JPS62246908A - Production of vinyl chloride polymer - Google Patents

Production of vinyl chloride polymer

Info

Publication number
JPS62246908A
JPS62246908A JP61091808A JP9180886A JPS62246908A JP S62246908 A JPS62246908 A JP S62246908A JP 61091808 A JP61091808 A JP 61091808A JP 9180886 A JP9180886 A JP 9180886A JP S62246908 A JPS62246908 A JP S62246908A
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
temperature
catalyst
dir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61091808A
Other languages
Japanese (ja)
Other versions
JPH0694489B2 (en
Inventor
Masaaki Fukuda
福田 正明
Masatake Ishibashi
石橋 正剛
Tokuaki Ikeda
池田 徳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP61091808A priority Critical patent/JPH0694489B2/en
Publication of JPS62246908A publication Critical patent/JPS62246908A/en
Publication of JPH0694489B2 publication Critical patent/JPH0694489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To make it possible to produce a polymer of a superhigh degree of polymerization and to attain high polymer yields within a short polymerization time, by feeding a polymerization vessel with diisobutyl peroxide before feeding it with vinyl chloride, etc., and specifying the polymerization temperature. CONSTITUTION:In producing a vinyl chloride polymer by feeding a polymerization vessel with vinyl chloride or a mixture thereof with a monomer copolymerizable therewith and performing the aqueous suspension polymerization of the monomer in the presence of a catalyst, said polymerization is performed in the following manner. The temperature of the aqueous medium placed in the vessel is kept at 10 deg.C or below, diisobutyl peroxide (DIB) as a catalyst is fed to it before said monomer is fed thereto and the polymerization is performed at a polymerization temperature <=36 deg.C until the conversion reaches at least 60%. It is also possible that said DIB is kept floating on the surface of the aqueous medium by feeding it to the vessel in a state in which the agitator is stopped and mixing by agitation is started on or after the start of feeding of said monomer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は速効性触媒としてジイソブチリルパーオキサイ
ド(以下DIRと略称する。)t−用いて、超高重合度
の塩化ビニル系重合体を得る塩化ビニル等(塩化ビニル
又はこれと共重合しうる単量体の混合物をいう。以下同
じ。)の水性懸濁重合方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention uses diisobutyryl peroxide (hereinafter abbreviated as DIR) as a fast-acting catalyst to obtain a vinyl chloride polymer with an ultra-high degree of polymerization. This invention relates to a method for aqueous suspension polymerization of vinyl chloride (referring to vinyl chloride or a mixture of monomers copolymerizable with vinyl chloride; the same applies hereinafter).

(従来の技術〕 当業界では、塩化ビニル系重合体を平均重合度によって
600〜1,500のものを一般品、1.600〜a、
oooのものを高重合度品、a、ooo以上のものを超
高重合産品と呼称している。又、可塑剤を使用して製品
化したものを軟質製品と呼称している。この軟質製品は
平均重合度が高くなるほどゴム弾性が向上し、高重合度
品では耐熱性も向上する。塩化ビニル系重合体の特性を
持ち、更にゴム特性を出す為に、更に重合度の高い、超
高重合度品の製造方法の確立が望まれている。
(Prior art) In the industry, vinyl chloride polymers with an average degree of polymerization of 600 to 1,500 are commonly used, 1.600 to a,
Those with ooo are called high polymerization products, and those with a degree of a, ooo or higher are called ultra-high polymerization products. Furthermore, products manufactured using plasticizers are called soft products. The rubber elasticity of this soft product improves as the average degree of polymerization increases, and products with a high degree of polymerization also improve heat resistance. It is desired to establish a method for producing ultra-high polymerization degree products that have the properties of vinyl chloride polymers and have even higher degree of polymerization in order to exhibit rubber properties.

本発明者らは速効性触媒たるジイソブチリルパーオキサ
イド又はアセチルシフロイキシルスルホニルバーオキサ
イド(以下AC3Pと略称する。)を使用すれば超高重
合度品が得られることを知った。
The present inventors have found that an ultra-highly polymerized product can be obtained by using diisobutyryl peroxide or acetyl cifurooxylsulfonyl peroxide (hereinafter abbreviated as AC3P) as a fast-acting catalyst.

しかしAC8Pは平均重合度a、ooo以上の超高重合
度品を製造するのは不可能でないが、重合時間が非常に
長くなること、又、触媒使用量が多くなるため、得られ
た製品の熱安定性が悪化する等の欠点が生じ、実用的で
ない。
However, with AC8P, it is not impossible to produce ultra-high polymerization products with an average polymerization degree of a, ooo or higher, but the polymerization time is extremely long and the amount of catalyst used is large, so the resulting product It has drawbacks such as poor thermal stability, making it impractical.

DIRの塩化ビニル等の重合触媒への適用については特
公昭48−32,430号において、DIRと第3級ブ
チリルパーオキシビバレート(以下TBPPと略称する
。)あるいは第3級ヘキシルバーオキシピパレート(以
下THPPと略称する。)とを併用で使用することが提
案されており、DIRを重合温度40〜60’Cで使用
するとDIRの分解速度が速過ぎる為に短時間で触媒活
性を失ない、高い重合収率を得ることが出来ないが、T
BPP又はTHPPとの併用により、重合収率の向上が
計られるとされている。すなわち、DIRを使用する場
合は特定の触媒と併用しなければ、重合触媒として使用
出来ないことを示している。
Regarding the application of DIR to polymerization catalysts such as vinyl chloride, Japanese Patent Publication No. 48-32,430 describes DIR and tertiary butyryl peroxybivalate (hereinafter abbreviated as TBPP) or tertiary hexyl oxypiparate. (hereinafter abbreviated as THPP) has been proposed to be used in combination with DIR, and if DIR is used at a polymerization temperature of 40 to 60'C, the decomposition rate of DIR is too fast and the catalyst activity will not be lost in a short time. , it is not possible to obtain a high polymerization yield, but T
It is said that the combined use with BPP or THPP can improve the polymerization yield. In other words, this shows that when DIR is used, it cannot be used as a polymerization catalyst unless it is used together with a specific catalyst.

速効性のDIRの失活を防止する方法として、特公昭5
6−50892号ではDIRの重合機への装入を ■塩化ビニル等の装入と同時、又は ■塩化ビニル等の装入以降の重合開始期間としているが
、のの場合、DIRは常温付近の温度でも分解してラジ
カルを発生することが知られているので、水系が不在の
ま\常温で塩化ビニル等とDIRの混合相が瞬間的にで
も発現することは安全上非常に危険なことである。■の
場合、DIRが重合系の塩化ビニル等の油滴に分散不良
のまま重合が進行することにより、油滴間でI)IBの
濃度が不均一であることに起因して製品レジ7粒子に可
塑剤吸収性の劣るレジン粒子が生成し、軟質系塩化ビニ
ル系樹脂成形品にフィッシュアイ(以下rFEJと略記
する。)が多発する。FEは塩化ビニル等樹脂成形品の
外観を損なうので商品価値を著しく低下する。
As a method to prevent the deactivation of fast-acting DIR,
No. 6-50892 specifies that DIR should be charged into the polymerization machine at the same time as the charging of vinyl chloride, etc., or during the polymerization start period after the charging of vinyl chloride, etc., but in the case of It is known that it decomposes even at high temperatures and generates radicals, so it is extremely dangerous for safety if a mixed phase of vinyl chloride, etc. and DIR appears even momentarily at room temperature in the absence of an aqueous system. be. In the case of (2), the polymerization progresses with DIR poorly dispersed in the oil droplets of polymerized vinyl chloride, etc., resulting in uneven concentration of I) IB among the oil droplets, resulting in product registration 7 particles. Resin particles with poor plasticizer absorption properties are generated, and fish eyes (hereinafter abbreviated as rFEJ) frequently occur in soft vinyl chloride resin molded products. FE impairs the appearance of resin molded products such as vinyl chloride, thereby significantly lowering the commercial value.

以上の如く、公知技術において、DIRを塩化ビニル等
の懸濁重合触媒として使用する場合は、遅効性触媒との
併用でなければならないか、又は常温付近で〔塩化ビニ
ル等/DIB)の混合相が発現することで、急漱な発熱
反応による暴走反応の危険性があること、製品レジンの
品質(FE)が低下することなどによって、未だ完成さ
れた技術でないことは明らかである。
As described above, in the known technology, when DIR is used as a suspension polymerization catalyst for vinyl chloride, etc., it must be used in combination with a slow-acting catalyst, or a mixed phase of [vinyl chloride, etc./DIB] at around room temperature must be used. It is clear that this technology is not yet perfected, as there is a risk of a runaway reaction due to a rapid exothermic reaction, and the quality (FE) of the product resin deteriorates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は超高重合度品の製造を可能にし、DIR単独使
用でも、しかも短時間の重合時間でも高い重合収率全保
持し、品質も悪化させない製造方法を確立することを目
的とする。
The purpose of the present invention is to establish a manufacturing method that enables the production of ultrahigh polymerization degree products, maintains a high overall polymerization yield even when DIR is used alone, and even in a short polymerization time, and does not deteriorate quality.

(問題点を解決するための手段) 本発明は、塩化ビニル等を重合機内に装入し、触媒の存
在下に水性懸濁重合を行なわせることにより塩化ビニル
系重合体’ts造する方法において、重合機内に装入し
た水性媒体の温度を10℃以下に保ち、触媒としてのD
IRを、上記塩化ビニル等を重合機に装入する前に、装
入し、重合率が少なくとも60%に達する迄重合反応温
度36℃以下で重合反応を行なわせる前記方法である。
(Means for Solving the Problems) The present invention provides a method for producing vinyl chloride polymers by charging vinyl chloride etc. into a polymerization machine and carrying out aqueous suspension polymerization in the presence of a catalyst. , the temperature of the aqueous medium charged in the polymerization machine was kept below 10°C, and D as a catalyst was
In this method, IR is charged before charging the vinyl chloride etc. into the polymerization machine, and the polymerization reaction is carried out at a polymerization reaction temperature of 36° C. or lower until the polymerization rate reaches at least 60%.

DIRは非常に速効性の触媒であるので、常温(25℃
)付近でラジカルを発生することおよび水と接触するこ
とで急速に加水分解して触媒としての機能を低下するこ
とが知られている。
DIR is a very fast-acting catalyst, so it can be used at room temperature (25℃).
It is known that radicals are generated near ) and that when it comes into contact with water, it is rapidly hydrolyzed and its function as a catalyst decreases.

また、塩化ビニル等の油滴間でDIRの分散が不均一で
油滴間のDIR濃度が異なった状態で重合開始すれば、
FEのような品質低下の原因になることも事実である。
In addition, if the dispersion of DIR is uneven among oil droplets such as vinyl chloride and polymerization starts in a state where the DIR concentration between oil droplets is different,
It is also true that it causes quality deterioration such as FE.

本発明者らは、鋭意研究した結果、水性媒体の温度fc
10 ’C以下に保って、塩化ビニル等の装入を行なう
前にDIRを重合機内に装入することによって、低温域
でDIRのラジカルの発生じやすさと加水分解性を抑制
した状態で塩化ビニル等の油滴にDIBi均一分散させ
て、塩化ビニル等の懸濁重合を行なうことにより安全面
・製品レジン品質面の未解決の問題を解決したものであ
る。
As a result of intensive research, the inventors found that the temperature of the aqueous medium fc
By keeping the temperature below 10'C and charging DIR into the polymerization machine before charging vinyl chloride, etc., vinyl chloride can be produced while suppressing the tendency of DIR to generate radicals and its hydrolyzability at low temperatures. By uniformly dispersing DIBi in oil droplets such as oil droplets and carrying out suspension polymerization of vinyl chloride, etc., unresolved problems in terms of safety and product resin quality were solved.

更に、DIRの水への接触金極力避ける対策として、水
性媒体の温度金10℃以下に保って、塩化ビニル等の装
入を行なう前にDIRを重合機内に装入する際に、重合
機の攪拌を停止した状態で、DIB’i装入し水性媒体
表面に浮かせて塩化ビニル等の装入開始と同時または塩
化ビニル等の装入開始以降の時期に攪拌混合を開始して
もよい。
Furthermore, as a measure to avoid contact of DIR with water as much as possible, the temperature of the aqueous medium is kept below 10°C, and when charging DIR into the polymerization machine before charging vinyl chloride, etc., With stirring stopped, DIB'i may be charged and floated on the surface of the aqueous medium, and stirring and mixing may be started at the same time as or after the start of charging vinyl chloride, etc.

本発明における重合温度は超高重合産品を得る為の温度
を選べばよく、特に制約は受けないが、平均重合度a、
oooを得る温度36℃を上限として、下限は特に制限
されないが、通常の工業的裏造方法による冷却方式で冷
却出来る最低の温度とするのがよい。好ましくは36℃
〜19゛Cの重合温度で実施するのがよい。
The polymerization temperature in the present invention is not particularly limited as long as it is selected to obtain an ultra-high polymerization product, but average polymerization degree a,
The upper limit is 36° C., the temperature at which ooo is obtained, and the lower limit is not particularly limited, but it is preferably the lowest temperature that can be cooled by a cooling method using a normal industrial backing method. Preferably 36℃
It is preferred to carry out the polymerization at a temperature of ~19°C.

又、重合度が高くなるほど成型性が悪化し、これに対処
する為には、成型温度を上げなければならないが、成型
温度を出来るだけ上げずに加工性を向上させる為に重合
工程の間に、二段階以上の重合温度の変更を実施しても
よい。すなわち、重合途中において重合温度変更後の重
合温度を該変更前の重合温度より2℃ないし20℃上げ
て重合する。この際、変更前の重合率が60〜85%に
達してから後の段階に移る必要がちる。60%以下で後
段の重合に移った場合、当然重合温度が上がる事により
使用したD r Bの活性が急速に落ちる事により、重
合が完了しない。又、85%以上で変換しても生成低重
合物が少ない事より加工性の特徴が発現しなくなる。又
、前段階の重合温度は36℃以下であるが、後段階の重
合温度は36℃以上でもよく、前段階の重合温度より2
℃〜20’C高く限はされないが塩化ビニルモノマー仕
込前30分よシ、塩化ビニルモノマー仕込直前とするの
がよい。
In addition, as the degree of polymerization increases, moldability deteriorates, and in order to deal with this, it is necessary to raise the molding temperature, but in order to improve workability without raising the molding temperature as much as possible, it is necessary to increase the moldability during the polymerization process. , the polymerization temperature may be changed in two or more steps. That is, during polymerization, the polymerization temperature after changing the polymerization temperature is raised by 2° C. to 20° C. above the polymerizing temperature before the change. At this time, it is necessary to proceed to the next stage after the polymerization rate before the change reaches 60 to 85%. When proceeding to the subsequent stage of polymerization at 60% or less, the activity of the D r B used decreases rapidly as the polymerization temperature rises, and the polymerization is not completed. Furthermore, even if the conversion is 85% or more, the processability characteristics will not be exhibited due to the small amount of low polymers produced. Furthermore, although the polymerization temperature in the previous stage is 36°C or lower, the polymerization temperature in the latter stage may be 36°C or higher, which is 2 times lower than the polymerization temperature in the previous stage.
C. to 20' C. Although not limited to a higher temperature, it is preferable to do this for 30 minutes before charging the vinyl chloride monomer, or just before charging the vinyl chloride monomer.

30分以上になるとDIRが分解し、 その効率が低下するので好ましくない。After 30 minutes or more, DIR will decompose, This is not preferred because its efficiency decreases.

本発明の方法は主として塩化ビニル単量体の重合方法に
適用されるが、塩化ビニルの他に塩化ビニルと共重合可
能な単量体との共重合にも適用出来る。
The method of the present invention is mainly applied to the polymerization of vinyl chloride monomers, but it can also be applied to the copolymerization of vinyl chloride and monomers copolymerizable with vinyl chloride.

塩化ビニル単量体と共重合しうるビニル単量体としては
、酢酸ビニルの様なアルキルビニルエステル、セチルビ
ニルエーテルのSなフルー?ルビニルエーテル、エチレ
7 又+、jプロピレン等のα−モノオレフィン系単量
体、アクリル酸メチルの様なアクリル酸アルキルエステ
ル又はメタクリル酸メチルの様なメタクリル酸アルキル
エステル等を挙げうる。
Examples of vinyl monomers that can be copolymerized with vinyl chloride monomers include alkyl vinyl esters such as vinyl acetate, and S-fluorine such as cetyl vinyl ether. Examples thereof include α-monoolefin monomers such as rubinyl ether, ethylene, and propylene, alkyl acrylates such as methyl acrylate, and alkyl methacrylates such as methyl methacrylate.

さらにエチレン−酢酸ビニル共重合体又はエチレン−プ
ロピレン共重合体等への塩化ビニル4量体のグラフト重
合にも適用出来る。
Furthermore, it can also be applied to graft polymerization of vinyl chloride tetramer onto ethylene-vinyl acetate copolymer or ethylene-propylene copolymer.

本発明において使用しうる分散剤はポリビニルアルコー
ル(部分鹸化ポリ酢酸ビニルを含む。)メチルセルロー
スの様なセルロース誘導体、ポリビニルピロリドン、無
水マレイン酸−酢酸ビニル共重合体等の合成高分子物質
及びデンプン、ゼラチン、トラガントゴム、アラビアゴ
ムfZトの天然高分子物質の1種又は2種以上の混合物
であって特に限定されない。
Dispersants that can be used in the present invention include polyvinyl alcohol (including partially saponified polyvinyl acetate), cellulose derivatives such as methylcellulose, polyvinylpyrrolidone, synthetic polymeric substances such as maleic anhydride-vinyl acetate copolymer, starch, and gelatin. , gum tragacanth, gum arabic fZ, or a mixture of two or more thereof, and is not particularly limited.

(実施例〕 以下に示す実施例及び比較例において、熱安定性及びF
Eの判定方法は次の方法によった。
(Example) In the examples and comparative examples shown below, thermal stability and F
The determination method for E was as follows.

(1)熱安定性の判定方法 〔配合(PHR)) PVC(100)DOP(70)−!−ボキシル化大豆
油(2) ステアリン酸カルシウム(0,6)  ステ
アリン酸亜鉛(0,9)(ロール成膜条件〕 6インチロール:17o″cx5min(練シ)X Q
、 5 m (厚み) 〔オープンテスト〕 180’Cのオープン中で試験片が黒化するまでの時間
を測定しその長・短で熱安定性を判定する。
(1) Method for determining thermal stability [Composition (PHR)] PVC (100) DOP (70) -! -Boxylated soybean oil (2) Calcium stearate (0,6) Zinc stearate (0,9) (Roll film forming conditions) 6 inch roll: 17o''c x 5min (kneading)
, 5 m (thickness) [Open test] The time required for the test piece to blacken in an open environment at 180'C is measured, and thermal stability is determined based on the length and shortness of the time.

(2)FEの判定方法 〔配合(PHR)) PVC(100)  DOP(80)  三塩基性硫酸
鉛(5) ステアリン酸鉛(1) 〔ロール成膜条件〕 6インチa−ル:160℃x 7 min (練り)x
 Q、 1 ttrx (厚み) (FEの判定〕 ロール膜i o o oiあたりの未ゲル化粒子の数を
判読する。
(2) FE determination method [Composition (PHR)] PVC (100) DOP (80) Tribasic lead sulfate (5) Lead stearate (1) [Roll film formation conditions] 6 inch a-roll: 160°C x 7 min (kneading) x
Q, 1 ttrx (thickness) (FE determination) Read the number of ungelled particles per roll film i o o oi.

実施例1〜7 攪拌機付きの内容積2001の重合機の内部を窒素ガス
で置換し、次いで、5℃の純水100kq5懸濁剤とし
てけん化度80%、平均重合度1700の部分けん化ポ
リ酢酸ビニル4011(0,08i量部対塩化ビニル1
00重量部〕を重合機に仕込み、第1表に示す量のDI
R(塩化ビニル100重量部に対する重量部で示す。)
を仕込んだ後、5分後に塩化ビニル50に9を仕込み、
仕込み開始と同時に攪拌機を回して攪拌混合をスタート
する。第1表に示す重合反応温度に昇温して重合を開始
し、第1表に示す圧力(回収圧)で重合を停止して、未
反応塩化ビニル全排出し、重合物を得た。この重合条件
及び得られた重合体の性質を第1衣に示す。
Examples 1 to 7 The inside of a polymerization machine with an internal volume of 2,001 cm equipped with a stirrer was replaced with nitrogen gas, and then partially saponified polyvinyl acetate with a degree of saponification of 80% and an average degree of polymerization of 1,700 was used as a suspending agent in 100 kq5 of pure water at 5°C. 4011 (0.08i parts to vinyl chloride 1
00 parts by weight] into a polymerization machine, and add the amount of DI shown in Table 1.
R (expressed in parts by weight based on 100 parts by weight of vinyl chloride)
After 5 minutes, add 9 to vinyl chloride 50,
At the same time as the preparation starts, turn on the stirrer to start stirring and mixing. Polymerization was started by increasing the temperature to the polymerization reaction temperature shown in Table 1, and the polymerization was stopped at the pressure (recovery pressure) shown in Table 1, and all unreacted vinyl chloride was discharged to obtain a polymer. The polymerization conditions and properties of the obtained polymer are shown in the first column.

比較例1〜5 触媒DIBt−AC8Pに代替し、触媒添加貸、重合温
度及び重合時間を第2表のように変えた他は実施例1〜
7と同様の条件で重合した。その結果を第2表に示す。
Comparative Examples 1 to 5 Examples 1 to 5 except that the catalyst DIBt-AC8P was used, and the catalyst addition, polymerization temperature, and polymerization time were changed as shown in Table 2.
Polymerization was carried out under the same conditions as in Example 7. The results are shown in Table 2.

比較例6 重合温度を38℃とし、触媒仕込量及び重合時間を第1
表に示す条件とする他は実施例1と同様にして重合した
。その結果を第2表に示す。
Comparative Example 6 The polymerization temperature was 38°C, the amount of catalyst charged and the polymerization time were
Polymerization was carried out in the same manner as in Example 1 except that the conditions shown in the table were used. The results are shown in Table 2.

実施例8 実施例1〜7と同様な方法において、第3表に示すDI
Hの短を使用して、重合温度31℃で8時間重合させ(
重合率約70%)、次いで1時間かけて44.5℃に変
更し、30分後に重合を停止した。その結果を第3表に
示す。
Example 8 In the same manner as Examples 1 to 7, the DI shown in Table 3
Polymerization was carried out at a polymerization temperature of 31°C for 8 hours using a short H.
The temperature was then changed to 44.5° C. over 1 hour, and the polymerization was stopped after 30 minutes. The results are shown in Table 3.

実施例9 実施例1〜7と同様な方法において、第3表に示すDI
Bのtを使用して、まず、28℃で9時間重合させ(重
合率約70%)、次いで1時間かけて38℃に変更し1
時間後に重合を停止した。その結果を第3表に示す。
Example 9 In the same manner as Examples 1 to 7, the DI shown in Table 3
Using t of B, first, polymerization was carried out at 28°C for 9 hours (polymerization rate approximately 70%), then the temperature was changed to 38°C over 1 hour, and 1
Polymerization was stopped after an hour. The results are shown in Table 3.

第  3  表 実施例10〜12 仕込み水の温度、DIRの仕込量、塩化ビニルモノマー
仕込詩画のDIRの仕込時期及び重合温度を第3表に示
す条件で行なう他は、実施例1と同様にして重合を行な
った。その結果を第4表に示す。
Table 3 Examples 10 to 12 The procedure was the same as in Example 1, except that the temperature of the charging water, the amount of DIR charged, the timing of charging DIR of the vinyl chloride monomer-prepared poem, and the polymerization temperature were carried out under the conditions shown in Table 3. Polymerization was carried out using The results are shown in Table 4.

第4表 第1表、第2表の比較から判るごとく、AC3Pt−使
用しても超高重合度品の製造は可能であるが、重合時間
がDIR使用時に比べて、長くか\ること、熱安定性が
劣化すること、又、重合度6,000以上になると経済
的にまったく劣悪な条件となること等より、DIR使用
の方がはるかに超高重合度品の効率のよい製造方法であ
る。
As can be seen from the comparison between Tables 1 and 2 of Table 4, it is possible to produce products with an ultra-high degree of polymerization using AC3Pt, but the polymerization time is longer than when using DIR. The use of DIR is a much more efficient manufacturing method for ultra-high polymerization products because of the deterioration of thermal stability and the fact that conditions are economically very poor when the degree of polymerization exceeds 6,000. be.

第2表の比較例5,6から判るごと< 、DIBを36
℃以上の重合温度で使用するとDIRの分解速度が速い
為に、重合収率が低下する。
As can be seen from Comparative Examples 5 and 6 in Table 2, DIB is 36
When used at a polymerization temperature of 0.degree. C. or higher, the decomposition rate of DIR is fast, resulting in a decrease in polymerization yield.

第3表の実施例8.9に示すごとく、重合途中で温度変
換することも可能である。
As shown in Example 8.9 of Table 3, it is also possible to change the temperature during the polymerization.

第4表の実施例10〜11に示すごとく、触媒(DIR
)の仕込時期は塩化ビニルモノマー仕込前30分以上に
なると、DIRが分解して、重合開始能力が低下してく
ることが判る。
As shown in Examples 10 to 11 in Table 4, the catalyst (DIR
), it can be seen that if the charging time is 30 minutes or more before the vinyl chloride monomer is charged, DIR decomposes and the polymerization initiation ability decreases.

実施例13、比較例7〜11 実施例1の方法において、重合機に仕込んだ純水の温度
、攪拌混合の開始時期、DIRの重合機への装入時期な
どについて@5表のように変更操作して第5表のような
結果を痔た。
Example 13, Comparative Examples 7 to 11 In the method of Example 1, the temperature of pure water charged into the polymerization machine, the start time of stirring and mixing, the time of charging DIR to the polymerization machine, etc. were changed as shown in Table 5. The results were as shown in Table 5.

第5表より、DIBを、塩化ビニル装入開始より前に、
装入するときは、仕込み水の温度が10℃より高いと重
合に長時間を要したり重合収率が低下すること、DIR
の仕込みを塩化ビニルの装入と同時又はそれ以後に装入
すると得られた重合体のフィルムに多量のFEが生ずる
ことが分かる。
From Table 5, DIB was added before the start of vinyl chloride charging.
When charging, if the temperature of the charged water is higher than 10°C, polymerization may take a long time or the polymerization yield may decrease, and DIR
It can be seen that a large amount of FE is produced in the obtained polymer film when the charging is carried out at the same time as or after the charging of vinyl chloride.

第1.2図は各々実施例1、比較例1の重合温度記録チ
ャート(ジャケット冷却水温)を示す。
Figure 1.2 shows polymerization temperature recording charts (jacket cooling water temperature) for Example 1 and Comparative Example 1, respectively.

実施例1、比較例1で触媒としてそれぞれDIR,AC
8Pを0.06重量部、0.045重電部使用している
が、第1図から速効性触媒であるDIB(実施例1)に
ついては重合反応初期から活発な発熱反応が現われ、反
応中期〜末期の期間においても効果的な反応熱の除去が
行なわれている様子が理解される。
DIR and AC were used as catalysts in Example 1 and Comparative Example 1, respectively.
Although 0.06 parts by weight and 0.045 parts by weight of 8P were used, as shown in Figure 1, for DIB (Example 1), which is a fast-acting catalyst, an active exothermic reaction appeared from the early stage of the polymerization reaction, and during the middle stage of the reaction. It can be seen that the heat of reaction is effectively removed even during the period from ~ to the final stage.

第2図から遅効性触媒であるAC8P(比較例1)の場
合、重合反応初期〜中期の期間における発熱反応は緩慢
であり、反応初期〜中期の発熱反応を活発化する目的で
、AC8Pの使用tを増量することは反応末期の反応熱
の除去状況からみて、重合系内温のコントロールが不可
能になる恐れがあることがわかる。
As shown in Figure 2, in the case of AC8P (Comparative Example 1), which is a slow-acting catalyst, the exothermic reaction in the early to middle stages of the polymerization reaction is slow. It can be seen that increasing t may make it impossible to control the internal temperature of the polymerization system, considering the removal of reaction heat at the end of the reaction.

重合系内温の正確なコントロールは製品レジンの平均重
合度の幣った高品質のレジンを得るために大切な要素で
ある。
Accurate control of the internal temperature of the polymerization system is an important element in obtaining high-quality resin with a high average degree of polymerization.

以上のことから、AC8Pの使用量が制限される理由が
明らかである。
From the above, it is clear why the usage amount of AC8P is limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び@2図は各々実施例1及び比較例10重合温
度記録チャート(ジャケット冷却水温)を示す。 以上
Figures 1 and 2 show polymerization temperature recording charts (jacket cooling water temperature) of Example 1 and Comparative Example 10, respectively. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)塩化ビニルまたはこれと共重合し得る単量体(以
下単に塩化ビニル等という)を重合機内に装入し、触媒
の存在下に水性懸濁重合を行なわしめることにより塩化
ビニル系重合体を製造する方法において、重合機内に装
入した水性媒体の温度を10℃以下に保ち触媒としての
ジイソブチリルパーオキサイドを上記塩化ビニル等を重
合機に装入する前に装入し、重合率が少なくとも60%
に達する迄重合反応温度36℃以下で重合反応を行なう
ことを特徴とする前記方法。
(1) Vinyl chloride-based polymers are produced by charging vinyl chloride or a monomer copolymerizable with vinyl chloride (hereinafter simply referred to as vinyl chloride, etc.) into a polymerization machine and carrying out aqueous suspension polymerization in the presence of a catalyst. In this method, the temperature of the aqueous medium charged into the polymerization machine is maintained at 10°C or less, and diisobutyryl peroxide as a catalyst is charged before charging the vinyl chloride etc. to the polymerization machine, and the polymerization rate is maintained. at least 60%
The method described above is characterized in that the polymerization reaction is carried out at a polymerization reaction temperature of 36°C or less until the temperature reaches 36°C.
(2)第(1)項記載の方法において、重合機の攪拌を
停止した状態でジイソブチリルパーオキサイドを装入す
ることを特徴とする前記方法。
(2) The method described in item (1), characterized in that diisobutyryl peroxide is charged while stirring of the polymerization machine is stopped.
(3)第(1)項記載の方法において、前記重合率が6
0〜85%に達して後重合温度を2〜20℃上げて重合
を行なうことを特徴とする前記方法。
(3) In the method described in paragraph (1), the polymerization rate is 6.
The above method, characterized in that the post-polymerization temperature is raised by 2 to 20° C. after reaching 0 to 85%.
JP61091808A 1986-04-21 1986-04-21 Method for producing vinyl chloride polymer Expired - Lifetime JPH0694489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091808A JPH0694489B2 (en) 1986-04-21 1986-04-21 Method for producing vinyl chloride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091808A JPH0694489B2 (en) 1986-04-21 1986-04-21 Method for producing vinyl chloride polymer

Publications (2)

Publication Number Publication Date
JPS62246908A true JPS62246908A (en) 1987-10-28
JPH0694489B2 JPH0694489B2 (en) 1994-11-24

Family

ID=14036924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091808A Expired - Lifetime JPH0694489B2 (en) 1986-04-21 1986-04-21 Method for producing vinyl chloride polymer

Country Status (1)

Country Link
JP (1) JPH0694489B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446191A (en) * 1993-02-02 1995-08-29 Nof Corporation 1-cyclohexyl-1-methylethylperoxy carbonate, method for production thereof, and uses therefor
JP2002526574A (en) * 1998-09-21 2002-08-20 アクゾ ノーベル ナムローゼ フェンノートシャップ Continuous metering of very fast initiator during the polymerization reaction
JP2015040264A (en) * 2013-08-22 2015-03-02 東ソー株式会社 High-degree-of-polymerization vinyl chloride-based polymer latex composition and method for manufacturing the same as well as adhesion adjuvant, adhesive treatment liquid for rubber composition-fiber composite, and rubber composition-fiber composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446191A (en) * 1993-02-02 1995-08-29 Nof Corporation 1-cyclohexyl-1-methylethylperoxy carbonate, method for production thereof, and uses therefor
JP2002526574A (en) * 1998-09-21 2002-08-20 アクゾ ノーベル ナムローゼ フェンノートシャップ Continuous metering of very fast initiator during the polymerization reaction
JP4922486B2 (en) * 1998-09-21 2012-04-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Continuous metering of very fast initiators during the polymerization reaction.
JP2015040264A (en) * 2013-08-22 2015-03-02 東ソー株式会社 High-degree-of-polymerization vinyl chloride-based polymer latex composition and method for manufacturing the same as well as adhesion adjuvant, adhesive treatment liquid for rubber composition-fiber composite, and rubber composition-fiber composite

Also Published As

Publication number Publication date
JPH0694489B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US5977273A (en) Process for suspension polymerization of vinyl chloride with carboxyl containing polyvinyl-alcohol
JPH11140136A (en) Production of ethylene/vinyl acetate copolymer by polymerization and production of saponificate of copolymer
KR0160332B1 (en) Processing method of high porous vinyl chloride resin
KR930010462B1 (en) Process for producing vinyl chloride resin
JPS62246908A (en) Production of vinyl chloride polymer
JPH0370703A (en) Production of vinyl chloride-based polymer
CA1157199A (en) Process for producing homopolymers or copolymers of vinyl or vinylidene monomers by emulsion polymerization
US5006623A (en) Process for preparing vinyl chloride copolymers with diacrylate of polyhydric alcohol
JP3601156B2 (en) Method for producing vinyl chloride polymer
JPH0476005A (en) Production of matte vinyl chloride polymer
JPH1045813A (en) Production of vinyl chloride-based polymer
JPH066605B2 (en) Method for producing vinyl chloride resin
KR100398738B1 (en) Process for the Production of the Partial Highly Heat Stable Vinyl Chloride Polymer
JPH0262129B2 (en)
JPS63234052A (en) Vinyl chloride polymer composition having excellent heat stability and production thereof
JPS61126112A (en) Production of vinyl chloride polymer
JPS60163906A (en) Suspension polymerization of vinyl chloride
JP2000103803A (en) Production of vinyl chloride-based polymer
JPS61111307A (en) Production of vinyl chloride resin
JPH10110014A (en) Preparation of vinyl chloride polymer
JPH11302307A (en) Production of vinyl chloride-based polymer
JPH115811A (en) Production of vinyl chloride-based polymer
JPH0410884B2 (en)
JPH03140303A (en) Dispersion auxiliary and stabilizer for suspension polymerization of vinyl chloride
JPH0255707A (en) Manufacture of vinyl chloride resin