JPS6224606B2 - - Google Patents

Info

Publication number
JPS6224606B2
JPS6224606B2 JP12561482A JP12561482A JPS6224606B2 JP S6224606 B2 JPS6224606 B2 JP S6224606B2 JP 12561482 A JP12561482 A JP 12561482A JP 12561482 A JP12561482 A JP 12561482A JP S6224606 B2 JPS6224606 B2 JP S6224606B2
Authority
JP
Japan
Prior art keywords
cooling
blade
blade body
film
ventral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12561482A
Other languages
Japanese (ja)
Other versions
JPS5918202A (en
Inventor
Fumio Ootomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12561482A priority Critical patent/JPS5918202A/en
Publication of JPS5918202A publication Critical patent/JPS5918202A/en
Publication of JPS6224606B2 publication Critical patent/JPS6224606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービンの翼に係り、特に、流
体冷却構造を備えた翼の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine blade, and more particularly to an improvement in a blade provided with a fluid cooling structure.

〔発明の背景技術〕[Background technology of the invention]

一般的に、ガスタービンは往復機関に比較して
小型軽量で大馬力が得られるなどの多くの利点を
有している。このようなガスタービンは、通常、
1つの軸に圧縮機とパワータービンとを連結し、
圧縮機で圧縮された高圧空気で燃焼器内の圧力を
高め、この状態で燃焼器内に燃料を噴射して燃焼
させ、この燃焼によつて生じた高温、高圧のガス
をパワータービンに導いて膨張させることにより
回転動力を得るように構成されている。圧縮機
は、通常、案内翼と回転翼とを軸方向に配列した
軸流型に構成され、また、パワータービンも動翼
と静翼とを軸方向に交互に配列して構成されてい
る。
In general, gas turbines have many advantages over reciprocating engines, such as being smaller, lighter, and capable of producing greater horsepower. Such gas turbines typically
A compressor and a power turbine are connected to one shaft,
The pressure inside the combustor is increased using high-pressure air compressed by a compressor, and in this state fuel is injected into the combustor and combusted, and the high-temperature, high-pressure gas generated by this combustion is guided to the power turbine. It is configured to obtain rotational power by expanding it. A compressor is usually configured as an axial flow type in which guide vanes and rotor blades are arranged in the axial direction, and a power turbine is also configured in such a manner that moving blades and stationary blades are alternately arranged in the axial direction.

ところで、上記のようなガスタービンにおい
て、出力効率を高めるには、パワータービンの入
口における燃焼ガス温度を高めることが最も有効
であると云われている。しかし、パワータービン
の入口ガス温度を高めていくと、高温の燃焼ガス
によつて翼温度が上昇することになる。翼を構成
する現用の耐熱金属では900℃を越えると長時間
運転が不能となる。したがつて、翼の運転寿命を
長くするには、何らかの手段で翼温度を低下させ
るより外ない。
By the way, in the above-described gas turbine, it is said that the most effective way to increase the output efficiency is to increase the combustion gas temperature at the inlet of the power turbine. However, if the inlet gas temperature of the power turbine is increased, the blade temperature will increase due to the high temperature combustion gas. Current heat-resistant metals that make up the blades cannot be operated for long periods of time if the temperature exceeds 900°C. Therefore, the only way to extend the operational life of the blade is to lower the blade temperature by some means.

〔背景技術の問題点〕[Problems with background technology]

上述した理由から、従来、冷却構造を備えたガ
スタービンの翼が種々提案されている。第1図お
よび第2図はその代表的な翼の内部構造を示すも
のである。すなわち、図中1は、翼本体2と、こ
の翼本体2に一体的に連結された翼根部3とから
なる翼であり、この翼1内の前縁部F、中間部N
および後縁部Rにそれぞれ冷却系統11,12,
13を設けている。
For the reasons mentioned above, various types of gas turbine blades equipped with cooling structures have been proposed. Figures 1 and 2 show the internal structure of a typical wing. That is, 1 in the figure is a wing consisting of a wing body 2 and a wing root part 3 integrally connected to this wing body 2, and a leading edge part F and a middle part N in this wing 1.
and cooling systems 11 and 12 at the trailing edge R, respectively.
There are 13.

冷却系統11は、前縁壁14と仕切壁15とに
よつて翼根部3から翼本体2の先端部近傍まで高
さ方向へ延びるように形成された流路16と、前
縁壁14を貫通し、かつ高さ方向に亘つて複数設
けられたフイルム冷却用の小孔17とで構成され
ている。したがつて、この冷却系統11は、流路
16内を冷却流体が図中矢印で示すように通流す
ることによる対流冷却効果、各小孔17を冷却流
体が通流することによる対流冷却効果ならびに各
小孔17から吹出した冷却流体が前縁壁14の外
面に沿つて流れることによるフイルム冷却効果で
翼本体2の前縁部Fを冷却している。なお、図中
18は流路16を構成する壁で翼本体2の腹側お
よび背側に位置する内面に高さ方向に亘つて複数
突設され通流する冷却流体を積極的に撹拌するタ
ービユレンスプロモータを示している。
The cooling system 11 includes a flow path 16 formed by a leading edge wall 14 and a partition wall 15 to extend in the height direction from the blade root 3 to near the tip of the blade body 2, and a flow path 16 that penetrates the leading edge wall 14. and a plurality of small holes 17 for cooling the film provided in the height direction. Therefore, this cooling system 11 has a convection cooling effect due to the cooling fluid flowing through the flow path 16 as shown by the arrow in the figure, and a convection cooling effect due to the cooling fluid flowing through each small hole 17. In addition, the cooling fluid blown out from each small hole 17 flows along the outer surface of the leading edge wall 14, thereby cooling the leading edge F of the blade body 2 by a film cooling effect. In the figure, reference numeral 18 denotes a wall constituting the flow path 16, and a plurality of walls projecting in the height direction from the inner surface located on the ventral and dorsal sides of the blade body 2 are used to actively stir the cooling fluid flowing through the blade body 2. The viewing promoter is shown.

しかして、冷却系統12は、仕切壁19と20
とによつて翼根部3から翼本体2の先端部近傍ま
で高さ方向へ延び、上記先端部近傍において仕切
壁19と21とによつて前縁部側回りに180度方
向変換して翼本体2の根元部近傍まで延び、続い
て、仕切壁21と15とによつて前縁部側回りに
180度方向変換して再び翼本体2の先端部近傍ま
で延びるように形成された屈折流路22と、この
屈折流路22の前記仕切壁19と21との間の部
分で翼本体2の腹側に位置する壁および仕切壁2
1と15との間の部分で翼本体2の腹側ならびに
背側に位置する壁をそれぞれ貫通し、かつ高さ方
向に亘つて複数形成されたフイルム冷却用の小孔
23とで構成されている。したがつて、この冷却
系統12も、前記同様に冷却流体が図中矢印で示
すように屈折流路22と小孔23とを通流するこ
とによる対流冷却効果および各小孔から吹出した
冷却流体が翼本体2の腹側外面および背側外面に
沿つて流れることによるフイルム冷却効果で翼本
体2の中間部Nを冷却するようにしている。な
お、図中24はタービユレンスプロモータを示し
ている。
Therefore, the cooling system 12 has partition walls 19 and 20.
It extends in the height direction from the blade root 3 to the vicinity of the tip of the blade body 2, and near the tip, the direction is changed 180 degrees around the leading edge side by the partition walls 19 and 21, and the blade body 2, and then around the front edge side by partition walls 21 and 15.
A bending channel 22 is formed so as to change direction by 180 degrees and extend again to the vicinity of the tip of the wing body 2, and a portion of this bending channel 22 between the partition walls 19 and 21 forms the belly of the wing body 2. Side wall and partition wall 2
1 and 15, penetrating the walls located on the ventral side and the dorsal side of the wing body 2, respectively, and consisting of a plurality of small holes 23 for film cooling formed in the height direction. There is. Therefore, this cooling system 12 also has the same convection cooling effect as the cooling fluid flows through the bent channels 22 and the small holes 23 as shown by the arrows in the figure, and the cooling fluid blown out from each small hole. The intermediate portion N of the wing body 2 is cooled by the film cooling effect caused by the film flowing along the ventral outer surface and the dorsal outer surface of the wing body 2. Note that 24 in the figure indicates a turbulence promoter.

一方、冷却系統13は、翼根部3から翼本体2
の先端部近傍まで、翼本体2の部分が、いわゆる
2つ割りとなる関係に高さ方向に延びる流路25
と、翼本体2の部分の腹側に位置する壁の内面と
背側に位置する壁の内面とを複数個所に亘つて連
結するピンフイン26とで構成されており、図中
矢印で示すように導かれた冷却流体をピンフイン
26等に接触させることによつて後縁部Rを冷却
するようにしている。
On the other hand, the cooling system 13 runs from the blade root 3 to the blade body 2.
A flow path 25 extends in the height direction so that a portion of the blade body 2 is divided into two parts up to the vicinity of the tip of the blade body 2.
and pin fins 26 that connect the inner surface of the wall located on the ventral side of the wing body 2 and the inner surface of the wall located on the dorsal side at multiple locations, as shown by the arrows in the figure. The trailing edge R is cooled by bringing the guided cooling fluid into contact with the pin fins 26 and the like.

しかしながら、上記のように構成された従来の
翼にあつては、次のような理由から、特に、翼本
体2の中間部Nで腹側の冷却性能が低いと云う問
題があつた。すなわち、従来の翼では、中間部N
を、冷却流体が屈折流路22と各小孔23とを通
流することによる対流冷却効果および各小孔23
から吹出した冷却流体が翼本体2の外面に沿つて
流れることによるフイルム冷却効果で冷却するよ
うにしているが、このうち、フイルム冷却効果
は、各小孔23から冷却流体が吹出す状態によつ
て大幅に異なる。今、フイルム冷却効果をηとす
ると、このηは次式で表わされる。
However, in the conventional blade configured as described above, there was a problem in that the cooling performance of the ventral side was particularly low at the intermediate portion N of the blade body 2 for the following reasons. That is, in the conventional blade, the middle part N
, the convection cooling effect caused by the cooling fluid flowing through the bent channel 22 and each small hole 23 and each small hole 23
Cooling is achieved by the film cooling effect caused by the cooling fluid blown out from the blades flowing along the outer surface of the blade body 2. Of these, the film cooling effect is achieved by the state in which the cooling fluid is blown out from each small hole 23. They differ significantly. Letting the film cooling effect be η, this η is expressed by the following equation.

η=T−T/T−T ……(1) 但し、(1)式において、Tgは主流ガス温度、Tc
は冷却流体の吹出し口温度、Tfはフイルム温度
である。
η=T g -T f /T g -T c ...(1) However, in equation (1), T g is the mainstream gas temperature, and T c
is the outlet temperature of the cooling fluid, and T f is the film temperature.

また、ηは次なる関係がある。 Moreover, η has the following relationship.

η∝f(M、x) ……(2) M=(ρc・uc)/(ρg・ug) ここで、上記の変数は第3図に示すように、M
は質量流量比、xは吹出口位置からの距離、ρg
は主流ガスの密度、ugは主流ガスの速度、ρc
吹出口位置での冷却流体密度、ucは冷却流体の
吹出速度をそれぞれ示している。
η∝f(M, x) ...(2) M=(ρ c・u c )/(ρ g・u g ) Here, the above variable is
is the mass flow rate ratio, x is the distance from the outlet position, ρ g
is the density of the mainstream gas, u g is the velocity of the mainstream gas, ρ c is the cooling fluid density at the outlet position, and u c is the cooling fluid blowing speed.

上記式から判るように、フイルム冷却効果はM
とxとの密接に関係する。翼本体の腹側でフイル
ム冷却を行なつた場合における冷却効果ηの一例
をMをパラメータとして示すと第4図に示す如き
であり、最良の冷却効果を得るためには、適切な
質量流量比Mを選ぶ必要がある。特に、翼本体の
腹側ではフイルムの持続する距離が翼本体2の背
側に較べて短かいとされているので、フイルム冷
却用の小孔23を多列に亘つて設ける必要があ
る。
As can be seen from the above equation, the film cooling effect is M
and are closely related to x. Figure 4 shows an example of the cooling effect η when film cooling is performed on the ventral side of the wing body, with M as a parameter.In order to obtain the best cooling effect, an appropriate mass flow rate ratio must be You need to choose M. In particular, since the distance that the film lasts on the ventral side of the wing body is shorter than that on the dorsal side of the wing body 2, it is necessary to provide multiple rows of small holes 23 for cooling the film.

しかるに、従来の翼にあつては、屈折流路22
に導かれた冷却流体をそのままフイルム冷却用の
小孔23に導くようにしているので、適切な質量
流量比Mを設定することができず、この結果、特
に、中間部Nにおける腹側の冷却性能を向上させ
ることができなかつた。すなわち、屈折流路22
の各部を第1図に示すようにA,B,Cとする
と、これらA,B,Cの位置での圧力は第5図に
示すように直線的に降下しており、しかも、翼本
体の腹側外面の圧力P1は第6図に示すように背側
外面の圧力P2よりはるかに高い値を示している。
このような条件下で、従来の構造を用いて適切な
質量流量比Mを設定することは本質的に困難であ
り、結局、中間部腹側外面を良好に冷却できない
欠点があつた。
However, in the case of a conventional blade, the bending channel 22
Since the cooling fluid led to the film is directly led to the small hole 23 for cooling the film, it is not possible to set an appropriate mass flow rate ratio M, and as a result, the cooling of the ventral side in the middle part N in particular is It was not possible to improve performance. That is, the bending channel 22
Assuming that the respective parts of the blade are A, B, and C as shown in Figure 1, the pressure at these positions A, B, and C drops linearly as shown in Figure 5, and the As shown in FIG. 6, the pressure P 1 on the ventral outer surface is much higher than the pressure P 2 on the dorsal outer surface.
Under such conditions, it is essentially difficult to set an appropriate mass flow rate ratio M using the conventional structure, resulting in the drawback that the ventral outer surface of the intermediate portion cannot be cooled well.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、冷却流体を用い
て、特に、翼本体の中間部を屈折流路を用いた、
いわゆるリターンフロー方式とフイルム冷却方式
とで冷却するようにしたものにあつて、上記中間
部の腹側外面をフイルム冷却方式で良好に冷却で
き、もつて、ガスタービンの効率を一層向上させ
得るガスタービンの翼を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a cooling system using a cooling fluid, in particular, a bending channel in the middle part of the blade body.
In a system that is cooled by a so-called return flow method and a film cooling method, the ventral outer surface of the intermediate portion can be cooled well by the film cooling method, thereby further improving the efficiency of the gas turbine. Our goal is to provide turbine blades.

〔発明の概要〕[Summary of the invention]

本発明に係るガスタービンの翼は、翼本体内
に、翼本体の中間部腹側外面に開口したフイルム
冷却用の小孔だけに冷却流体を導く、フイルム冷
却専用の流体流路を前述した屈折流路とは独立さ
せて設けたことを特徴としている。
The gas turbine blade according to the present invention has a fluid flow path dedicated to film cooling, which guides the cooling fluid only to a small hole for film cooling opened in the ventral outer surface of the intermediate portion of the blade body, as described above. It is characterized by being provided independently from the flow path.

〔発明の効果〕〔Effect of the invention〕

上記構成であると、翼本体の中間部腹側外面に
開口したフイルム冷却用の小孔から吹出す冷却流
体の吹出圧力、流速等を他の影響を受けずに自由
に設定できることになる。したがつて、各小孔の
位置に応じて最適な質量流量比Mを選択できるこ
とになるので、従来のものに較べて中間部腹側外
面を良好に冷却することができ、結局、ガスター
ビンの効率向上に寄与できるものを得ることがで
きる。また、フイルム冷却用の小孔にはフイルム
冷却専用の流体流路だけから冷却流体が供給され
るので、各流体流路間における流量配分や質量流
量比Mを求めるための計算も非常に簡単となり、
設計通りの冷却特性を発揮させることができる。
With the above configuration, the blowing pressure, flow rate, etc. of the cooling fluid blowing out from the small film cooling hole opened on the ventral outer surface of the intermediate portion of the wing body can be freely set without being influenced by other factors. Therefore, it is possible to select the optimum mass flow rate ratio M according to the position of each small hole, so the ventral outer surface of the intermediate part can be cooled better than in the conventional case, and as a result, the gas turbine You can obtain something that can contribute to improving efficiency. In addition, since the cooling fluid is supplied to the small holes for film cooling only from the fluid channel dedicated to film cooling, calculations for determining the flow rate distribution and mass flow ratio M between each fluid channel are extremely simple. ,
It is possible to exhibit cooling characteristics as designed.

〔発明の実施例〕[Embodiments of the invention]

第7図は本発明の一実施例に係るガスタービン
の翼を第2図に対応させて示す図であり、同一部
分は同一符号で示してある。したがつて、重複す
る部分の説明は省略する。
FIG. 7 is a view showing a blade of a gas turbine according to an embodiment of the present invention, corresponding to FIG. 2, and the same parts are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例においては、翼本体2の中間部Nで
かつ腹側Xに位置する外面に一端側がそれぞれ開
口する関係にフイルム冷却用の小孔31を翼本体
2の高さ方向へ複数個ずつ、かつ翼本体2のコー
ド方向へ4列構成に設けるとともに翼本体2内に
各列の小孔31の他端側が各列毎に通じる4つの
流路32a,32b,32c,32dを設け、こ
れら流路32a,32b,32c,32dを翼根
部まで延在させて冷却流体供給路(図示せず)に
それぞれ接続したものとなつている。
In this embodiment, a plurality of small holes 31 for film cooling are provided in the height direction of the blade body 2, with one end opening on the outer surface of the blade body 2 located on the ventral side X at the intermediate portion N. In addition, four channels 32a, 32b, 32c, and 32d are provided in the wing body 2 in a four-row configuration in the chord direction of the wing body 2, and the other end side of each row of small holes 31 communicates with each row. The passages 32a, 32b, 32c, and 32d extend to the blade root and are connected to cooling fluid supply passages (not shown), respectively.

このような構成であると、各列に位置する小孔
31は屈折流路22とは無関係に各列毎に設けら
れた専用の流路32a,32b,32c,32d
から冷却流体を供給されることになる。したがつ
て、流路32a,32b,32c,32d内の圧
力を個々に調整することによつて各列毎に質量流
量比Mを自由に設定することができるので、従来
の翼に較べて腹側外面を良好に冷却できることに
なり、結局、前述した効果が得られる。
With such a configuration, the small holes 31 located in each row are independent of the bending channel 22 and are connected to dedicated flow channels 32a, 32b, 32c, and 32d provided for each row.
Cooling fluid will be supplied from Therefore, the mass flow rate ratio M can be freely set for each row by individually adjusting the pressure in the flow channels 32a, 32b, 32c, and 32d, so that the mass flow rate ratio M can be set freely compared to conventional blades. The side outer surface can be cooled well, and the above-mentioned effects can be obtained after all.

なお、上述した実施例においては、各流路32
a,32b,32c,32dへ冷却流体を配分す
る手段について示していないが、各流路の冷却流
体導入口にオリフイスプレート等を設けることに
よつて容易に設定できることは勿論である。ま
た、各流路32a,32b,32c,32dの通
流断面積を高さ方向に亘つて変化させることによ
つて各列の小孔31から吹出る冷却流体の流速を
所望に設定することもできる。また、列数は、実
施例の数に限定されるものではない。さらに、本
発明は動翼静翼共に適用できることは勿論であ
る。
In addition, in the embodiment described above, each flow path 32
Although the means for distributing the cooling fluid to the channels a, 32b, 32c, and 32d is not shown, it can be easily set by providing an orifice plate or the like at the cooling fluid inlet of each flow path. Furthermore, by changing the flow cross-sectional area of each flow path 32a, 32b, 32c, and 32d in the height direction, the flow velocity of the cooling fluid blown out from each row of small holes 31 can be set as desired. can. Further, the number of columns is not limited to the number in the example. Furthermore, it goes without saying that the present invention can be applied to both rotor and stator blades.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷却機構を備えた従来のガスタービン
翼をキヤンバ線に沿つて切断して示す縦断面図、
第2図は同翼を第1図におけるZ―Z線において
切断し矢印方向に見た図、第3図から第6図は従
来の翼の問題点を説明するための図、第7図は本
発明の一実施例に係る翼を第2図に対応させて示
す横断面図である。 2…翼本体、22…屈折流路、17,23,3
1…フイルム冷却用の小孔、32a,32b,3
2c,32d…流路。
FIG. 1 is a longitudinal sectional view showing a conventional gas turbine blade equipped with a cooling mechanism cut along a camber line;
Fig. 2 is a view of the wing cut along the Z-Z line in Fig. 1 and viewed in the direction of the arrow, Figs. 3 to 6 are illustrations for explaining problems with conventional wings, and Fig. 7 is FIG. 2 is a cross-sectional view of a wing according to an embodiment of the present invention, corresponding to FIG. 2; 2...Blade body, 22...Bending channel, 17, 23, 3
1...Small holes for film cooling, 32a, 32b, 3
2c, 32d...flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービンの翼本体内に導かれた冷却流体
の一部を上記翼本体内に形成された屈折流路に通
流させることによる対流冷却効果および上記翼本
体の腹側外面ならびに背側外面に開口した小孔か
ら吹出させることによるフイルム冷却効果で上記
翼本体の中間部を冷却するようにしたガスタービ
ンの翼において、前記翼本体内に、前記腹側外面
に開口した前記小孔だけに冷却流体を導くフイル
ム冷却専用の流体通路を前記屈折流路とは独立さ
せて設けてなることを特徴とするガスタービンの
翼。
1. A convection cooling effect by causing a part of the cooling fluid guided into the blade body of the gas turbine to flow through a bent passage formed in the blade body, and a convection cooling effect on the ventral and dorsal outer surfaces of the blade body. In a gas turbine blade in which the intermediate portion of the blade body is cooled by a film cooling effect by blowing air from an open small hole, cooling is provided only in the small hole opened on the ventral outer surface within the blade body. A blade for a gas turbine, characterized in that a fluid passage dedicated to film cooling that guides fluid is provided independently of the bent passage.
JP12561482A 1982-07-21 1982-07-21 Blade of gas turbine Granted JPS5918202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12561482A JPS5918202A (en) 1982-07-21 1982-07-21 Blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12561482A JPS5918202A (en) 1982-07-21 1982-07-21 Blade of gas turbine

Publications (2)

Publication Number Publication Date
JPS5918202A JPS5918202A (en) 1984-01-30
JPS6224606B2 true JPS6224606B2 (en) 1987-05-29

Family

ID=14914439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12561482A Granted JPS5918202A (en) 1982-07-21 1982-07-21 Blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS5918202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017015A1 (en) 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. Turbine blade

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770608A (en) * 1985-12-23 1988-09-13 United Technologies Corporation Film cooled vanes and turbines
JPS62228603A (en) * 1986-03-31 1987-10-07 Toshiba Corp Gas turbine blade
US5700131A (en) * 1988-08-24 1997-12-23 United Technologies Corporation Cooled blades for a gas turbine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017015A1 (en) 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. Turbine blade

Also Published As

Publication number Publication date
JPS5918202A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
US4992026A (en) Gas turbine blade
JP5383270B2 (en) Gas turbine blade
US7854591B2 (en) Airfoil for a turbine of a gas turbine engine
US6514042B2 (en) Method and apparatus for cooling a wall within a gas turbine engine
JP6283462B2 (en) Turbine airfoil
US7118326B2 (en) Cooled gas turbine vane
US11649731B2 (en) Airfoil having internal hybrid cooling cavities
US10480329B2 (en) Airfoil turn caps in gas turbine engines
US10830049B2 (en) Leading edge hybrid cavities and cores for airfoils of gas turbine engine
EP3751100B1 (en) Airfoil and gas turbine having same
EP3467264B1 (en) Airfoil for a gas turbine engine and corresponding core strucuture for manufacturing an airfoil
JPS6224606B2 (en)
GB2107405A (en) Nozzle guide vane for a gas turbine engine
JPS59231102A (en) Gas turbine blade
EP3467265B1 (en) Airfoil for a gas turbine engine and corresponding core structure for manufacturing an airfoil
EP3467263B1 (en) Airfoil for a gas turbine engine and corresponding core structure for manufacturing an airfoil
US10626733B2 (en) Airfoil having internal hybrid cooling cavities
JPH0451641B2 (en)
JPS5918204A (en) Blade of gas turbine
US20190211687A1 (en) Airfoil with rib communication
US11346248B2 (en) Turbine nozzle segment and a turbine nozzle comprising such a turbine nozzle segment
JPS5960002A (en) Turbine blade
JPS6215724B2 (en)