JPS62245904A - Sensor element - Google Patents

Sensor element

Info

Publication number
JPS62245904A
JPS62245904A JP8920786A JP8920786A JPS62245904A JP S62245904 A JPS62245904 A JP S62245904A JP 8920786 A JP8920786 A JP 8920786A JP 8920786 A JP8920786 A JP 8920786A JP S62245904 A JPS62245904 A JP S62245904A
Authority
JP
Japan
Prior art keywords
deformation
conductive sheet
sheet
plate type
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8920786A
Other languages
Japanese (ja)
Inventor
Minoru Fukui
福井 実
Naoki Kataoka
直樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8920786A priority Critical patent/JPS62245904A/en
Publication of JPS62245904A publication Critical patent/JPS62245904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain an element capable of detecting flexural and torsional behavior including elongation and compression from a fine quantity to a considerable quantity by fitting a plate type body to a deforming conductive element formed by providing electrode end parts at two positions of a deforming conductive sheet. CONSTITUTION:The element has the electrode end parts 12 provided on both sides of one surface of the deforming conductive sheet 11 and also has the plate type body 14 adhered to the other surface across an adhesive layer 13. This sheet 11 decreases in electric resistance by >=1 digit owing to considerable elongating deformation and compressing deformation. Thus, the plate type body 14 made of a leaf spring with large toughness is fitted thereto and then external stress is applied indirectly to the sheet 11 through the plate type body 14, so the mechanical strength and durability of the element increase greatly. This, element is therefore superior in durability against inflection, torsion, compression, etc., and deformation from a fine quantity to a considerable quantity is obtained as a large change in resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセンサー素子に関する。より詳しくは外力によ
って伸長、圧縮ねじれと伴う立体的な屈曲変形を容易且
つ弾性的に行うことができ、かつその変形に伴って電気
抵抗値が減少する変形導電性シートから成るセンサー素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sensor element. More specifically, the present invention relates to a sensor element made of a deformable conductive sheet that can easily and elastically undergo three-dimensional bending deformation accompanied by expansion, compression and twisting by external force, and whose electrical resistance value decreases with the deformation.

(従来の技術〕 従来伸長変形によって、電気抵抗値が減少する素材は広
く知られておらず、したがって伸長変形によって生ずる
電気抵抗値の減少をとらえることによって被測定物の伸
長の有無、伸長の量、伸長圧縮の頻度を検出することの
できる素子も開発されていなかった。
(Prior art) Conventionally, materials whose electrical resistance value decreases due to elongation deformation are not widely known. Therefore, by capturing the decrease in electrical resistance value caused by elongation deformation, it is possible to determine whether or not the object to be measured has elongated, and the amount of elongation. However, an element capable of detecting the frequency of expansion and compression had not been developed.

一方、伸長変形によって電気抵抗値が増大する性質を利
用した素子としてストレーンゲージが知られている。す
なわち、例えばコンスタンクン、アドバンス、ニクロー
ム等の細い金属線を引張ると電気抵抗値が増大する。し
かし、この種の金属線の抵抗値変化は極めて小さいため
、電気信号として取り出すためには信号の増幅やアベレ
ージングなどのフィルター機能を回路に持たせなければ
ならず複雑で高コストの回路となる。またストレーンゲ
ージの伸長率は極めて小さい(1%以下)ため、前記ス
トレーンゲージは測定対象物の微小変形にしか対応でき
ず、例えば人体の肘、膝等の屈曲部分のような大きな伸
長変形の検出には不向きである。
On the other hand, a strain gauge is known as an element that utilizes the property that electrical resistance increases with elongation deformation. That is, when a thin metal wire such as Constance, Advance, or Nichrome is pulled, its electrical resistance increases. However, the change in resistance of this type of metal wire is extremely small, so in order to extract it as an electrical signal, the circuit must have filter functions such as signal amplification and averaging, resulting in a complex and high-cost circuit. . Furthermore, since the elongation rate of strain gauges is extremely small (1% or less), the strain gauges can only handle minute deformations of the object to be measured, and cannot detect large elongation deformations such as those of bent parts of the human body such as elbows and knees. It is not suitable for

また圧電素子や感圧導電性ゴムを用いた素子がある。圧
電素子は、機械的な歪変形と電圧変化としてとらえるも
のであるが、ストレーンゲージと同様に複雑で高コスト
の回路となると共に微小変形の用途にしか適さない。一
方、後者の感圧導電性ゴムは圧wI変形に対して電気抵
抗値が減少するものであり、伸長変形に対しては電気抵
抗値の低下は生じない。
There are also elements using piezoelectric elements and pressure-sensitive conductive rubber. Piezoelectric elements are used to detect mechanical strain deformation and voltage changes, but like strain gauges, they require complex and high-cost circuits and are only suitable for applications involving minute deformations. On the other hand, in the latter type of pressure-sensitive conductive rubber, the electrical resistance value decreases with respect to pressure wI deformation, but the electrical resistance value does not decrease with respect to elongation deformation.

上述の如〈従来公知の素子は、回路的に複雑で高コスト
となり、また微小な変形にしか用いることができないか
、あるいは圧縮変形にした用いることができない。した
がって、微小から相当量の伸長や圧縮を伴った屈曲、ね
じれ変形をする対象物の変形の有無や頻度及び変形量を
検出することのできる素子があれば、広範囲の応用分野
があることが期待されながら現在はそれを満足するもの
が出現していないのが現状である。
As mentioned above, the conventionally known elements are circuit-complicated and expensive, and can only be used for minute deformations or cannot be used for compressive deformation. Therefore, if there is an element that can detect the presence or absence, frequency, and amount of deformation of objects that undergo bending or twisting deformation with minute to considerable amounts of elongation or compression, it is expected that there will be a wide range of applications. However, the current situation is that nothing that satisfies this requirement has yet appeared.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来公知の素材を用いては行うことができない
、微小変形から相当量の伸長、圧縮変形を伴う、屈曲、
ねじれ挙動を検出することのできるセンサー素子を提供
することを目的とする。
The present invention is capable of bending and bending, which involves slight deformation to considerable elongation and compression deformation, which cannot be achieved using conventionally known materials.
The object is to provide a sensor element capable of detecting torsional behavior.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、変形RQ性レシート少なくとも2カ所
に電極端部を設けた変形導電性素子の少なくとも片面の
一部または全面に板状物が取着されていることを特徴と
するセンサー素子によって達成される。
The object of the present invention is to provide a sensor element characterized in that a plate-like object is attached to a part or the entire surface of at least one side of a deformed conductive element having electrode ends at at least two places. achieved.

本発明の第一の特徴は、変形導電性素子の少な(とも片
面の一部または全面を板状物に取着することにある。こ
こでいう変形導電性素子とは、変形導電性シートの少な
くとも2カ所に電極端部を有する素子を意味する。
The first feature of the present invention is that a small amount of the deformed conductive element (partially or the entire surface of one side of the deformed conductive element is attached to a plate-like object). It means an element having electrode ends in at least two places.

前記電極端部は通常は変形導電性シートの両端に設けら
れる。しかし電極端部を両端以外に変形導電性シートの
中間に1個又は複数個設けてもよいし、該シートの表面
と裏面に1個又は複数個設けてもよい。この場合には任
意の電極端部の変形導電性シートの電気抵抗値の減少を
検出すれば測定対象物の対応する部分の変形挙動を把握
することができる。
The electrode ends are usually provided at both ends of the deformed conductive sheet. However, one or more electrode ends may be provided in the middle of the deformed conductive sheet other than at both ends, or one or more electrode ends may be provided on the front and back surfaces of the sheet. In this case, by detecting a decrease in the electrical resistance value of the deformed conductive sheet at an arbitrary end of the electrode, it is possible to grasp the deformation behavior of the corresponding portion of the object to be measured.

即ち、変形導電性シートの電気抵抗値を検出する電極端
部は、間隔をあけて設けられておればよく、その間隔、
位置、個数、形状等は、用途、使用方法によって適宜選
択すれば良い。
That is, the ends of the electrodes for detecting the electrical resistance value of the deformed conductive sheet only need to be provided at intervals;
The position, number, shape, etc. may be appropriately selected depending on the purpose and method of use.

電極端部の種類としては、ニッケル、銅・銀やカーボン
などの導電性物質を含んでなる導電性接着剤を変形導電
性シート面上に直接、コーティングや転写、スクリーン
印刷などの手段により種々の形状に印刷したものや、通
常電極として用いられる金属板などを前記導電性接着剤
で接合したもの、リベットやはとめ、ホックなどで機械
的に取りつけたもの、及びそれらの組合せからなるもの
などがあげられるがこれに限るものではない。
The electrode end can be made by applying a conductive adhesive containing a conductive substance such as nickel, copper/silver, or carbon directly onto the surface of the deformed conductive sheet by coating, transferring, screen printing, or other means. There are shapes printed, metal plates normally used as electrodes bonded with the conductive adhesive, mechanically attached with rivets, grommets, hooks, etc., and combinations of these. This list is not limited to this list.

またここで言う変形導電性シートとは、伸長や圧縮変形
作用を加えると、もしくは伸長や圧縮変形を伴う屈曲、
ねじれなどの変形作用を加えると、その変形方向の編織
物の電気抵抗値が1桁以上減少する[!fi物を意味す
る。例えば、本発明と同一出願人によって昭和60年3
月4日に特願昭60−41024号として出願された「
変形導電性編織物」中に含まれるシート状の編織物があ
げられる。また、本発明と同一出願人によって昭和59
年9月27日に特願昭59−20057号として出願さ
れた「変形導電性高分子エラストマー」中に含まれるシ
ートである。
In addition, the deformable conductive sheet referred to here means that when stretched or compressed deformation is applied, or when the sheet is bent with elongated or compressed deformation,
When a deformation action such as twisting is applied, the electrical resistance value of the knitted fabric in the direction of deformation decreases by more than an order of magnitude [! It means fi thing. For example, in March 1985, the same applicant as the present invention
The patent application No. 60-41024 was filed on May 4th.
Examples include sheet-like knitted fabrics included in "modified conductive knitted fabrics". Also, by the same applicant as the present invention,
This sheet is included in the "Deformable Conductive Polymer Elastomer" filed as Japanese Patent Application No. 59-20057 on September 27, 2005.

なお変形導電性シート、伸長性を有する絶縁性の補強材
を一部もしくは全部埋没させるがまたは接着させて構成
して用いてもよい。このように補強された伸長導電性シ
ートを用いれば、センサー素子として使用する場合に、
伸長くり返し後の導電性能の低下および物理的な破壊が
著しく改良されることになる。
Note that the deformed conductive sheet and the extensible insulating reinforcing material may be partially or completely buried or bonded together. If a stretched conductive sheet reinforced in this way is used as a sensor element,
Deterioration in conductive performance and physical destruction after repeated stretching are significantly improved.

次に本発明でいう板状物とは、じん性の大きい素材、即
ち、表面を絶縁コーティングした金属(例えば、りん青
銅やベリリウム銅など)、剛性の大きいプラスチック(
ポリアセタール、ポリカーボネート、ナイロン66、塩
化ビニル、フッ素樹脂など)、各種FRP (例えばガ
ラス繊維、炭素繊維、アラミド繊維等の補強用繊維ある
いは繊維布帛状物とエポキシ樹脂、不飽和ポリエステル
樹脂等との組合せ)、あるいはセラミックなどの通常仮
ばねとして用いられるすべての素材が適用される。また
、板状物の形状としては、使用される目的や用途に応じ
て適宜法められるものであるが、通常は平板状か曲面状
のものが扱いやすい。但し、これにこだわるものではな
い。
Next, the plate-like object referred to in the present invention refers to a material with high toughness, that is, a metal with an insulating coating on the surface (for example, phosphor bronze or beryllium copper, etc.), a plastic with high rigidity (
(polyacetal, polycarbonate, nylon 66, vinyl chloride, fluororesin, etc.), various FRP (for example, a combination of reinforcing fibers such as glass fiber, carbon fiber, aramid fiber, or fiber fabric with epoxy resin, unsaturated polyester resin, etc.) , or all materials commonly used as temporary springs, such as ceramics. Further, the shape of the plate-like object is determined as appropriate depending on the purpose and use of the object, but usually a flat or curved object is easy to handle. However, we are not particular about this.

尚、板状物の表面に直接、導電性接着剤のコーティング
、ディッピング、プリントや転写、スクリーン印刷、金
属の蒸着や金属箔の貼付けなどの手段により回路を描く
ことよりコンパクトでフラットなセンサー素子となるの
でエレクトロニクス分野などの軽薄短小な用途に適して
いる。
In addition, it is possible to create a more compact and flat sensor element than by drawing a circuit directly on the surface of a plate-shaped object by means such as coating with conductive adhesive, dipping, printing, transfer, screen printing, vapor deposition of metal, or pasting of metal foil. Therefore, it is suitable for light, thin, short and small applications such as in the electronics field.

本発明者らは、変形導電性シートの少なくとも2ケ所に
電極端部を設けることにより、従来にない相当量の伸長
変形や圧縮変形により電気抵抗値が一桁以上低下するセ
ンサー素子を発明した。しかしながら、圧縮や屈曲の際
の外部応力が、変形導電性シートに直接加わる部分(例
えば変形導電性シートの中央部)では波労や破壊が進み
、強度、ストレッチバンク性などの機械的特性や耐久性
の点で劣る点があげられ、単にエラストマーの補強材に
変形導電性シートと積層しただけでは大幅な改善は認め
られなかった。
The present inventors have invented a sensor element in which the electric resistance value is reduced by one order of magnitude or more due to an unprecedented amount of elongation deformation or compressive deformation by providing electrode ends at at least two locations on a deformed conductive sheet. However, in areas where the external stress during compression or bending is directly applied to the deformed conductive sheet (for example, the center of the deformed conductive sheet), undulation and destruction progress, resulting in poor mechanical properties such as strength and stretch bankability, and durability. However, it was found to be inferior in terms of performance, and no significant improvement was observed simply by laminating the elastomer reinforcing material with a deformable conductive sheet.

そこで上記板状物に変形導電性シートを取着すると、外
部応力が板状物を通して変形導電性シートに間接的に加
えられるので、センサの機械的強度や耐久性が著しく増
大し、特に屈曲センサや押し込み型のスイッチに使用さ
れる場合には効果的であることが判明した。
Therefore, when a deformed conductive sheet is attached to the above-mentioned plate-like object, external stress is indirectly applied to the deformed conductive sheet through the plate-like object, so the mechanical strength and durability of the sensor are significantly increased, especially for bending sensors. It has been found to be effective when used in push-in type switches.

板状物に変形導電性シートを取着させる手段としては、
リベットやホックなどで機械的に行ってもよいが、接着
剤を用いると操作性の面でより簡便であるのと、より広
い面積で板状物と接着するので耐久性の面でも好ましい
。接着剤としては、通常よく用いられるエポキシ系やア
ミド系のプラスチック系接着剤をはじめ、ウレタン系、
ラテックス系のあらゆる接着剤が用いられる。
As a means for attaching a deformed conductive sheet to a plate-like object,
Although this may be done mechanically with rivets or hooks, it is preferable to use an adhesive because it is simpler in terms of operability and also in terms of durability because it adheres to the plate-like object over a wider area. Adhesives include commonly used epoxy and amide plastic adhesives, urethane adhesives,
Any latex adhesive may be used.

また取着させる箇所は、変形導電性シートの片面でも両
面でも良く、また、その一部または全面でも良い。特に
全面に接着する場合で変形導電性シートとして&I織物
を用いた場合には、微小変形から大変形にわたって幅広
い屈曲角度を検知できる屈曲ねじれセンサー素子となる
Further, the attachment point may be on one side or both sides of the deformed conductive sheet, or may be on a part or the entire surface of the deformed conductive sheet. In particular, when &I fabric is used as the deformable conductive sheet when adhesive is applied to the entire surface, the bending/twisting sensor element can detect a wide range of bending angles ranging from minute deformation to large deformation.

この理由としては、屈曲応力を加えた場合、全面に接着
したものは、面の各点に均一に応力が加わりかつ面に垂
直な方向の応力成分も平行成分と共に大きくなるために
、糸のしまりや糸の交絡部分での接触圧力の増加に伴っ
て抵抗値が低下するためと考えられる。また、変形導電
性シートの片面に板状物を取着する場合には、他の面に
は、シリコーン樹脂やフッ素系樹脂をコーティングして
おくと耐環境特性が向上するのでより好ましい。
The reason for this is that when bending stress is applied, stress is applied uniformly to each point on the surface of a product bonded over the entire surface, and the stress component in the direction perpendicular to the surface increases along with the parallel component. This is thought to be because the resistance value decreases as the contact pressure increases at the intertwined portion of the threads. Furthermore, when attaching a plate-like object to one side of the deformed conductive sheet, it is more preferable to coat the other side with silicone resin or fluororesin, since this improves environmental resistance.

尚、変形専電性シートとして変形導電性編m物を用いる
場合には、電極端部を糸軸方向に設置すると高感度の屈
曲、ねじれ、圧縮センサーとなるし、また、バイアス方
向に設置するとより大変形にまで対応するセンサー素子
となる。
In addition, when using a deformable conductive knitted fabric as a deformable electrically conductive sheet, if the electrode end is installed in the yarn axis direction, it will become a highly sensitive bending, torsion, or compression sensor, and if it is installed in the bias direction, it will become a highly sensitive bending, torsion, and compression sensor. The sensor element can handle even larger deformations.

次に、図面を用いてさらに本発明のセンサー素子を説明
する。第1図〜第5図に本発明のセンサー素子の概略図
を示す。
Next, the sensor element of the present invention will be further explained using the drawings. FIGS. 1 to 5 show schematic diagrams of the sensor element of the present invention.

第1図は、変形導電性シートの片面の両端に電極端部を
設けて、他面の両端部を接着剤層を介して板状物に取着
したセンサー素子を表わす。また第2図は、該シートの
片面全面を板状物に接着したセンサー素子で電極端部は
両端以外に中央部にも設けられている。第3図は該シー
トの両面全面に板状物を取着したセンサー素子を表わす
。また、第4図a) 、 b)は、電極を印刷された仮
ばねに、該シートの中央部分は電気的絶縁性の接着剤で
、両端は、導電性接着剤で接着されたセンサー素子であ
って、他面は、耐環境特性を向上するために、シリコー
ン樹脂やフッ素樹脂でコーティングされている。尚a)
は側面断面図で、b)は平面図を表わす。第5図a) 
、 b)は、変形導電性シートの表裏両面に間隔をあけ
て電極端部を設置し、両面を板状物に接合したセンサー
素子を表わし、a)は側面断面図、b)は平面図を表わ
す。
FIG. 1 shows a sensor element in which electrode ends are provided at both ends of one side of a deformed conductive sheet, and both ends of the other side are attached to a plate-like object via an adhesive layer. Further, FIG. 2 shows a sensor element in which the entire surface of one side of the sheet is adhered to a plate-like object, and electrode ends are provided not only at both ends but also at the center. FIG. 3 shows a sensor element in which plate-like objects are attached to the entire surfaces of both sides of the sheet. In addition, Fig. 4 a) and b) show a temporary spring with electrodes printed on it, the center part of the sheet with electrically insulating adhesive, and both ends with sensor elements glued with conductive adhesive. The other side is coated with silicone resin or fluororesin to improve environmental resistance. Note a)
b) is a side sectional view and b) is a plan view. Figure 5 a)
, b) represents a sensor element in which electrode ends are installed at intervals on both the front and back surfaces of a deformed conductive sheet, and both surfaces are bonded to a plate-shaped object, a) is a side sectional view, and b) is a plan view. represent.

尚、図中、11,21.31.41.41’、 51.
51’は変形導電性シート、12,22,32,42.
42’、 52゜52′は電極端部、13 、23 、
33 、43 、53は接着剤層、14.24.34,
44.44’、 54.54’、 54”は板状物、1
5.25.35,45.45’、  55はリード線、
46は、板状物に印刷された回路、47 、47 ’は
シリコーン樹脂又はフッ素系樹脂、をそれぞれ表わす。
In addition, in the figure, 11, 21. 31. 41. 41', 51.
51' is a deformed conductive sheet, 12, 22, 32, 42.
42', 52°52' is the electrode end, 13, 23,
33, 43, 53 are adhesive layers, 14.24.34,
44.44', 54.54', 54'' are plate-shaped objects, 1
5.25.35, 45.45', 55 is the lead wire,
46 represents a circuit printed on a plate-like material, and 47 and 47' represent silicone resin or fluororesin, respectively.

これらの本発明物は、屈曲、ねじれ、圧縮などの微小か
ら相当量の変形を大きな抵抗値の変化としてとらえ、従
来にない間車な検出回路で検出されると共に特に機械的
な耐久性に優れるセンサー素子となる。
These inventions detect minute to considerable deformations such as bending, twisting, and compression as large changes in resistance, and are detected by an unprecedented detection circuit and have particularly excellent mechanical durability. It becomes a sensor element.

以下実施例を用いてさらに本発明のセンサー素子を説明
するが、これら実施例や先の図面に限定されるものでな
いことは明らかである。
The sensor element of the present invention will be further explained below using Examples, but it is clear that the sensor element is not limited to these Examples or the previous drawings.

〔実施例〕〔Example〕

旭化成工業(株)製のポリエステルタフタ(経50 d
/24 f、緯75 d/36 f)を水酸化ナトリウ
ム水溶液(80g#り、100℃で減量加工(減量率2
0%)し、5nC1t  :塩酸が3:10の重量比の
浴中で感受性化し、水洗脱水後、PdC1z:塩酸が重
量比1:15の浴中で活性化し、水洗脱水後NiCl 
z  ・6 HzO、NaHPOz HHzO。
Polyester taffeta manufactured by Asahi Kasei Corporation (50 d
/24 f, latitude 75 d/36 f) was treated with a sodium hydroxide aqueous solution (80 g) at 100°C (weight loss rate 2).
0%) and sensitized in a bath with a weight ratio of 5nC1t:hydrochloric acid of 3:10, and after washing and dehydration, activated in a bath with a weight ratio of PdC1z:hydrochloric acid of 1:15, and after washing and dehydration with NiCl.
z ・6 HzO, NaHPOz HzO.

クエン酸ナトリウム、NH4,(1,アンモニア水が1
:1:3:2:2の重量比の浴中90℃×2分処理して
、Niメッキエステルタフタを作製した。
Sodium citrate, NH4, (1, ammonia water 1
A Ni-plated ester taffeta was produced by treatment at 90° C. for 2 minutes in a bath with a weight ratio of: 1:3:2:2.

これを10cmXIQcmの大きさのサンプルに切り、
二重円筒形の層流発生装置(内側の円筒が高速回転、外
筒の内径25cm、内筒の外径10c+++)に水と一
緒に入れ、内筒回転速度200rpmで、300分処理
して変形導電性シートを得た。次に市販ウレタン系エラ
ストマー樹脂(溶媒DMF 、固形分10wt%)を5
0μmゲージで離型紙にコーテイング後、100℃x5
n+in乾燥させ、シート状の変形導電性Wm物の両面
に4 kg / ciの圧力で110℃で熱接着転写し
た。これを1cI11巾X5cm長にバイアス方向及び
たて糸方向に裁断した。
Cut this into 10cm x IQcm size samples,
Put water into a double cylindrical laminar flow generator (inner cylinder rotates at high speed, outer cylinder inner diameter 25cm, inner cylinder outer diameter 10c+++) and process at inner cylinder rotation speed 200 rpm for 300 minutes to deform. A conductive sheet was obtained. Next, 5% of commercially available urethane elastomer resin (solvent DMF, solid content 10wt%) was added.
After coating on release paper with 0μm gauge, 100℃ x 5
n+in was dried, and thermal adhesive transfer was performed on both sides of a sheet-shaped deformed conductive Wm object at 110° C. under a pressure of 4 kg/ci. This was cut in the bias direction and warp direction to a size of 1 cI 11 width x 5 cm length.

次に、市販Ni系導電性接着剤をバイアス方向にカット
した先の変形導電性シートの両端にリード線と共にコー
ティングし、乾燥硬化させて素子■を作製した。次に市
販のポリカーボネート樹脂板(厚さ300μm)に市販
の二液性エポキシ系接着剤を用いて先の素子■の片面の
両端を抵抗値が4.5×10’Ω以下になる直前の伸度
(7%)に伸長して接着硬化させ、本発明物である試料
11hlを作製した。同様に素子■の片面全面を先の樹
脂板に接着硬化させ、本発明物である試料11h2を作
製した。
Next, a commercially available Ni-based conductive adhesive was coated on both ends of the deformed conductive sheet, which had been cut in the bias direction, together with the lead wires, and dried and cured to produce element (2). Next, using a commercially available two-component epoxy adhesive on a commercially available polycarbonate resin plate (thickness 300 μm), glue both ends of one side of the above element The sample 11hl, which is a product of the present invention, was prepared by elongating the film to a certain degree (7%) and curing the adhesive. Similarly, one entire surface of element (1) was adhered to the resin plate and cured to prepare sample 11h2, which is a product of the present invention.

また・試料磁2と同様にして樹脂板に片面全面を撞着し
た素子の他の片面に市販の縮合型シリコーン樹脂をコー
ティングし、室温で24hr放置して硬化させて、本発
明の試料PlkL5を作製した。
In addition, in the same manner as Sample Magnet 2, one side of the element was adhered to a resin plate on its entire surface, and the other side was coated with a commercially available condensed silicone resin, and left to harden at room temperature for 24 hours to prepare sample PlkL5 of the present invention. did.

一方、たて糸方何にカットした先の変形導電性シートの
両端に素子■と同様に導電性接着剤をリード線と共にコ
ーティングして素子■を作製した。
On the other hand, an element (2) was prepared by coating both ends of the deformed conductive sheet, which had been cut in the warp direction, with a conductive adhesive along with lead wires in the same manner as in the element (2).

素子■の片面全面を先の樹脂板に試料11h2と同様に
接着硬化させ本発明物である試料11h3を作製した。
Sample 11h3, which is a product of the present invention, was prepared by adhering and curing the entire surface of one side of element 1 to the resin plate in the same manner as sample 11h2.

また、素子■の両面全面を同様に樹脂板にエポキシ系接
着剤で接着し、本発明の試料隘4を作製した。次に、バ
イアス方向にカットした変形導電性シートの表裏の両端
及び中央部に1cm巾でl cmの間隔をあけて6カ所
に導電性接着剤で電極を設け、抵抗値が4.5X10”
Ω以下になる直前の伸度に伸長して両面全面を接着剤で
接着して本発明の試料患6を作製した。
In addition, the entire surfaces of both sides of the element (1) were similarly adhered to a resin plate using an epoxy adhesive to prepare sample No. 4 of the present invention. Next, electrodes were placed with conductive adhesive at 6 locations with a width of 1 cm and an interval of 1 cm on both ends of the front and back sides and the center of the deformed conductive sheet cut in the bias direction, and the resistance value was 4.5 x 10".
Sample 6 of the present invention was prepared by elongating it to an elongation just below Ω and bonding the entire surface of both surfaces with an adhesive.

これら試料Nal〜6を屈曲試験機(山口科学(株)製
バギング性試験機)にセットし、o、2゜4 、6.1
0.15,20,30.45”の各屈曲度での抵抗値を
測定し、素子■を比較例にして表1に示した。また、屈
曲疲労性は、先の屈曲試験機を用いて0−−20’を6
0回/分で行い、20’での抵抗値を屈曲繰り返し前後
で比較し、抵抗値が5倍以上になる回数で表わす。表1
にその結果を示す。
These samples Nal~6 were set in a bending tester (bagging tester manufactured by Yamaguchi Kagaku Co., Ltd.) and
The resistance values at each bending degree of 0.15, 20, and 30.45" were measured and shown in Table 1 with element 0--20' to 6
The resistance value at 20' was compared before and after repeated bending, and the resistance value was expressed as the number of times the resistance value was 5 times or more. Table 1
The results are shown below.

表1かられかるように、本発明の試料階1〜6のセンサ
ー素子は、板状物と接着していない比較例(素子■)に
比べて、屈曲疲労性に優れ、かつ微小変形から大変形に
わたってセンシングできるセンサー素子となることがわ
かる。
As can be seen from Table 1, the sensor elements of the sample levels 1 to 6 of the present invention have excellent bending fatigue resistance compared to the comparative example (element ■) that is not bonded to a plate-like object, and exhibits small deformation to large deformation. It can be seen that the sensor element can sense the entire deformation.

以下余ら 〔発明の効果〕 前述のような構成を有する本発明によるセンサー素子は
、屈曲、ねじれ、圧縮などに対する耐久性に優れ、かつ
微小変形から相当量の変形とし大きな抵抗値の変化とし
てとらえることができるので、従来公知のセンサー素子
を用いては行うことのできない、簡便な回路で検出でき
るセンサー素子として用いることができる。
[Effects of the Invention] The sensor element according to the present invention having the above-mentioned configuration has excellent durability against bending, twisting, compression, etc., and can be interpreted as a large change in resistance value, from minute deformation to considerable deformation. Therefore, it can be used as a sensor element that can perform detection with a simple circuit, which cannot be done using conventionally known sensor elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明のセンサー素子の各実施例の概
略図を示す。 図中、11.21,31.41.41’、 51.51
’・・・変形導電性シート、 12.22,32,42.42’ 、 52.52’・
・・電極端部、13 、23 、33 、43 、53
・・・接着剤層、14.24,34,44.44’、 
54.54’・・・板状物、15.25,35,45.
45’、  55・・・リード線、46・・・板状物に
印刷された回路、 47・・・シリコーン樹脂又はフッ素系樹脂。 1111図 #!J3図 手続補正書(自発) 昭和61年11月12日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許願第089207号 2、 発明の名称 センサー素子 3、補正をする者 事件との関係   特許出願人 名称 (003)旭化成工業株式会社 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号tク
ト 4 身S ) 5、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 1)明細書第1頁第12行目記載の「伸長、圧縮ねじれ
と伴う」を「伸長、圧縮、ねじれを伴う」に補正する。 2)明細書第6頁第5行目記載の「なお変形導電性シー
ト、伸長性を有する」を「なお変形導電性シートは、伸
長性を有する」に補正する。 3)明細書第7頁第9行目記載の「手段により回路を描
くことによりコンパクトでJ ヲr手段ニより回路を描
くか、エツチングやスクリーン印刷により得られるフレ
キシブルプリント回路板(例えばエステルフィルム、ポ
リイミドフィルム製)を板状物に貼ることにより、コン
パクトで」に補正する。 4)明細書の第11頁第8行目に記載の「素子となる。 」をr素子となる。これらの本発明物は、以下に示す用
途に使用することができる。 例えば、万歩計として、肘や膝などの関節部に貼りつけ
たり、靴に本発明物のセンサー素子(以下素子と略する
)を組み込んで歩行に伴って素子が屈曲することにより
歩行数を検知するセンサー、筋肉増強やシェイクアップ
、リハビリテーションを目的とした各種トレーニング器
具や機器の屈曲部や人体に素子を取着して屈曲回数や屈
曲度を検知することができる。 また、素子の板状物の種類を適宜選ぶことにより、微小
応力から大応力に対応する荷重計や、素子に振動や加速
度運動をする物体の運動を伝搬させることにより、振動
計、加速度計として用いることができる。さらに、素子
の接続端部の形状や間隔を、被検体の形状や大きさに合
せて、適宜選ぶことにより、平面はもとより曲面形状を
有する剛材(例えば金属、木材などの)に貼り合せて、
それらの微小な伸びや反りなどのひずみ変形を検知する
など、幅広い分野にわたった、ひずみ、応力などの各種
計測用途に用いることができる。 また、素子の屈曲導電性を利用して、ロボットの触覚セ
ンサー、キーボードや手書き入力用無接点スイッチ、座
席部に用いて着席を確認する着席検知センサー、防犯用
や安全用に窓わくや手すりに設置する防犯・危険予知セ
ンサー(タッチセンサーなどの圧力センサー、自動車な
どのパワーウィンドー用危険予知センサーなど)に用い
ることができる。次に工業用センサーとして、工業用ロ
ボットの回転部分や屈曲部分にとりつけて、ロボットハ
ンドなどの方向を検知する方向センサーや位置制御を目
的とした位置制御センサー、リミットスイッチやマイク
ロスイッチ、周囲を囲むようにとりつけて、ロボットの
暴走を防ぐための安全スイッチ、さらに危険区域にシー
ト状(マット状)のセンサー素子を敷くことにより、作
業員の侵入を検知してロボットを非常停止させる安全ス
イッチなどに用いられる。また、ダイヤフラムや圧力計
、膨張体の膨張率検出用のセンサーや脈拍計、血圧計用
、各種流速計(液体、気体などの流体用)として用いる
ことができる。 さらに、屈曲応力の小さい板状物から構成される素子を
手や腕に直接語るかまたは手袋などに貼ることにより指
の動きに直に対応したフィンガースイッチ用、即ち、臨
場感あふれるゲーム用ジョイスティックをはじめ、コン
ピューターと組み合せた、手話の音声変換装置、さらに
は、危険作業用や精密作業用のロボットハンドの遠隔操
作可能な入力装置などに用いることができる。 尚、本発明物のセンサー素子の用途は、これら上記用途
に限られるものではない。jに補正する。
1 to 5 show schematic diagrams of embodiments of the sensor element of the present invention. In the figure, 11.21, 31.41.41', 51.51
'...Deformed conductive sheet, 12.22, 32, 42.42', 52.52'.
... Electrode end, 13 , 23 , 33 , 43 , 53
...adhesive layer, 14.24, 34, 44.44',
54.54'... plate-like object, 15.25, 35, 45.
45', 55...Lead wire, 46...Circuit printed on plate-shaped material, 47...Silicone resin or fluorine resin. 1111 figure #! J3 figure procedural amendment (voluntary) November 12, 1985 Commissioner of the Japan Patent Office Kuro 1) Akio Yu 1, Indication of the case 1989 Patent Application No. 089207 2, Name of the invention Sensor element 3, Person making the amendment Relationship to the case Patent applicant name (003) Asahi Kasei Kogyo Co., Ltd. 4, Agent address 4-8-10 Toranomon-chome, Minato-ku, Tokyo 105 tct 4) 5. Column 6 of "Detailed Description", Contents of Amendment 1) "Along with elongation, compression, and twisting" in the 12th line of page 1 of the specification is corrected to "Along with elongation, compression, and twisting." 2) "The deformed conductive sheet has extensibility" on page 6, line 5 of the specification is corrected to "the deformed conductive sheet has extensibility." 3) A flexible printed circuit board (e.g. ester film, By attaching a polyimide film (made of polyimide film) to a plate-like object, it can be corrected compactly. 4) "It becomes an element." written in the 8th line of page 11 of the specification becomes an r element. These products of the present invention can be used in the following applications. For example, as a pedometer, it can be attached to joints such as elbows and knees, or the sensor element of the present invention (hereinafter referred to as the element) can be incorporated into shoes to detect the number of steps taken by bending the element as you walk. It is possible to detect the number and degree of flexion by attaching the element to the bending part of various training equipment and equipment for muscle strengthening, shake-up, and rehabilitation, or to the human body. In addition, by appropriately selecting the type of plate-like element, it can be used as a load cell that can handle from minute stress to large stress, and by propagating the motion of an object that vibrates or accelerates to the element, it can be used as a vibrometer or accelerometer. Can be used. Furthermore, by appropriately selecting the shape and spacing of the connecting ends of the element according to the shape and size of the test object, it is possible to bond it to not only flat surfaces but also rigid materials with curved surfaces (such as metal and wood). ,
It can be used for various measurement purposes such as strain and stress in a wide range of fields, such as detecting strain deformation such as minute elongation and warping. In addition, the bending conductivity of the element can be used to create tactile sensors for robots, non-contact switches for keyboards and handwriting input, seating detection sensors that can be used in seats to confirm seating, and window frames and handrails for crime prevention and safety purposes. It can be used for crime prevention and danger prediction sensors installed (pressure sensors such as touch sensors, danger prediction sensors for power windows of automobiles, etc.). Next, as an industrial sensor, it is attached to the rotating or bending part of an industrial robot to detect the direction of the robot hand, position control sensor for position control, limit switch, micro switch, etc. It can be used as a safety switch to prevent a robot from running out of control, and by placing a sheet-like (mat-like) sensor element in a dangerous area, it can be used as a safety switch that detects the intrusion of a worker and stops the robot in an emergency. used. Further, it can be used as a diaphragm, a pressure gauge, a sensor for detecting the expansion rate of an expanding body, a pulse meter, a blood pressure meter, and various flow rate meters (for fluids such as liquids and gases). Furthermore, by attaching an element made of a plate-like material with low bending stress directly to the hand or arm or attaching it to a glove, etc., we can create a finger switch that directly responds to finger movements, that is, a joystick for games that provides a sense of realism. First, it can be used as a sign language voice conversion device in combination with a computer, and furthermore, as an input device that allows remote control of robot hands for dangerous or precision work. Note that the uses of the sensor element of the present invention are not limited to the above-mentioned uses. Correct to j.

Claims (1)

【特許請求の範囲】[Claims] 変形導電性シートの少なくとも2カ所に電極端部を設け
た変形導電性素子の少なくとも片面の一部または全面に
板状物が取着されていることを特徴とするセンサー素子
1. A sensor element comprising a deformed conductive element having electrode ends provided at at least two locations on a deformed conductive sheet, and a plate-like object attached to a part or the entire surface of at least one side.
JP8920786A 1986-04-19 1986-04-19 Sensor element Pending JPS62245904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8920786A JPS62245904A (en) 1986-04-19 1986-04-19 Sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8920786A JPS62245904A (en) 1986-04-19 1986-04-19 Sensor element

Publications (1)

Publication Number Publication Date
JPS62245904A true JPS62245904A (en) 1987-10-27

Family

ID=13964270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8920786A Pending JPS62245904A (en) 1986-04-19 1986-04-19 Sensor element

Country Status (1)

Country Link
JP (1) JPS62245904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184401A (en) * 1988-01-19 1989-07-24 Japan Synthetic Rubber Co Ltd Angle sensor
JP2004046792A (en) * 2002-03-29 2004-02-12 Toshiba Corp Display input device, display input system, method for controlling the system, and man-machine interface device
CN102288101A (en) * 2011-08-02 2011-12-21 中国矿业大学 Bending deformation test sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184401A (en) * 1988-01-19 1989-07-24 Japan Synthetic Rubber Co Ltd Angle sensor
JP2004046792A (en) * 2002-03-29 2004-02-12 Toshiba Corp Display input device, display input system, method for controlling the system, and man-machine interface device
CN102288101A (en) * 2011-08-02 2011-12-21 中国矿业大学 Bending deformation test sensor

Similar Documents

Publication Publication Date Title
Hu et al. A super‐stretchable and highly sensitive carbon nanotube capacitive strain sensor for wearable applications and soft robotics
Wu et al. Channel crack-designed gold@ PU sponge for highly elastic piezoresistive sensor with excellent detectability
Guo et al. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition
Mo et al. A highly stable and durable capacitive strain sensor based on dynamically super‐tough hydro/organo‐gels
Lu et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate
Peng et al. Multimodal capacitive and piezoresistive sensor for simultaneous measurement of multiple forces
Lin et al. Highly Stretchable, Adaptable, and Durable Strain Sensing Based on a Bioinspired Dynamically Cross‐Linked Graphene/Polymer Composite
Kim et al. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology
Nag et al. A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications
Wu et al. Transparent polymeric strain sensors for monitoring vital signs and beyond
Amjadi et al. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors
Lee et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
Gerratt et al. Stretchable capacitive tactile skin on humanoid robot fingers—First experiments and results
Jing et al. Porous AgNWs/poly (vinylidene fluoride) composite-based flexible piezoresistive sensor with high sensitivity and wide pressure ranges
JP7244939B2 (en) Fiber-based composite with fracture-induced mechano-electrical sensitivity
Liu et al. Fully soft pressure sensor based on bionic spine–pillar structure for robotics motion monitoring
Xiao et al. Biomimetic skins enable strain‐perception‐strengthening soft morphing
Wang et al. Ag Nanowire/CPDMS dual conductive layer dome-based flexible pressure sensor with high sensitivity and a wide linear range
Madhavan Epidermis‐Like High Performance Wearable Strain Sensor for Full‐Range Monitoring of the Human Activities
Wang et al. A highly stretchable triboelectric nanogenerator with both stretch-insensitive sensing and stretch-sensitive sensing
Hong et al. Flexible Capacitive Pressure Sensor with High Sensitivity and Wide Range Based on a Cheetah Leg Structure via 3D Printing
Bhuyan et al. Multifunctional ultrastretchable and ultrasoft electronics enabled by uncrosslinked polysiloxane elastomers patterned with rheologically modified liquid metal electrodes: Beyond current soft and stretchable electronics
Madhavan Nanocrack-based ultrasensitive wearable and skin-mountable strain sensors for human motion detection
JPS62245904A (en) Sensor element
Su et al. All-Fabric Capacitive Pressure Sensors with Piezoelectric Nanofibers for Wearable Electronics and Robotic Sensing