JPS6224898B2 - - Google Patents

Info

Publication number
JPS6224898B2
JPS6224898B2 JP53104937A JP10493778A JPS6224898B2 JP S6224898 B2 JPS6224898 B2 JP S6224898B2 JP 53104937 A JP53104937 A JP 53104937A JP 10493778 A JP10493778 A JP 10493778A JP S6224898 B2 JPS6224898 B2 JP S6224898B2
Authority
JP
Japan
Prior art keywords
glass rod
light source
light
transparent glass
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53104937A
Other languages
Japanese (ja)
Other versions
JPS5532333A (en
Inventor
Shigeru Ehata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10493778A priority Critical patent/JPS5532333A/en
Publication of JPS5532333A publication Critical patent/JPS5532333A/en
Publication of JPS6224898B2 publication Critical patent/JPS6224898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 本発明は撮像管面板にステム底面側から効率良
くバイアス光を導入照射するようにした撮像装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging device in which bias light is efficiently introduced and irradiated onto an imaging tube face plate from the bottom side of a stem.

光導電形撮像管では、面板に形成した光導電膜
にバイアス光を照射して、残像特性を改善するこ
とが行われている。このため光導電膜に微小光を
均一にかつ効率よく照射する方式が種々検討され
ている。例えば、光学系の内部に光源をいれる、
あるいは撮像管の面板近傍に光源を配置するもの
などがある。しかしこれらのものは、撮像管前方
では空間的余裕に制約があり、必ずしも一般的に
適用できない。空間的制約を受けない方式とし
て、撮像管のステムピン挿入用ソケツト内部に光
源を設け、ステム底面から撮像管内に光を導入
し、光導電膜に面する電極の一部に設けた光入射
用の穴を通して光導電膜を照射させるものが提案
されている。しかしこの方式では、光源と光入射
用の電極の穴との距離に左右されて効率が非常に
低くなり、実用上、消費電力の増加、光源発熱量
の増加等、多くの問題が発生する。
In photoconductive image pickup tubes, afterimage characteristics are improved by irradiating a photoconductive film formed on a face plate with bias light. For this reason, various methods for uniformly and efficiently irradiating a photoconductive film with minute light have been studied. For example, by putting a light source inside the optical system,
Alternatively, there is one in which a light source is placed near the face plate of the image pickup tube. However, these methods have limited space in front of the image pickup tube, and cannot necessarily be generally applied. As a method that is not subject to spatial constraints, a light source is installed inside the stem pin insertion socket of the image pickup tube, and light is introduced into the image pickup tube from the bottom of the stem. A method has been proposed in which a photoconductive film is irradiated through a hole. However, in this method, the efficiency is extremely low depending on the distance between the light source and the hole in the electrode for light incidence, and in practical use, many problems occur, such as increased power consumption and increased heat output from the light source.

本発明は前記従来のバイアス光照射方式の様な
問題のない、ステム底面から導入したバイアス光
で効率良く光導電膜を照射させるようにした撮像
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an imaging device that efficiently irradiates a photoconductive film with bias light introduced from the bottom surface of a stem, without the problems of the conventional bias light irradiation method.

上記目的を達成するために本発明においては、
従来から電子銃の電極構体の保持に、各電極から
半径方向に突出した部分を設け、それらの部分を
管軸に平行に電極構体外部に配設したガラス棒に
溶着固定することが行われ、かつガラス棒の一端
からガラス棒の内部へ軸方向に入射された光は、
ガラスと周囲空間との界面でガラス内部へ全反射
され低損失で他端に達することに着目し、ステム
底面に入射された光を、電極構体の保持と光の伝
達とに兼用する透明ガラス棒によつて、光導電膜
に面して光入射用の穴を設けた電極の穴まで効率
良く光を導くこととした。光導電形撮像管は低速
電子ビームで走査するものであるから、各電極間
の電位差は比較的小さく、光伝達に適したガラス
材質を比較的自由に選定できる。
In order to achieve the above object, in the present invention,
Traditionally, the electrode assembly of an electron gun has been held by providing parts that protrude in the radial direction from each electrode, and welding and fixing these parts to a glass rod placed outside the electrode assembly parallel to the tube axis. And the light incident on the inside of the glass rod in the axial direction from one end of the glass rod is
Focusing on the fact that the light is totally reflected inside the glass at the interface between the glass and the surrounding space and reaches the other end with low loss, we created a transparent glass rod that uses the light incident on the bottom of the stem to both hold the electrode structure and transmit light. Therefore, it was decided to efficiently guide light to the hole in the electrode, which has a hole for light incidence facing the photoconductive film. Since the photoconductive type image pickup tube scans with a low-speed electron beam, the potential difference between each electrode is relatively small, and a glass material suitable for light transmission can be selected relatively freely.

第1図は本発明の一実施例図である。1はガラ
スバルブ、1aはステム、1bはステムピン、2は
第1格子、3は第2格子、4は加速電極、4a
光入射用穴、5は透明ガラス棒、10は光源、2
0は光径路である。加速電極4に面して面板(図
示せず)があり、その内面(加速電極側)に光導
電膜が形成されている。第1格子2、第2格子
3、加速電極4は、それぞれ半径方向に突出部を
有し、これらの突出部が透明ガラス棒5に溶植固
着されて、電子銃の電極構体が保持されている。
光源10からステム1a底面に入射された光は、
前記透明ガラス棒5のステム側端面からガラス棒
の内部へ軸方向に入射され、ガラスの屈折率は周
囲の真空の屈折率より高く、大きな入射角でガラ
ス棒表面(ガラスと真空との界面)に達した光は
全反射され、その後も全反射を繰返しガラス棒外
部に出ないので、低損失で加速電極4に設けた光
入射用の穴4aの近くに到達する。もしガラス棒
5がなかつたとすれば、この様に光源の大きさに
対し距離が大きい場合には、受光面照度は光源か
らの距離の自乗に逆比例するから、光入射用の穴
aにおける光源10による照度は非常に低下
し、しかも穴より更に遠い光導電膜の所要部全面
を照射することなどは、撮像管の電極配置上の制
約から不可能あるいは極めて困難である。これに
対し本発明を実施してガラス棒5の両端を、それ
ぞれ穴4aと光源10とになるべく近付ければ、
ガラス棒内伝達中の光損失は僅少であるから、実
用的な低電力の光源で光導電膜にバイアス光照射
を与えることができる。なおガラス棒5を利用す
ることにしても、ガラス棒の端部と、電極の穴や
光源との距離が遠くなると、第2図に示すよう
に、ガラス棒を光路に挿入した効果が急激に低下
する。前記距離がガラス棒の直径の4倍以上にな
ると、ガラス棒挿入の効果が実質上消滅してしま
う。さらに低電力光源で適当なバイアス照射を得
るには、バルブの一部たとえば頭部のガラス肉厚
を大きくして集光レンズ特性を持たせた電球を用
いればよい。この集光レンズ付き電球の受光面照
度分布はガウス分布に近似していて、強度が中心
での値の1/eに低下する2点の間いわゆる1/
e幅内に光エネルギーの大部分が集中しているか
ら、ガラス棒5の直径ならびにその端部と光源と
の距離を、ガラス棒5の直径が、このガラス棒の
光源側端部位置におけるその光源の照度分布の
1/e幅以上となるように設定すると、光の損失
が少ない。なお、光の損失を少なく、利用効率を
高めるには、加速電極に設けた穴4aと透明ガラ
ス棒5と光源10とが撮像管軸に平行な一直線上
に位置しなければならないのは当然であるが、透
明ガラス棒5の両端形状を、それぞれ、電極に設
けた穴4aの側に凸、光源10の側に凸とするの
がよい。すなわち透明ガラス棒5の両端をこの様
に成形すれば、光源10から入射した光のうち、
全反射される光の率が高くなり、また穴4aの側
でも穴への集光性が良くなる。第3図は、左半分
Aにガラス棒5の両端が平面の場合、右半分Bに
端部形状を外側へ凸にした場合、を対比して、端
部形状を外側へ凸にした効果を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention. 1 is a glass bulb, 1 a is a stem, 1 b is a stem pin, 2 is a first grating, 3 is a second grating, 4 is an accelerating electrode, 4 a is a hole for light incidence, 5 is a transparent glass rod, 10 is a light source, 2
0 is the optical path. There is a face plate (not shown) facing the accelerating electrode 4, and a photoconductive film is formed on the inner surface (on the accelerating electrode side). The first grating 2, the second grating 3, and the accelerating electrode 4 each have a protrusion in the radial direction, and these protrusions are welded and fixed to the transparent glass rod 5 to hold the electrode structure of the electron gun. There is.
The light incident on the bottom of the stem 1a from the light source 10 is
The light is axially incident into the interior of the glass rod from the stem-side end surface of the transparent glass rod 5, and the refractive index of the glass is higher than the refractive index of the surrounding vacuum, and at a large incident angle, the light is incident on the glass rod surface (at the interface between the glass and the vacuum). The light that reaches this point is totally reflected, and since it repeats the total reflection and does not exit the glass rod, it reaches the vicinity of the light entrance hole 4a provided in the accelerating electrode 4 with low loss. If there were no glass rod 5, the illuminance on the light receiving surface is inversely proportional to the square of the distance from the light source when the distance is large relative to the size of the light source. The illuminance from the light source 10 is extremely low, and it is impossible or extremely difficult to illuminate the entire surface of the photoconductive film further away from the hole due to restrictions on the electrode arrangement of the image pickup tube. On the other hand, if the present invention is implemented and both ends of the glass rod 5 are brought as close as possible to the hole 4a and the light source 10,
Since the optical loss during transmission within the glass rod is small, bias light irradiation can be applied to the photoconductive film using a practical low-power light source. Even if you decide to use the glass rod 5, as the distance between the end of the glass rod and the hole in the electrode or the light source increases, the effect of inserting the glass rod into the optical path will suddenly increase, as shown in Figure 2. descend. When the distance becomes four times or more the diameter of the glass rod, the effect of inserting the glass rod is virtually eliminated. Furthermore, in order to obtain appropriate bias irradiation with a low-power light source, a light bulb may be used in which a part of the bulb, for example, the head part, has a large glass thickness so as to have condensing lens characteristics. The light receiving surface illuminance distribution of this light bulb with a condensing lens approximates a Gaussian distribution, and between two points where the intensity decreases to 1/e of the value at the center is what is called 1/e.
Since most of the light energy is concentrated within the width e, the diameter of the glass rod 5 and the distance between its end and the light source are determined by the diameter of the glass rod 5 at the end position on the light source side. If the width is set to be 1/e or more of the illuminance distribution of the light source, light loss will be small. Note that in order to reduce light loss and increase usage efficiency, it is obvious that the hole 4a provided in the accelerating electrode, the transparent glass rod 5, and the light source 10 must be located on a straight line parallel to the axis of the image pickup tube. However, it is preferable that the shapes of both ends of the transparent glass rod 5 are convex toward the hole 4 a provided in the electrode and convex toward the light source 10 , respectively. That is, if both ends of the transparent glass rod 5 are formed in this way, out of the light incident from the light source 10,
The rate of total reflection of light increases, and the light condensing ability to the hole also improves on the hole 4a side. Figure 3 shows the effect of making the end shape convex to the outside by contrasting the case where both ends of the glass rod 5 are flat in the left half A and the case where the end shape is convex outward in the right half B. FIG.

以上説明した如く本発明によれば、撮像管の面
板に設けた光導電膜に、ステム底面に低電力光源
から入射させた光を効率良く導いて、撮像管の残
像特性の改善に有効なバイアス光を与えることが
でき、しかも光伝達と電極構体の保持とに同一ガ
ラス棒を兼用するので、製造原価上昇はほとんど
なくてすむという効果が得られる。
As explained above, according to the present invention, the light incident on the bottom surface of the stem from a low-power light source is efficiently guided to the photoconductive film provided on the face plate of the image pickup tube, thereby creating a bias that is effective for improving the afterimage characteristics of the image pickup tube. Since light can be applied and the same glass rod is used for both light transmission and holding the electrode structure, there is an advantage that there is almost no increase in manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例図、第2図はガラス
棒端部と、電極穴または光源との距離による照度
変化を示す図、第3図はガラス棒端部を外側へ凸
とした効果を説明する図である。 1……ガラスバルブ、1a……ステム、4……
加速電極、4a……光入射用穴、5……透明ガラ
ス棒、10……光源。
Figure 1 is a diagram showing an example of the present invention, Figure 2 is a diagram showing changes in illuminance depending on the distance between the end of the glass rod and the electrode hole or light source, and Figure 3 is a diagram with the end of the glass rod convex outward. It is a figure explaining an effect. 1... Glass bulb, 1 a ... Stem, 4...
Accelerating electrode, 4 a ... hole for light incidence, 5 ... transparent glass rod, 10 ... light source.

Claims (1)

【特許請求の範囲】 1 円筒状のガラスバルブの一端の内面に形成さ
れた光導電膜と、透明ガラス棒により同軸上に保
持された複数の電極からなる電子銃と、該電子銃
を保持し、かつ該電子銃へ給電するためガラスバ
ルブの他端側に形成されたステムとを有する撮像
管、並びに前記ステムの外面に配置せられ前記光
導電膜にバイアス光を照射するための光源を備え
る撮像装置において、 (a) 前記複数の電極の各々に設けられた半径方向
に突出する部分が、管軸に平行に配設される前
記ガラス棒に溶着されることにより前記複数の
電極が所定間隔で固定され、 (b) 前記透明ガラス棒の延長線上に前記光源を配
置し、 (c) 該光源から該透明ガラス棒に入射した光を前
記光導電膜側に通過させるべく前記電子銃を構
成する電極に穴を設けるとともに、 (d) 前記透明ガラス棒の両端部の形状を、それぞ
れ、電極に設けた穴の側に凸、光源側に凸と
し、かつ該両端部と電極に設けた穴および前記
光源との距離を透明ガラス棒直径の4倍以下と
し、かつ (e) 透明ガラス棒の端部における照度分布のl/
e幅が透明ガラス棒の直径以下となるように前
記光源からの光を集光レンズを介して入射させ
ることを特徴とする撮像装置。
[Scope of Claims] 1. An electron gun consisting of a photoconductive film formed on the inner surface of one end of a cylindrical glass bulb, a plurality of electrodes coaxially held by a transparent glass rod, and an electron gun that holds the electron gun. , and a stem formed at the other end of the glass bulb for supplying power to the electron gun, and a light source disposed on the outer surface of the stem for irradiating the photoconductive film with bias light. In the imaging device, (a) a radially protruding portion provided on each of the plurality of electrodes is welded to the glass rod arranged parallel to the tube axis, so that the plurality of electrodes are spaced at a predetermined interval; (b) the light source is placed on an extension of the transparent glass rod, and (c) the electron gun is configured to allow light incident on the transparent glass rod from the light source to pass through to the photoconductive film side. (d) the shapes of both ends of the transparent glass rod are convex toward the hole provided in the electrode and convex toward the light source side, respectively, and the shape of both ends and the hole provided in the electrode are and (e) the distance to the light source is 4 times or less the diameter of the transparent glass rod, and (e) the illuminance distribution at the end of the transparent glass rod is l/
An imaging device characterized in that light from the light source is made incident through a condensing lens such that the width e is equal to or less than the diameter of the transparent glass rod.
JP10493778A 1978-08-30 1978-08-30 Image pickup device Granted JPS5532333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10493778A JPS5532333A (en) 1978-08-30 1978-08-30 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10493778A JPS5532333A (en) 1978-08-30 1978-08-30 Image pickup device

Publications (2)

Publication Number Publication Date
JPS5532333A JPS5532333A (en) 1980-03-07
JPS6224898B2 true JPS6224898B2 (en) 1987-05-30

Family

ID=14393999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10493778A Granted JPS5532333A (en) 1978-08-30 1978-08-30 Image pickup device

Country Status (1)

Country Link
JP (1) JPS5532333A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103878U (en) * 1981-12-29 1983-07-14 株式会社オリムピック Double bearing shaft reel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109716A (en) * 1975-03-22 1976-09-28 Hitachi Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109716A (en) * 1975-03-22 1976-09-28 Hitachi Ltd

Also Published As

Publication number Publication date
JPS5532333A (en) 1980-03-07

Similar Documents

Publication Publication Date Title
JP3261244B2 (en) Scanning optical device
US5117312A (en) Apparatus including concave reflectors and a line of optical fibers
JPH0764003A (en) Scanning optical system
JPH11218641A (en) Optical fiber with lens and laser module
JPS6224898B2 (en)
JP2001228402A (en) Confocal optical scanner and confocal microscope
US3383622A (en) End pumped laser structures employing immersion optics
JPS6119003A (en) Illuminator
JPH0345510U (en)
US3609231A (en) Electron tube manuscript reader
JPS59165037A (en) Reflecting shade of flashing device
JPS59189334A (en) Light source device
JPS5934514A (en) Image formation optical device
JPS6120381A (en) Solid-state laser oscillation device
JP2725911B2 (en) Discharge tube
JPH08146311A (en) Light source device for endoscope
SU918994A1 (en) High resolution cathode ray tube
JPS6168848A (en) Photoelectric tube
JPS55155328A (en) Scanner
SU463177A1 (en) Device for driving a dielectric light guide
JPS55166984A (en) Multi-beam laser
JP2532234Y2 (en) Light source unit
JPS5735824A (en) Light beam scanner
JPH01253707A (en) Coupling system for optical fiber and photodetecting element
JPS58916Y2 (en) X-ray fluorescence multiplier tube