flow injection analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Trojanowicz | Flow injection analysis | |
Dutt et al. | Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period | |
US9664664B2 (en) | Probe and method for detecting metal ions and chemical/biochemical molecules | |
Kozak et al. | Simple flow injection method for simultaneous spectrophotometric determination of Fe (II) and Fe (III) | |
Rocha et al. | An improved flow system for spectrophotometric determination of anions exploiting multicommutation and multidetection | |
Dębosz et al. | 3D-printed flow manifold based on potentiometric measurements with solid-state ion-selective electrodes and dedicated to multicomponent water analysis | |
Ferrari et al. | Completely Automated System for Chemical Determination of Streptomycin and Penicillin in Fermentation Media | |
CN102519922B (en) | Atomic fluorescence device for simultaneously determining multiple elements and measurement method thereof | |
Kubá | Simultaneous determination of several components by flow injection analysis | |
JPH0666808A (en) | Chromogen measurement method | |
JPS62249067A (en) | Multi-component simultaneous quantitative flow injection analyzing method | |
Kalinowski et al. | Double-beam photometric direct-injection detector for multi-pumping flow system | |
Růžička et al. | Ion-selective electrodes in continuous-flow analysis: Determination of calcium in serum | |
Teixeira et al. | Flow-injection solid phase partial least-squares spectrophotometric simultaneous determination of iron, nickel and zinc | |
WO2007060045A1 (en) | Optical analyzer | |
US11397141B2 (en) | Method for diluting a sample liquid and dilution unit for a subsequent analysis | |
Bechmann et al. | Generalized standard addition in flow-injection analysis with UV-visible photodiode array detection | |
WO1997035191A1 (en) | Method for analyzing ammonia in water | |
Divarova et al. | Determination of cobalt in the form of an ion associate in vitamin B 12 | |
Esmadi et al. | Sequential atomic absorption spectrometric determination of chloride and iodide in a flow system using an on-line preconcentration technique | |
Tsiasioti et al. | Selective reaction of homocysteine with o‐phthalaldehyde under flow conditions in highly alkaline medium: fluorimetric determination using zone fluidics | |
Miller et al. | Studies of interacting biochemical systems by flow injection analysis | |
JP2001021546A (en) | Analytical method of ammonia nitrogen and nitrate/ nitrite nitrogen and total nitrogen | |
JP2000146942A (en) | Device for measuring concentration of nitrogen in water | |
JPS6475000A (en) | Method and equipment for analyzing creatinine |