JPS6224729B2 - - Google Patents

Info

Publication number
JPS6224729B2
JPS6224729B2 JP50066231A JP6623175A JPS6224729B2 JP S6224729 B2 JPS6224729 B2 JP S6224729B2 JP 50066231 A JP50066231 A JP 50066231A JP 6623175 A JP6623175 A JP 6623175A JP S6224729 B2 JPS6224729 B2 JP S6224729B2
Authority
JP
Japan
Prior art keywords
circuit
waveform
output
tuned
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50066231A
Other languages
Japanese (ja)
Other versions
JPS51141674A (en
Inventor
Masashi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Columbia Co Ltd
Original Assignee
Nippon Columbia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Columbia Co Ltd filed Critical Nippon Columbia Co Ltd
Priority to JP50066231A priority Critical patent/JPS51141674A/en
Publication of JPS51141674A publication Critical patent/JPS51141674A/en
Publication of JPS6224729B2 publication Critical patent/JPS6224729B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Music (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は楽器の調律装置に関し、特に鍵盤楽器
等に好適な調律装置を提供するにある。 楽器調律装置としてたとえば特許公告昭和31年
―第3592号に示される如き楽器調律装置は公知で
ある。 該公告に示されたものはブラウン管オシロスロ
ープの水平軸を標準音階信号に同期して振れるよ
うにし、次に被調律音を整形して輝度変調端子に
加え、更に観測を容易にするために垂直軸に適当
な周波数の波形を加えるようにしている。従つて
標準音階信号と被調律信号の周波数が一致すれば
ブラウン管上の輝度変調された図形が静止し、被
調律音の周波数が標準音に比較して高いか低いか
によつて映像は右又は左に移動するように成され
ていた。 然し上述の装置による時は被調律音のずれが少
ない時は有効に動作するが、被調律音と標準音階
とのずれが大きくなるに従つて移動連度が大きく
なつて、被調律音の周波数が高すぎるのか低すぎ
るのかを判断することが出来なくなる欠点を有す
る。又周波数のずれを測定するには標準周波数を
ブラウン管上でその移動を止める様にずらせてこ
の時の標準周波数のずれをもつて測定に替える様
な困難な方法を用いていた。 本発明は上述の如き欠点を除いた楽器調律装置
を提案するもので、周波数のずれを電流計等のア
ナログ表示装置又はデジタル表示装置等によつて
直読出来る様にし、且つ基準周波数を水晶等を用
いて周波数ずれの精度を向上させる様にした楽器
調律装置を提供せんとするにある。 以下本発明の詳細を説明する。第1図は楽器調
律装置の系統図で1は基準信号発生回路で標準水
晶発振子(XTal)を有し、この水晶発振子の周
波数は任意に選択し得るもので例えばカラーテレ
ビジヨン受像機のサブキヤリヤ周波数用の水晶発
振子(3.579545MHz)が安価に求められるのでこ
れを用いることが出来る。この発振子出力を1/3
分周回路2に加えて発振子周波数を1/3にして次
段の逓降回路3に加える。該逓降回路は音階
A0,A0#,B0に対しては1/4分周を与え、音階
C1,C1#,D1,D1#,E1,……A1,A1#,B1
に対しては1/2の分周を与え、他の例えば88鍵迄
の音階C2〜C8迄に対しては分周を与えない様に
して開閉器S11に出力され、これらを適宜選択
してゲート回路4の一方の入力端子に入力され
る。ゲート回路4の他方の入力端子にはカウンタ
回路5の出力が与えられ、該ゲート回路4の出力
はカウンタ回路5に加えられる。一方カウンタ回
路5の出力端はインバータ回路6を通して第1の
比較ゲート回路7に接続され、更にカウンタ回路
5の出力端は直接第2の比較ゲート回路8に接続
され、これら第1及び第2比較ゲート回路出力端
はメータ駆動回路9を通してメータ10に接続さ
れている。一方11は被調律音の入力される入力
端子を示し入力信号は同調増幅器12に加えられ
て、該同調増幅器によつて調律時誤動作の原因と
なる高調波成分を除去する。 尚、同調増幅器によつて同調された周波数は音
階切換スイツチS21とオクターブの切換スイツ
チS12によつて被調律音に合せる様に成され
る。同調増幅器12よりの出力は検波回路14に
印加され、被調律音の周期と後述する基準時間と
の比較を容易にするため逓降回路13に印加す
る。 本実施例の場合、逓降回路13は音名A0,A0
#,B0,C1,……A2#,B2迄は逓降せずに直接
微分回路15に加え、音名C3,C3#,……C8
ついては、1オクターブ上昇する毎に1/2分周回
路が1段ずつ追加されるように切換スイツチS1
によつて逓降回路13の1/2分周回路の段数が
選択されて微分回路15に加えられる。この結果
被調律音の音名C2,……A2#,B2より何オクタ
ーブ高いものであつても、切換スイツチS13
出力では、被調律音に応じて音名C2,C2#,…
…A2#,B2のいずれかの周波数に変換される。 微分回路15の出力はゲート回路16,17と
1/2分周回路18に加えられ、該1/2分周回路18
の出力はゲート回路16の他方の入力端子に加え
られると共にインバータ21を通して第1の比較
ゲート回路7に加わり、更に第2の比較ゲート回
路8の入力端子にも直接加わる様に成される。一
方検波回路14よりの出力は1/2分周回路19に
加わり、その出力はインバータ20を通してゲー
ト回路17の他方の入力端子に加えられ、該ゲー
ト回路の出力は1/2分周回路19に入力される。
1/2分周回路19の出力は第1及び第2の比較ゲ
ート回路7,8の入力端子に直接入力される。又
ゲート回路16の出力はカウンタ回路5と第2の
比較ゲート8の入力端子に入力される様に成され
ている。 上述の如き構成に於ける動作を以下詳述する。
第1図に於て被調律音を入力端子11に加えるこ
とで、同調増幅器12によつて誤動作原因となる
高調波成分を除去し、オクターブ切換スイツチS
12によつて被調律音をオクターブに切換え、且
つ被調律音の音階に応じた切換を音階切換スイツ
チS21によつて行なう。同調増幅器12よりの
出力は逓降回路13でC3〜C8までの音は分周さ
れて音名C2,C2#,……A2#,B2のいずれかの
周波数に変換されて(A0,A0#……B1を除く)、
微分回路15に加わる。この波形を第2図X1
して示す。波形X1は微分回路15で微分され、
波形X1の立下り部で第2図X2で示す微分パルス
X2を発生する。微分パルスX2はゲート回路1
6,17と1/2分周回路18に加わり、該1/2分周
回路出力には微分パルスX2の1発毎に反転を繰
返す出力波形X3を第2図X3の如く発生する。ゲ
ート回路16は波形X2とX3が同時にハイレベル
にある時だけ第2図X4の如くリセツト用のパル
スX4を発生する。一方基準信号発生回路1の水
晶発振器(XTal)で3.579545MHzを発振させ、1/
3分周器2と逓降回路3によりオクターブ切換が
成されて、ゲート回路4に加わつており、カウン
タ回路5のリセツト端子5aに波形X4が加わる
ことで、カウンタ回路5の第2図Y3で示す出力
波形Y3が高レベルとなつてゲート回路4に加わ
るためゲート回路4が開かれ、基準パルスY1
(図示せず)がゲート回路4を通して第2図Y2
如くカウンタ回路に入力される。カウンタ回路5
は被調律音に応じたカウント数nが定められてい
る。この数nを定めた理由について簡単に説明す
ると、水晶発振子(XTal)の正確な周波数を入
力してカウントする時、その計数開始の時刻を被
測定波形X1の例えば立ち下り時点と一致させ、
この時刻からカウンタ回路へ所定のカウント数n
をカウントして反転させる迄の時間をT(基準時
間)とすれば、nが充分に大きければ水晶発振子
の波形周期△Tのn倍となり、時間Tは△Tが正
確であればn△Tと(n−1)△Tの間にあつて
nが充分大きく、入力波形周期が正確であれば基
準時間Tを高い精度に保つことが出来る。 本発明はこの構成を用いて被調律音と基準信号
発生回路1との比較を行なうものであるが、上述
のカウントすべき数nを音名C2〜B2迄の各音に
対応する為の定め方を以下に述べると、今音名m
の基本周波数をmとすると、カウンタ5がカウ
ントを開始して反転させる迄の時間T(基準時
間)はT=1/mとなる様にすればよく、水晶発振 子よりの基準信号波形周期を△Tとすると、 △T・(n−1)≦T≦△T・n ………(1) △T・(n−0.5)−0.5△T ≦T≦△T(n−0.5)+0.5△T ……(2) T≒(n−0.5)△T±0.5△T ……(3) となり±0.5△Tの誤差を見込むならば n≒0.5+T/△T ………(4) ここで水晶発振子の周波数を3.579545MHzの1/3に すると n=0.5+3.579545×10/3m……(5) となる。ここで音名C2……B2迄の周波数の各々
に対するカウント数nを求めると次の表の如くな
る。
The present invention relates to a tuning device for musical instruments, and in particular, to provide a tuning device suitable for keyboard instruments and the like. As a musical instrument tuning device, for example, a musical instrument tuning device as shown in Patent Publication No. 3592 of 1952 is known. The system shown in the announcement is to swing the horizontal axis of the cathode ray tube oscilloscope in synchronization with the standard scale signal, then shape the tuned tone and apply it to the brightness modulation terminal, and then swing the horizontal axis of the CRT oscilloscope in synchronization with the standard scale signal. I try to add a waveform of an appropriate frequency to the axis. Therefore, if the frequencies of the standard scale signal and the tuned signal match, the brightness-modulated figure on the cathode ray tube becomes stationary, and the image changes to the right or left depending on whether the frequency of the tuned tone is higher or lower than the standard tone. It was made to move to. However, when using the above-mentioned device, it works effectively when the difference between the tuned note and the standard scale is small, but as the difference between the tuned note and the standard scale increases, the frequency of the tuned note increases, and the frequency of the tuned note increases. It has the disadvantage that it is impossible to judge whether it is too high or too low. In order to measure the frequency shift, a difficult method was used in which the standard frequency was shifted so as to stop moving on the cathode ray tube, and then the shift of the standard frequency was used for measurement. The present invention proposes a musical instrument tuning device that eliminates the above-mentioned drawbacks, and allows the frequency deviation to be read directly using an analog display device such as an ammeter or a digital display device, and also allows the reference frequency to be measured using a crystal or the like. An object of the present invention is to provide a musical instrument tuning device which uses the present invention to improve the accuracy of frequency deviation. The details of the present invention will be explained below. Figure 1 is a system diagram of a musical instrument tuning device. 1 is a reference signal generating circuit that has a standard crystal oscillator (XTal), and the frequency of this crystal oscillator can be arbitrarily selected. For example, it is used in a color television receiver. A crystal oscillator for subcarrier frequency (3.579545MHz) is available at low cost, so it can be used. This oscillator output is 1/3
In addition to the frequency dividing circuit 2, the oscillator frequency is reduced to 1/3 and applied to the next step down-down circuit 3. The down-down circuit is a scale
For A 0 , A 0 #, and B 0 , give 1/4 frequency division and make the scale
For up to C 1 , C 1 #, D 1 , D 1 #, E 1 , ... A 1 , A 1 #, B 1 , divide the frequency by 1/2, and for other scales up to 88 keys, for example. The signals C 2 to C 8 are outputted to the switch S 1 - 1 without being frequency divided, and these are appropriately selected and inputted to one input terminal of the gate circuit 4 . The output of the counter circuit 5 is given to the other input terminal of the gate circuit 4, and the output of the gate circuit 4 is applied to the counter circuit 5. On the other hand, the output terminal of the counter circuit 5 is connected to a first comparison gate circuit 7 through an inverter circuit 6, and further, the output terminal of the counter circuit 5 is directly connected to a second comparison gate circuit 8. The gate circuit output end is connected to a meter 10 through a meter drive circuit 9. On the other hand, reference numeral 11 denotes an input terminal into which a tone to be tuned is input, and the input signal is applied to a tuning amplifier 12, which removes harmonic components that cause malfunctions during tuning. Incidentally, the frequency tuned by the tuning amplifier is made to match the tuned tone by a scale changeover switch S2-1 and an octave changeover switch S1-2 . The output from the tuned amplifier 12 is applied to a detection circuit 14, and is applied to a down-down circuit 13 in order to facilitate comparison between the period of the tuned tone and a reference time to be described later. In the case of this embodiment, the down-down circuit 13 has pitch names A 0 , A 0
#, B 0 , C 1 , ... A 2 #, B 2 are directly added to the differentiating circuit 15 without descending, and pitch names C 3 , C 3 #, ... C 8 are raised by one octave. Switch S1 so that one stage of 1/2 frequency divider circuit is added for each stage.
- 3 selects the number of stages of the 1/2 frequency divider circuit of the down-down circuit 13 and adds it to the differentiating circuit 15. As a result, no matter how many octaves higher than the pitch name C 2 , ... A 2 #, B 2 of the pitch to be tuned, the output of the switch S 1 - 3 will change the pitch name C 2 , ...A 2 #, B 2 according to the pitch to be tuned. C 2 #,…
...Converted to either A 2 # or B 2 frequency. The output of the differentiating circuit 15 is connected to the gate circuits 16 and 17.
added to the 1/2 frequency divider circuit 18, and the 1/2 frequency divider circuit 18
The output is applied to the other input terminal of the gate circuit 16, and also applied to the first comparison gate circuit 7 through the inverter 21, and further applied directly to the input terminal of the second comparison gate circuit 8. On the other hand, the output from the detection circuit 14 is applied to the 1/2 frequency divider circuit 19, the output of which is applied to the other input terminal of the gate circuit 17 through the inverter 20, and the output of the gate circuit is applied to the 1/2 frequency divider circuit 19. is input.
The output of the 1/2 frequency divider circuit 19 is directly input to the input terminals of the first and second comparison gate circuits 7 and 8. Further, the output of the gate circuit 16 is configured to be input to the input terminals of the counter circuit 5 and the second comparison gate 8. The operation of the above configuration will be described in detail below.
In Fig. 1, by applying the tuned tone to the input terminal 11, the tuned amplifier 12 removes harmonic components that cause malfunctions, and the octave change
The tones to be tuned are switched to octaves by the switches S1--2 , and the scale changeover switch S2-1 is used to switch according to the scale of the tones to be tuned. The output from the tuned amplifier 12 is frequency-divided by the down-down circuit 13, and the tones from C 3 to C 8 are frequency-divided and converted into one of the frequencies of the note names C 2 , C 2 #, . . . A 2 #, B 2 . (A 0 , A 0 #...excluding B 1 ),
It is added to the differentiation circuit 15. This waveform is shown as FIG. 2 X1 . The waveform X1 is differentiated by the differentiating circuit 15,
Differential pulse shown in Figure 2 X 2 at the falling edge of waveform X 1
Generates X 2 . Differential pulse X 2 is gate circuit 1
6, 17 and the 1/2 frequency divider circuit 18, and the output of the 1/2 frequency divider circuit generates an output waveform X3 that repeats inversion every time the differential pulse X2 is issued, as shown in Fig. 2 X3. . The gate circuit 16 generates a reset pulse X4 as shown in FIG. 2 only when the waveforms X2 and X3 are simultaneously at high level. On the other hand, the crystal oscillator (XTal) of the reference signal generation circuit 1 oscillates at 3.579545MHz, and
Octave switching is performed by the 3-frequency divider 2 and the down-down circuit 3, and is applied to the gate circuit 4, and by applying the waveform X4 to the reset terminal 5a of the counter circuit 5, the waveform Y of the counter circuit 5 shown in FIG. Since the output waveform Y 3 shown by 3 becomes high level and is applied to the gate circuit 4, the gate circuit 4 is opened, and the reference pulse Y 1
(not shown) is input to the counter circuit through the gate circuit 4 as shown in FIG. 2 Y2. Counter circuit 5
The number of counts n is determined depending on the tone to be tuned. To briefly explain the reason for determining this number n, when counting by inputting the accurate frequency of the crystal oscillator (XTal), the counting start time must match the falling point of the measured waveform X1 , for example. ,
From this time, a predetermined count number n is sent to the counter circuit.
If the time it takes to count and invert is T (reference time), if n is sufficiently large, it will be n times the waveform period △T of the crystal oscillator, and if △T is accurate, the time T will be n△ If n is sufficiently large between T and (n-1)ΔT and the input waveform period is accurate, the reference time T can be maintained with high precision. The present invention uses this configuration to compare the tuned tone with the reference signal generation circuit 1, but in order to make the number n to be counted mentioned above correspond to each note with note names C2 to B2 . The following is how to determine the kontone name m.
If the fundamental frequency of is m, then the time T (reference time) from when the counter 5 starts counting until it is inverted can be set to T=1/m, and the period of the reference signal waveform from the crystal oscillator is Assuming △T, △T・(n-1)≦T≦△T・n……(1) △T・(n−0.5)−0.5△T ≦T≦△T(n−0.5)+0. 5△T ……(2) T≒(n-0.5)△T±0.5△T ……(3) So if an error of ±0.5△T is expected, n≒0.5+T/△T ……(4) Here, if the frequency of the crystal oscillator is set to 1/3 of 3.579545MHz, n=0.5+3.579545×10 6 /3m...(5). Here, if we calculate the count number n for each of the frequencies up to pitch name C 2 . . . B 2 , we get the following table.

【表】【table】

【表】 これらカウントすべき数nがカウンタ回路5の
音階切換スイツチS22によつて定められるよう
になつているので、ゲート回路4より加わる波形
Y2のパルス数をカウントして、その数が所定の
カウント数nと等しくなると同時にカウンタ回路
5の出力波形Y3が反転してゲート回路4を閉じ
るので、第2図Y3に示す如く、リセツト用のパ
ルスX4の前縁と同時に立ち上り、後縁よりカウ
ントし始め、被調律音に対応して定まる基準時間
T経過後直ちに立ち下る正パルスとなる。 一方前述したパルス波形X3は微分回路15の
パルス波形X2の後縁と同時に立ち下り、被調律
音波形X1の周期と正確に一致した負パルスとな
る。故に波形X3の後縁X′3と波形Y3の後縁Y′3の差
を取り出すために波形Y3は第1及び第2の比較
用ゲート回路7,8に加えられる。 一方同調増幅器12より取り出された第3図
X0に示す如き減衰波形は、検波回路14を通つ
て第3図Zの如き検波出力となり、これはJKフ
リツプフロツプからなる1/2分周回路19のクリ
ア端子19aに加えられる。該1/2分周回路19
であるJKフリツプフロツプのクロツク端子には
ゲート回路17より微分パルスX2が(第3図X2
参照)に加えられているので、検波出力Zにより
クリア端子19aがハイレベルである間に加えら
れた微分パルスX2の第1発目の終りで該1/2分周
回路19の出力は反転して第3図の波形Wに示す
如くハイレベルとなる。このハイレベルとなつた
1/2分周回路19の出力波形がインバータ20に
より反転されて低レベルとなつてゲート回路17
に加えられるので以後微分パルスX2は阻止され
て出力波形Wはハイレベルを保持している。 一方クリア端子19aに加えられた検波出力波
形Zは次第に減衰するにつれてレベルが低下し、
従つて出力Wは所定のスレーシヨルドで被調律音
波形が消滅する前に再反転してロウレベルに成る
様に成されている。 第1及び第2の比較ゲート回路7,8には出力
波形Wがハイレベルにある間だけ動作する様に出
力波形Wが入力されている。故に被調律音の立ち
上り部におけるハンマーの打撃によるチヤタリン
グの如き誤動作と被調律音の減衰して消滅する直
前のチヤタリングの如き誤動作を防止し得ること
が出来る。 又被調律音が急速に減衰する場合最後の波形を
計測したあと次の波形が入力されないわけである
が、この場合は被調律波形には非常に長い周期の
波形が入力されたものと判定してしまい、誤動作
の原因になるが、このような誤動作をも最少にし
得る。又第1の比較ゲート回路7は波形Wがハイ
レベルで、波形X3,波形Y3がローレベルである
時に出力はローレベルと成る様に動作し、又第2
の比較ゲート回路8は波形W,X3,Y3がすべて
ハイレベルである時に出力はローレベルとなるか
ら、波形X3の後縁X′3が波形Y3の後縁Y′3より先に
発生する場合には第2の比較ゲート回路8の出力
端に、波形X3の後縁X3′が波形Y3の後縁Y3′より後
から発生する場合には第1の比較ゲート回路7の
出力端に、両波形の後縁X3′,Y3′の時刻差に等し
い幅を持つ第2図波形Vの如きパルスVを発生す
ることになる。又ゲート回路16の出力波形X4
を第2の比較ゲート回路8に加えることにより該
比較ゲート回路出力Vに点線で示す如き不要パル
スの発生するのを防止し得る。 この様に第1及び第2の比較ゲート回路出力に
取り出された、基準発振子によつて定まる基準時
間Tと被調律音との誤差出力がメータ駆動回路9
に加えられ、周波数指数指示メータ10に両振れ
型の電流計を用いれば、第2の比較ゲート8の誤
差出力パルスを直流変換し、負パルスが発生した
時その値に応じてメータをプラス側に振らせ、第
1の比較ゲート7の誤差出力パルスを同じく直流
変換してその値に応じてメータをマイナス側に振
らせれば、調律すべき音階をメータで直読するこ
とが出来ることに成る。 上述の如く本発明によれば極めて簡単にピアノ
等の音階調律を行い得て、その誤差をメータ表示
し得る特徴を有するものである。
[Table] Since the number n to be counted is determined by the scale selection switch S2-2 of the counter circuit 5 , the waveform added from the gate circuit 4 is
The number of pulses Y2 is counted, and at the same time when the number becomes equal to the predetermined count number n, the output waveform Y3 of the counter circuit 5 is inverted and the gate circuit 4 is closed, as shown in FIG. 2 Y3 . It becomes a positive pulse that rises at the same time as the leading edge of the reset pulse X4 , starts counting from the trailing edge, and immediately falls after the elapse of a reference time T determined corresponding to the tuned tone. On the other hand, the aforementioned pulse waveform X3 falls at the same time as the trailing edge of the pulse waveform X2 of the differentiating circuit 15, and becomes a negative pulse exactly matching the period of the tuned sound waveform X1 . Therefore, the waveform Y 3 is applied to the first and second comparison gate circuits 7 and 8 in order to extract the difference between the trailing edge X' 3 of the waveform X 3 and the trailing edge Y' 3 of the waveform Y 3 . On the other hand, FIG. 3 taken out from the tuned amplifier 12
The attenuated waveform as shown by X 0 passes through the detection circuit 14 and becomes a detection output as shown in FIG. The 1/2 frequency divider circuit 19
A differential pulse X 2 is applied to the clock terminal of the JK flip-flop from the gate circuit 17 (see Fig. 3) .
), the output of the 1/2 frequency divider circuit 19 is inverted at the end of the first differential pulse X2 that is applied while the clear terminal 19a is at a high level due to the detection output Z. Then, the signal becomes high level as shown by waveform W in FIG. It reached this high level
The output waveform of the 1/2 frequency divider circuit 19 is inverted by the inverter 20 and becomes a low level, and the output waveform is output to the gate circuit 17.
Since the differential pulse X2 is subsequently blocked, the output waveform W remains at a high level. On the other hand, the level of the detected output waveform Z applied to the clear terminal 19a decreases as it gradually attenuates.
Therefore, the output W is configured so that it is inverted again and becomes a low level before the tuned sound wave disappears at a predetermined threshold. The output waveform W is input to the first and second comparison gate circuits 7 and 8 so that they operate only while the output waveform W is at a high level. Therefore, it is possible to prevent malfunctions such as chattering due to the impact of the hammer at the rising edge of the tuned sound and chattering just before the tuned sound decays and disappears. Also, if the tuned sound decays rapidly, the next waveform will not be input after the last waveform is measured, but in this case, it is determined that the tuned waveform has a very long period. However, such malfunctions can be minimized. The first comparison gate circuit 7 operates so that the output becomes a low level when the waveform W is at a high level and the waveforms X 3 and Y 3 are at a low level.
Since the comparison gate circuit 8 outputs a low level when the waveforms W, X 3 and Y 3 are all high level, the trailing edge X' 3 of the waveform X 3 is ahead of the trailing edge Y' 3 of the waveform Y 3 . If the trailing edge X 3 ' of waveform X 3 occurs after the trailing edge Y 3 ' of waveform Y 3 , the output terminal of the second comparison gate circuit 8 At the output end of the circuit 7, a pulse V such as waveform V in FIG. 2 is generated having a width equal to the time difference between the trailing edges X 3 ' and Y 3 ' of both waveforms. Also, the output waveform of the gate circuit 16
By adding the above to the second comparison gate circuit 8, it is possible to prevent the generation of unnecessary pulses as shown by dotted lines in the comparison gate circuit output V. In this way, the error output between the reference time T determined by the reference oscillator and the tuned tone, taken out to the outputs of the first and second comparison gate circuits, is output by the meter drive circuit 9.
If a double swing type ammeter is used as the frequency index indicating meter 10, the error output pulse of the second comparison gate 8 is converted into DC, and when a negative pulse occurs, the meter is switched to the positive side according to the value. If the error output pulse of the first comparison gate 7 is similarly converted into DC and the meter is swung to the negative side according to the value, the scale to be tuned can be directly read with the meter. As described above, according to the present invention, it is possible to tune a piano or the like extremely easily, and the error can be displayed on a meter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の調律装置の回路図、第2図及
び第3図は第1図の波形説明図である。 1は基準信号発生回路、2は1/2分周回路、
3,13は逓降回路、4,16,17,7,8は
ゲート回路、5はカウンタ回路、9はメータ駆動
回路、10はメータ、12は同調増幅器、14は
検波回路、18,19は1/2分周器、20,2
1,6はインバータ回路、15は微分回路であ
る。
FIG. 1 is a circuit diagram of the tuning device of the present invention, and FIGS. 2 and 3 are waveform explanatory diagrams of FIG. 1. 1 is a reference signal generation circuit, 2 is a 1/2 frequency divider circuit,
3 and 13 are step-down circuits, 4, 16, 17, 7 and 8 are gate circuits, 5 is a counter circuit, 9 is a meter drive circuit, 10 is a meter, 12 is a tuned amplifier, 14 is a detection circuit, 18 and 19 are 1/2 frequency divider, 20,2
1 and 6 are inverter circuits, and 15 is a differential circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 一連の被調律音波形の各々の被調律音波形の
始まりの時刻毎に発生し、所定基準時間継続する
と終了する基準時間パルスを繰り返し発生する手
段と、該基準時間パルス発生手段によるパルスの
上記終了の時刻と上記各々の被調律音波形の終了
の時刻の差に一致した幅を有する比較パルスを上
記各被調律音波形毎に繰り返し発生する手段と、
該比較パルス出力によりメータ回路を駆動してメ
ータ表示する手段とを有し、上記一連の被調律音
波形の発生の直後及び消滅の直前の被調律音波形
に対しては上記比較パルスの発生を阻止する手段
を有する楽器調律装置。
1. Means for repeatedly generating a reference time pulse that is generated at each starting time of each of a series of tuned sound waveforms and that ends after continuing for a predetermined reference time; and means for repeatedly generating, for each of the tuned sound waveforms, a comparison pulse having a width that matches the difference between the end time and the end time of each of the tuned sound waveforms;
and a means for driving a meter circuit by the output of the comparison pulse to display the meter, and for the series of to-be-tuned sound waveforms immediately after generation and immediately before extinction, the comparison pulse is generated. A musical instrument tuning device having means for blocking.
JP50066231A 1975-06-02 1975-06-02 Instrument tuning device Granted JPS51141674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50066231A JPS51141674A (en) 1975-06-02 1975-06-02 Instrument tuning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50066231A JPS51141674A (en) 1975-06-02 1975-06-02 Instrument tuning device

Publications (2)

Publication Number Publication Date
JPS51141674A JPS51141674A (en) 1976-12-06
JPS6224729B2 true JPS6224729B2 (en) 1987-05-29

Family

ID=13309858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50066231A Granted JPS51141674A (en) 1975-06-02 1975-06-02 Instrument tuning device

Country Status (1)

Country Link
JP (1) JPS51141674A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050023A (en) * 1973-09-01 1975-05-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050023A (en) * 1973-09-01 1975-05-06

Also Published As

Publication number Publication date
JPS51141674A (en) 1976-12-06

Similar Documents

Publication Publication Date Title
JPS589954B2 (en) rhythm hatsei sochi
US3509454A (en) Apparatus for tuning musical instruments
US3280937A (en) Apparatus for measuring the frequency of acoustical energy
US4217808A (en) Determination of pitch
US4144490A (en) Electronic sensing and measuring apparatus for signals in audio frequency range
US4463647A (en) Musical instrument
US4198606A (en) Tuning apparatus
JPH06241972A (en) Chemical sensing apparatus
JPS6224729B2 (en)
JP3160137B2 (en) Radio-controlled clock
JPH05273266A (en) Frequency-deviation-amount measuring apparatus
JPH0673077B2 (en) Caliber with tuning function
JP3271323B2 (en) Time measurement circuit
JPS6024434B2 (en) electronic clock
RU2734572C1 (en) Method for determining pitch in electric musical instruments of heterodyne type
US4324166A (en) Tuning device for musical instruments
JPH04344476A (en) Frequency ratio measuring circuit
SU754323A1 (en) Digital period meter
SU1166006A2 (en) Method of measuring frequency
SU744997A2 (en) Frequency counter
JPS6010262B2 (en) sampling device
SU1176375A1 (en) Device for checking tuning of musical instruments
SU1119068A1 (en) Device for checking tuning of musical instruments
SU1170495A1 (en) Device for checking tuning of musical instrument
SU849096A1 (en) Phase-meter