JPS6224738B2 - - Google Patents

Info

Publication number
JPS6224738B2
JPS6224738B2 JP19378081A JP19378081A JPS6224738B2 JP S6224738 B2 JPS6224738 B2 JP S6224738B2 JP 19378081 A JP19378081 A JP 19378081A JP 19378081 A JP19378081 A JP 19378081A JP S6224738 B2 JPS6224738 B2 JP S6224738B2
Authority
JP
Japan
Prior art keywords
photoelectrons
slit hole
light source
wavelength
plasma light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19378081A
Other languages
Japanese (ja)
Other versions
JPS5895250A (en
Inventor
Tetsumasa Ito
Hiroshi Ishijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP19378081A priority Critical patent/JPS5895250A/en
Publication of JPS5895250A publication Critical patent/JPS5895250A/en
Publication of JPS6224738B2 publication Critical patent/JPS6224738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector

Description

【発明の詳細な説明】 この発明は発光分光分析装置に関し、特に、高
周波プラズマ発光源の高さ方向に分布する各種発
光スペクトルを高周波プラズマ光源を移動するこ
となく種々の元素を高感度に分析することができ
るようにするための新規な改良である。
[Detailed Description of the Invention] The present invention relates to an optical emission spectrometer, and in particular, it is capable of analyzing various emission spectra distributed in the height direction of a high-frequency plasma light source with high sensitivity for various elements without moving the high-frequency plasma light source. This is a new improvement to make it possible.

従来、用いられていたこの種の装置において
は、発光スペクトルが原子の種類によつてそれぞ
れ高周波プラズマ光源内特に、プラズマ光源内高
さ方向において、異なつた強度分布をもつている
が、このために種々の元素を高感度で定量分析す
るためには測光位置を元素ごとに選ぶ必要があつ
た。第5図として、光周波プラズマ光源1の高さ
方向において、各元素の発光する位置を示した。
つまりPb,Cr等は光源1の高い位置に、As,B
等は光源1の低い位置に発光する。
In conventionally used devices of this type, the emission spectrum has different intensity distributions within the high-frequency plasma light source, especially in the height direction within the plasma light source, depending on the type of atom. In order to quantitatively analyze various elements with high sensitivity, it was necessary to select photometric positions for each element. FIG. 5 shows the positions where each element emits light in the height direction of the optical frequency plasma light source 1.
In other words, Pb, Cr, etc. are placed in the high position of light source 1, As, B
etc., emits light at a low position of the light source 1.

上記の条件を満すための手段としては写真分光
器を用いる手段と、光電測光モノクロメータとが
あるが、前者の構成においては写真の現像操作が
複雑で迅速な分析は不可能であつた。又、後者の
構成においては光電測光であるため迅速性に優れ
るが、高周波プラズマ内の強度分布を測定するに
は高周波プラズマ発光源を移動させる機構が必要
であつた。
Means for satisfying the above conditions include means using a photographic spectrometer and a photoelectric photometric monochromator, but in the former configuration, the photographic development operation was complicated and quick analysis was impossible. Further, in the latter configuration, since it is photoelectric photometry, it is excellent in speed, but in order to measure the intensity distribution within the high frequency plasma, a mechanism for moving the high frequency plasma light emitting source is required.

この発明は以上の欠点をすみやかに除去するた
めの極めて効果的な手段を提供することを目的と
するもので、特に、高周波プラズマ発光源を上下
動させることなく、プラズマ発光源の上下方向に
分布する発光スペクトルをイメージデイセクタ管
(解像管)により電子的に取り出すようにした構
成である。
The purpose of this invention is to provide an extremely effective means for quickly eliminating the above-mentioned drawbacks.In particular, it is an object of the present invention to provide extremely effective means for quickly eliminating the above-mentioned drawbacks. This configuration uses an image dissector tube (resolution tube) to electronically extract the emission spectrum.

以下、図面と共にこの発明による発光分光分析
装置の好適な実施例について詳細に説明する。
Hereinafter, preferred embodiments of the emission spectrometer according to the present invention will be described in detail with reference to the drawings.

図面において符号1で示されるものは高周波プ
ラズマ光源であり、このプラズマ発光源1からの
光は集光レンズ2、入口スリツト3を経てコリメ
ーターミラー4で反射され、回折格子5およびカ
メラミラー6を経てイメージデイセクター管(解
像管)7に入光される。
In the drawings, reference numeral 1 indicates a high-frequency plasma light source, and the light from this plasma light source 1 passes through a condenser lens 2 and an entrance slit 3, is reflected by a collimator mirror 4, and is reflected by a diffraction grating 5 and a camera mirror 6. The light then enters an image dissector tube (resolution tube) 7.

このイメージデイセクター管7の出力信号は増
巾器8で増巾されて制御回路9に送られ、この制
御回路9からの制御信号はドライブ回路10を経
てイメージデイセクター管7にフイードバツクさ
れている。
The output signal of the image dissector tube 7 is amplified by an amplifier 8 and sent to a control circuit 9, and the control signal from the control circuit 9 is fed back to the image dissector tube 7 via a drive circuit 10. .

このイメージデイセクター管7は第2図に示さ
れるように構成されており、チユーブ11の先端
部には光電面12が形成され、壁部13には第3
図で示されるような縦長形状のスリツト孔14が
設けられている。このスリツト孔14の高さHは
約3mm、巾口は約20μmであり、光電面12から
の電子はチユーブ11の外周に設けられた集束コ
イル15および偏向コイル16によつて制御され
た後、スリツト孔14を経て光増巾部17に送ら
れて増巾される。
This image dissector tube 7 is constructed as shown in FIG.
A vertically elongated slit hole 14 as shown in the figure is provided. The height H of this slit hole 14 is about 3 mm, and the width is about 20 μm. After the electrons from the photocathode 12 are controlled by a focusing coil 15 and a deflection coil 16 provided on the outer periphery of the tube 11, The light passes through the slit hole 14 and is sent to the light amplifying section 17 where it is amplified.

このスリツト孔14は壁部13に1個だけしか
設けられていないが、この偏向コイル16で電子
ビームの方向を変えることにより、任意の位置の
光電面12からの電子をスリツト孔14を通すこ
とが出来、実質上、第4図に示されるように、偏
向コイル16に流す電流を変えることにより、イ
メージデイセクター管7に結像される像の任意の
箇所で発生する光電子を、スリツト孔14に通す
ことができる。なお、第4図の各14の角形状は
イメージデイセクター管7上の任意の位置の像を
スリツト14に通した各例を示したものである。
つまり、イメージデイセクター管7上の横軸は回
折格子5で分光された測定光の波長分布を示し、
縦軸、プラズマ光源1の高さ方向の測定位置を示
すものである。このことにより、プラズマ光源1
の高さ方向における測定(測光)位置と波長とは
任意のものを検出することができる。プラズマ光
源1を何ら移動させることなく、任意の測光位置
における発光スペクトルを検出することができ
る。
Although only one slit hole 14 is provided in the wall 13, by changing the direction of the electron beam with this deflection coil 16, electrons from the photocathode 12 at any position can be passed through the slit hole 14. By changing the current flowing through the deflection coil 16, as shown in FIG. can be passed through. The angular shapes of each 14 in FIG. 4 show examples in which an image at an arbitrary position on the image dissector tube 7 is passed through the slit 14.
In other words, the horizontal axis on the image dissector tube 7 shows the wavelength distribution of the measurement light separated by the diffraction grating 5,
The vertical axis indicates the measurement position in the height direction of the plasma light source 1. As a result, the plasma light source 1
Any measurement (photometry) position and wavelength in the height direction can be detected. The emission spectrum at any photometric position can be detected without moving the plasma light source 1 at all.

以上のような構成において、この発明による発
光分光分析装置を作動させる場合について述べる
と、高周波プラズマ光源1からの発光スペクトル
は入口スリツト3を通り、回折格子5で波長分散
され、イメージデイセクター管7の光電面12に
結像する。この像は入口スリツト3の像であり、
この入口スリツト3のスリツト幅方向(以下、X
方向と言い、第1図の上下方向を指す。)は、回
折格子5の回折方向と同方向になつているため、
イメージデイセクター管7に結像される像のX方
向が波長分散方向に対応している。入口スリツト
3の長さ方向(以下、Y方向と言い、第1図の図
面の用紙に対して垂直方向を指す。)は、回折格
子5の回折方向と直角方向であるためプラズマ発
光源1の光はY方向に対して分光されず、プラズ
マ発光源1の光のY方向に対する強度分布が直接
イメージデイセクター管7のY方向に結像する。
In the above configuration, when operating the emission spectrometer according to the present invention, the emission spectrum from the high-frequency plasma light source 1 passes through the entrance slit 3, is wavelength-dispersed by the diffraction grating 5, and is dispersed in the image dissector tube 7. The image is formed on the photocathode 12 of. This statue is the statue of entrance slit 3,
The slit width direction of this entrance slit 3 (hereinafter referred to as
The term "direction" refers to the vertical direction in Figure 1. ) is in the same direction as the diffraction direction of the diffraction grating 5, so
The X direction of the image formed on the image dissector tube 7 corresponds to the wavelength dispersion direction. The longitudinal direction of the entrance slit 3 (hereinafter referred to as the Y direction, which refers to the direction perpendicular to the paper of the drawing in FIG. 1) is perpendicular to the diffraction direction of the diffraction grating 5, so that The light is not separated in the Y direction, and the intensity distribution of the light from the plasma light emitting source 1 in the Y direction is directly imaged in the Y direction of the image dissector tube 7.

光電面12に結像した光子像は電子像に変換さ
れ、スリツト孔14を通過した電子を増巾する
が、偏向コイル16によつて偏向磁界をかけ、電
子像を走査して二次元像を検出することができ
る。ここで一般的には像の分解能を向上するため
に、壁部13の開口はピンホール状のものが用い
られるが、信号のS/N比が直接分析感度に影響
するため高感度分析には適さないため、本発明で
は光量が多くとれ、かつ、波長方向の分解能を失
うことがないように、スリツト孔14(20μm×
3mm)とした。従つて、高周波プラズマ光源1の
測光位置は3mmの分解能で選択することができ、
波長の選択とその波長に最適な測光位置が選べる
ので高感度分布が可能となる。
The photon image formed on the photocathode 12 is converted into an electron image, and the electrons passing through the slit hole 14 are amplified. However, a deflection magnetic field is applied by the deflection coil 16, and the electron image is scanned to create a two-dimensional image. can be detected. Generally, in order to improve the resolution of the image, a pinhole-shaped aperture is used in the wall section 13, but since the S/N ratio of the signal directly affects the analysis sensitivity, it is not suitable for high-sensitivity analysis. Therefore, in the present invention, the slit hole 14 (20 μm×
3mm). Therefore, the photometric position of the high-frequency plasma light source 1 can be selected with a resolution of 3 mm,
High sensitivity distribution is possible because the wavelength can be selected and the photometry position optimal for that wavelength can be selected.

従つて、制御回路9で波長方向の制御信号をイ
メージデイセクター管7に加え、イメージデイセ
クター管7から約100Åの範囲のスペクトル線信
号を取り出し増巾器8で増巾する。次に、目的元
素のスペクトル線の波長に相当する電流をドライ
ブ回路10に加えると共、Y軸方向の制御信号を
制御回路9からドライブ回路10に加え、プラズ
マ光源1内の目的元素の発光スペクトル線強度分
布を得る。更に、目的元素のスペクトル波長とプ
ラズマ発光源1の高さ位置は最大強度になるよう
に、イメージデイセクター管7の出力信号は増幅
器8で増幅されて、制御回路9に送られ、この制
御回路9からの制御信号はドライブ回路10を経
てイメージデイセクター管7に取りつけてある偏
向コイル16にフイードバツクされるものであ
る。特に、測光するプラズマ発光源1の高さ位置
は最大強度になるようにフイードバツクされる。
Therefore, a control signal in the wavelength direction is applied to the image dissector tube 7 by the control circuit 9, and a spectral line signal in a range of about 100 Å is taken out from the image dissector tube 7 and amplified by the amplifier 8. Next, a current corresponding to the wavelength of the spectral line of the target element is applied to the drive circuit 10, and a control signal in the Y-axis direction is applied from the control circuit 9 to the drive circuit 10, so that the emission spectrum of the target element in the plasma light source 1 is Obtain line intensity distribution. Further, the output signal of the image dissector tube 7 is amplified by an amplifier 8 and sent to a control circuit 9 so that the spectral wavelength of the target element and the height position of the plasma light emitting source 1 have the maximum intensity. The control signal from 9 is fed back through a drive circuit 10 to a deflection coil 16 attached to the image dissector tube 7. In particular, the height position of the plasma light emitting source 1 to be photometered is fed back so that the intensity is at its maximum.

高感度分布を目的とする場合は、ブランクの強
度分布をあらかじめ測定しておき、信号対ブラン
ク強度の比が最高となる測光位置を求め、X軸、
Y軸方向の位置を固定して通常の光電測光発光分
析装置と同様に数秒〜10秒間積分を行ない定量分
析を行なう。前記制御回路9はCPU等のコンピ
ユータを用いることが可能で、元素ごとにX軸、
Y軸情報を記憶して高感度定量分析に供すること
もできる。
When aiming for a high-sensitivity distribution, measure the blank intensity distribution in advance, find the photometry position where the ratio of signal to blank intensity is the highest, and
Quantitative analysis is performed by fixing the position in the Y-axis direction and performing integration for several seconds to 10 seconds in the same manner as in a normal photoelectric photometric luminescence analyzer. The control circuit 9 can use a computer such as a CPU, and can control the X-axis,
Y-axis information can also be stored and used for highly sensitive quantitative analysis.

この発明による発光分光分析装置は以上のよう
な構成と作用とを備えているため、プラズマ発光
源を上下に移動することなく、電子的にプラズマ
発光源の全発光スペクトルを分折することができ
ると共に、高感度分折を行なうことができる。従
つて、各元素について最適位置で測光が可能であ
り、検出下限が従来法に比べて2〜3倍改善さ
れ、アルカリ元素では10倍改善された。
Since the emission spectrometer according to the present invention has the above-described configuration and function, it is possible to electronically analyze the entire emission spectrum of the plasma emission source without moving the plasma emission source up or down. At the same time, high-sensitivity spectroscopy can be performed. Therefore, photometry can be performed at the optimal position for each element, and the lower limit of detection has been improved by 2 to 3 times compared to conventional methods, and for alkali elements it has been improved by 10 times.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明による発光分光分析装置を示す
もので、第1図は全体構成図、第2図は要部の断
面図、第3図はスリツト孔の正面図、第4図はイ
メージデイセクター上のスリツト孔透過位置の測
光波長とプラズマ発光源高さ方向測光位置を示す
図、第5図はプラズマ光源の高さ方向における元
素の分布図である。 1はプラズマ発光源、2は集光レンズ、3は入
口スリツト、4はコリーメーターミラー、5は回
折格子、6はカメラミラー、7はイメージデイセ
クター管、8は増巾器、9は制御回路、10はド
ライブ回路、11はチユーブ、12は光電面、1
3は壁部、14はスリツト孔、15は偏向コイ
ル、16は集束コイル、17は光増巾部である。
The drawings show an optical emission spectrometer according to the present invention. Fig. 1 is an overall configuration diagram, Fig. 2 is a sectional view of the main part, Fig. 3 is a front view of the slit hole, and Fig. 4 is a diagram showing the image dissector. FIG. 5 is a diagram showing the photometric wavelength at the slit hole transmission position and the photometric position in the height direction of the plasma light source, and FIG. 5 is a distribution diagram of elements in the height direction of the plasma light source. 1 is a plasma emission source, 2 is a condensing lens, 3 is an entrance slit, 4 is a collimator mirror, 5 is a diffraction grating, 6 is a camera mirror, 7 is an image dissector tube, 8 is an amplifier, 9 is a control circuit , 10 is a drive circuit, 11 is a tube, 12 is a photocathode, 1
3 is a wall portion, 14 is a slit hole, 15 is a deflection coil, 16 is a focusing coil, and 17 is a light amplification portion.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波プラズマ光源の光を分光器を介して波
長分散し元素分析を行なうものにおいて、分光器
からの出力光を受け、これに応じて光電子を生ず
る光電面と、この光電子の走行先の壁部に設けた
スリツト孔と、このスリツト孔に向けて上記光電
子を集束、偏向させる集束コイルおよび偏向コイ
ルと、上記スリツト孔を通過した光電子を増幅す
る光電子増倍部とを備えた解像管と、この解像管
の出力光電子を受ける制御回路と、この制御回路
からの制御信号を解像管に印加するための印加手
段とを備え、前記集束および偏向コイルに印加す
る制御信号を制御することにより光電面に発生す
る前記高周波プラズマ光源の波長分散光の高さに
対応した光強度信号を得ることができるように構
成したことを特徴とする発光分光分析装置。
1 In devices that perform elemental analysis by dispersing the wavelength of light from a high-frequency plasma light source via a spectroscope, there is a photocathode that receives the output light from the spectrometer and generates photoelectrons in response, and a wall that the photoelectrons travel to. a resolution tube comprising a slit hole provided in the slit hole, a focusing coil and a deflection coil that focus and deflect the photoelectrons toward the slit hole, and a photoelectron multiplier that amplifies the photoelectrons that have passed through the slit hole; A control circuit for receiving output photoelectrons from the resolution tube, and an application means for applying a control signal from the control circuit to the resolution tube, and controlling the control signal applied to the focusing and deflection coils. An optical emission spectrometer characterized in that it is configured to be able to obtain a light intensity signal corresponding to the height of the wavelength-dispersed light of the high-frequency plasma light source generated on the photocathode.
JP19378081A 1981-12-01 1981-12-01 Emission spectrochemical analysis device Granted JPS5895250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19378081A JPS5895250A (en) 1981-12-01 1981-12-01 Emission spectrochemical analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19378081A JPS5895250A (en) 1981-12-01 1981-12-01 Emission spectrochemical analysis device

Publications (2)

Publication Number Publication Date
JPS5895250A JPS5895250A (en) 1983-06-06
JPS6224738B2 true JPS6224738B2 (en) 1987-05-29

Family

ID=16313672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19378081A Granted JPS5895250A (en) 1981-12-01 1981-12-01 Emission spectrochemical analysis device

Country Status (1)

Country Link
JP (1) JPS5895250A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220195A (en) * 1983-05-30 1984-12-11 Nitto Electric Ind Co Ltd Microorganism capable of procucing acrylic acid ester and production of acrylic acid ester using the same
JPS62197748A (en) * 1986-02-25 1987-09-01 Shimadzu Corp Emission spectral analyzer for high frequency inductive coupling plasma

Also Published As

Publication number Publication date
JPS5895250A (en) 1983-06-06

Similar Documents

Publication Publication Date Title
EP0498644B1 (en) High sensitive multi-wavelength spectral analyzer
JP3260469B2 (en) Particle analyzer
US4630925A (en) Compact temporal spectral photometer
JP2911471B2 (en) Atomic emission spectrometer
GB2158231A (en) Laser spectral fluorometer
US3936190A (en) Fluorescence spectrophotometer for absorption spectrum analysis
US6855927B2 (en) Method and apparatus for observing element distribution
JP2002189004A (en) X-ray analyzer
US5436723A (en) Spectroscopic analysis
JPS6224738B2 (en)
JPH05248954A (en) Improved multicahnnel detection disperse type spectral measuring apparatus
US8059272B2 (en) Time-resolved spectroscopic measurement apparatus
Jackson et al. A 500-channel silicon-target vidicon tube as a photodetector for atomic absorption spectrometry
US4346998A (en) Background corrector for spectrochemical analyses of biological samples
JPH07280732A (en) Fluorescence spectrometer
JP3591271B2 (en) Atomic absorption photometer
US4983041A (en) Spectroscopic apparatus for extremely faint light
Golightly et al. The image-dissector photomultiplier as a detector in a rapid scanning approach to direct-reading analytical emission spectrometry
JP3244234B2 (en) Spectrum anomaly detector for narrow band laser
JPH04125430A (en) Multiple wavelength spectrophotometer
JP2603999B2 (en) Emission spectrometer
JP3226308B2 (en) Bright high-resolution spectrometer
JP3262877B2 (en) Spectroscope
JP2749387B2 (en) High-sensitivity micro-multi-wavelength spectrometer
JPH03150428A (en) Self-scanning type light emission spectroscope