JPS62245810A - Dc level stabilizing circuit - Google Patents

Dc level stabilizing circuit

Info

Publication number
JPS62245810A
JPS62245810A JP9031986A JP9031986A JPS62245810A JP S62245810 A JPS62245810 A JP S62245810A JP 9031986 A JP9031986 A JP 9031986A JP 9031986 A JP9031986 A JP 9031986A JP S62245810 A JPS62245810 A JP S62245810A
Authority
JP
Japan
Prior art keywords
current
output
circuit
loads
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9031986A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tanaka
康弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9031986A priority Critical patent/JPS62245810A/en
Publication of JPS62245810A publication Critical patent/JPS62245810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep the DC potential of an output constant even with the AGC control by providing a constant current branch circuit receiving a constant current not given to the 1st and 2nd loads, branching the constant current by a half and adding it respectively to the 1st and 2nd loads. CONSTITUTION:The constant current branching circuit 33 receiving a current from the 2nd and 3rd differential pair circuits 31,32 not outputted to the 1st and 2nd loads 10,11 is provided. The constant current branching circuit 33 has two output current sources each branching the inputted current into a half and giving it as the output and the output of the two output current sources is given respectively to the lst and 2nd loads 10,11. The output DC potential is made constant even with the AGC control and the input dynamic range is expanded.

Description

【発明の詳細な説明】 〔概要〕 直流レベル安定化回路において、第2及び第3の差動対
増幅回路から第1及び第2の負荷に出力されない定電流
を入力とする定電流分流回路を設け、ここでこの定電流
を(2定電流)×2に変換して前記の第1及び第2の負
荷にそれぞれ加えることにより、AGC制御を行っても
出力の直流電位が一定に保たれると共に、入力ダイナミ
ックレンジが拡大される様にしたものである。
[Detailed Description of the Invention] [Summary] In a DC level stabilization circuit, a constant current shunt circuit that receives constant current that is not output from the second and third differential pair amplifier circuits to the first and second loads is provided. By converting this constant current into (2 constant current) x 2 and applying it to the first and second loads respectively, the output DC potential can be kept constant even when AGC control is performed. At the same time, the input dynamic range is expanded.

〔産業上の利用分野〕[Industrial application field]

本発明は直流レベル安定化回路、特に差動対を用いた利
得可変増幅器に使用する直流レベル安定化回路の改良に
関するものである。
The present invention relates to an improvement in a DC level stabilizing circuit, particularly a DC level stabilizing circuit used in a variable gain amplifier using a differential pair.

近年、集積化された回路に入出力する信号のレベルはT
TL レベル(Transistor−Transis
tor−Logicシレール)で行える様にすると共に
、TTL 型rcの電源電圧で動作することが要求され
ている。
In recent years, the level of signals input and output to integrated circuits is T
TL level (Transistor-Transis
It is required to be able to operate with a TTL type RC power supply voltage as well as to be able to operate with a TTL type RC power supply voltage.

そこで、この回路を要求の電源電圧で動作させた時によ
り大きな振幅の信号が入力可能である様にすること7即
ち入力ダイナミックレンジを拡大することが必要である
Therefore, it is necessary to make it possible to input a signal with a larger amplitude when this circuit is operated at the required power supply voltage7, that is, to expand the input dynamic range.

〔従来の技術〕[Conventional technology]

第3図は従来例の回路図、第4図は第3図の波形図、第
5図は第3図の利得特性図を示す。尚、第4図の左側の
数字は第3図の同じ数字の部分の波形を示す。
3 is a circuit diagram of a conventional example, FIG. 4 is a waveform diagram of FIG. 3, and FIG. 5 is a gain characteristic diagram of FIG. 3. Note that the numbers on the left side of FIG. 4 indicate the waveforms of the portions with the same numbers in FIG.

第3図と第4図において、トランジスタ1 (以下01
と省略する)のベースに第1の入力信号(以下51g−
1と省略する)として正弦波の電圧が、02のベースに
第2の入力イδ号(以下51g−2と省略する)として
直流電圧が加えられたとする。
In Figures 3 and 4, transistor 1 (hereinafter 01
The first input signal (hereinafter referred to as 51g-
Assume that a sine wave voltage is applied to the base of 02 (hereinafter abbreviated as 51g-2) and a DC voltage is applied to the base of 02 as a second input δ (hereinafter abbreviated as 51g-2).

この時、I、をQ’7. Q6で構成された定電流源の
電jL 12を01のコレクタ電流+ 13を02のコ
レクタ電流とすると、 (1151g−1と51g−2の電圧が等しい点では公
知の様に13= Iz= It/2に、 (2151g−1の電圧が51g4の電圧よりも大きい
時はIt > Iうに、 (:J) 51g−1の電圧が51g−2の電圧よりも
小さい時はr、 < 1.となる(第4図−■、■参照
)。
At this time, I, is Q'7. Power jL of the constant current source composed of Q6 If 12 is the collector current of 01 + 13 is the collector current of 02, (as is well known, 13=Iz=It /2, (When the voltage of 2151g-1 is higher than the voltage of 51g4, it > I, (:J) When the voltage of 51g-1 is lower than the voltage of 51g-2, r, < 1. (See Figure 4 - ■, ■).

次に、Q 5.口6の動作について見ると、(]) 2
つの自動利得制御信号(以下A、 Bと省略する)の電
圧が等しい時は第4図−■に示す様にQ6のコレクタ電
流I÷=I5/2・I+/4となるので出力電圧はI今
RL=(Iう/2)RLとなり、(21A−!>8とす
ると、口5に比してQ6の利得が充分亮くなって14’
#ISとなり+ 14 RL#Iy RLとなる。
Next, Q5. Looking at the movement of mouth 6, (]) 2
When the voltages of the two automatic gain control signals (hereinafter abbreviated as A and B) are equal, the collector current of Q6 is I÷=I5/2・I+/4, as shown in Figure 4-■, so the output voltage is I Now RL=(Iu/2)RL, and if (21A-!>8), the gain of Q6 becomes sufficiently bright compared to mouth 5 and becomes 14'
#IS becomes +14 RL#Iy RL.

(31A<Bとすると06の利得はほぼ0となるのでI
+RLζOとなる。
(If 31A<B, the gain of 06 is almost 0, so I
+RLζO.

第5図はQ 5. Q 6. RL、Is で構成され
た部分の利得特性で、A=8の時の06の出力電圧を1
とし、これを基準とした相対出力電圧で、A >Bの時
は1よりも大きいので+側に、 A <Bの時は1より
も小さいので一例になる。
Figure 5 is Q5. Q6. With the gain characteristics of the part composed of RL and Is, the output voltage of 06 when A=8 is 1
When A > B, it is larger than 1, so it is on the + side, and when A < B, it is smaller than 1, so this is an example.

次に、この回路の出力の直流電位Vou tを求めるる
Next, the DC potential Vout of the output of this circuit is determined.

(1)Δ=Bの時 T4=I3/2=Ir=I6=rvの為、l@= Iy
 + Ii=Ig となる。
(1) When Δ=B, T4=I3/2=Ir=I6=rv, so l@= Iy
+Ii=Ig.

叉、Vou L=Vcc −(RL/2) (B  (
Q 9のVbe) −RL、(Is/2)・Vcc  
RwIs −(Q 9のVbe)(2)Aクロの時、 上記の様に、t4=rり=■う・T、、  I、・I6
・■ら・ 0となるので、Vout=Vcc−(Q 9
のVbe)  RLI:Sとなり、A及びBを変えても
Voutの値は変化しない。ここで、Vbeはトランジ
スタのベース・エミソク間の電圧、 RLIRL/2は
抵抗器11.12の抵抗値を示す。
Fork, Vou L=Vcc - (RL/2) (B (
Q9's Vbe) -RL, (Is/2)・Vcc
RwIs - (Vbe of Q9) (2) When A black, as above, t4=rri=■U・T,, I,・I6
・■ et al. Since it becomes 0, Vout=Vcc-(Q 9
Vbe) RLI:S, and even if A and B are changed, the value of Vout does not change. Here, Vbe represents the voltage between the base and emitter of the transistor, and RLIRL/2 represents the resistance value of the resistors 11 and 12.

(発明が解決しようとする問題点〕 ここで、第3図の構成の場合、トランジスタのバイアス
に必要な電圧はVcc −4Vbe−1となる。
(Problems to be Solved by the Invention) In the case of the configuration shown in FIG. 3, the voltage required for biasing the transistor is Vcc -4Vbe-1.

但し、4VbeはQ 9.06. Q 2. Q 7の
Vbeの和であるが、Vbeはコレクタ電流を1mA流
した時は約0.8vで、温度が50℃変化すると約0.
lV変化するので合計0,9vとなる。叉、R・IKΩ
、エラ= 1mAとしている。
However, 4Vbe is Q9.06. Q2. It is the sum of Vbe of Q7, and Vbe is about 0.8V when 1mA of collector current flows, and about 0.8V when the temperature changes by 50°C.
Since it changes by 1V, the total becomes 0.9V.叉、R・IKΩ
, error = 1mA.

今、電源電圧をTTL型ICに合わせる為にVcc・5
vとすると、上式より5−4 Xo、9−1 =0.4
Vとなって5Vの殆んどがバイアス電圧でな(なり、残
りは0.4VLかない。従って、入力信号の振幅のピー
ク値が0.4V以上あると飽和して所定の動作が行われ
ないことになる。
Now, in order to match the power supply voltage to the TTL type IC,
If v, then from the above formula 5-4 Xo, 9-1 = 0.4
Most of the 5V is the bias voltage (and the rest is only 0.4VL). Therefore, if the peak value of the input signal amplitude is 0.4V or more, it will be saturated and the specified operation will not be performed. It turns out.

そこで、第3図の点線の様にQ9及び抵抗器12を除去
し・て直接に電源Vccに接続すると、ここで電圧降下
する分だけ入力信号の電圧ピーク値は増加するが、AG
C動作により出力の直流電圧が変動して、次段の直流バ
イアス電圧が変化し、回路設計がデlくなる。例えば、
A=8の時はVout=Vcc −(Ii/2)RL、
八〉Bの時はVou t=Vcc −h RLとなり(
I5/2) I?Lだけ変動する。
Therefore, if Q9 and resistor 12 are removed and connected directly to the power supply Vcc as shown by the dotted line in Figure 3, the voltage peak value of the input signal will increase by the voltage drop here, but the AG
The output DC voltage changes due to the C operation, and the DC bias voltage of the next stage changes, making the circuit design difficult. for example,
When A=8, Vout=Vcc - (Ii/2)RL,
8〉B, Vout=Vcc -h RL (
I5/2) I? Only L changes.

そこで、AGC動作を行っても出力の直流電位が変動せ
ず、しかも入力ダイナミックレンジを拡大しなければな
らないと云う問題点がある。
Therefore, there is a problem that the output DC potential does not change even if the AGC operation is performed, and the input dynamic range must be expanded.

〔問題点を解決する為の手段〕[Means for solving problems]

」−記の問題点は第1図に示す様に、第1及び第2の負
荷に出力されない該第2及び第3の差動対増幅回路3L
 32からの電流を入力とする定電流分流回路33を設
け、該定電流分流回路は入力する該電流を2に分流して
出力する2つの出力電流源を持ち、該2つの出力電流源
の出力をそれぞれ該第1及び第2の負荷10.11に接
続する本発明の直流レベル安定化回路により解決される
As shown in FIG.
A constant current shunt circuit 33 which inputs the current from 32 is provided, and the constant current shunt circuit has two output current sources that shunt the input current into two and output the two, and the output of the two output current sources is solved by the DC level stabilization circuit of the present invention, which connects to the first and second loads 10.11, respectively.

〔作用〕[Effect]

本発明は第1.第2の負荷10.11に出力されない第
2及び第3の差動対増幅回路31.32からの定電流を
入力とする定電流分流回路33を設け、この回路で入力
する前記の定電流を(%定電流)I2に変換し、それぞ
れを上記の第1.第2の負荷に流す様にした。
The present invention is the first. A constant current shunt circuit 33 is provided which inputs the constant current from the second and third differential pair amplifier circuits 31 and 32 that is not output to the second load 10.11, and the constant current inputted by this circuit is (% constant current) I2, and each of the above 1. I made it flow to the second load.

これにより、第3図の09と抵抗器12を除去しても従
来と同じ動作状態を維持するので、この部分で生ずる電
圧降下分だけ入力ダイナミックレンジを拡大することが
できる。
As a result, even if 09 in FIG. 3 and resistor 12 are removed, the same operating state as before is maintained, so the input dynamic range can be expanded by the voltage drop that occurs in these parts.

〔実施例〕〔Example〕

第2図は本発明の実施例を示し、全図を通じて同一記号
は同一対象物を示す。
FIG. 2 shows an embodiment of the present invention, and the same symbols represent the same objects throughout the figures.

尚、図中のQ 1.Q 2.Q、7.口8 、Q 3.
[14、口5゜06及びQ 13〜Q17.抵抗器18
〜20はそれぞれ第1図の第1の差動対増幅回路30、
第2の差動対増幅回路31、第3の差動対増幅回路32
及び定電流分流回路33の構成部分を示す。
In addition, Q1 in the figure. Q2. Q, 7. Mouth 8, Q 3.
[14, mouth 5゜06 and Q 13-Q17. Resistor 18
20 are the first differential pair amplifier circuit 30 of FIG. 1, respectively.
Second differential pair amplifier circuit 31, third differential pair amplifier circuit 32
and the constituent parts of the constant current shunt circuit 33.

以下、各トランジスタに流れる電流は従来例と同一の記
号を用いて、図により動作説明をする。
Hereinafter, the operation will be explained with reference to the drawings, using the same symbols as in the conventional example for the current flowing through each transistor.

先ず、定電流分流回路中のQ 16. Q 17はQ4
.及び05のコレクタを相互に接続した点から定電流I
8を入力してQ 17のコレクタから同じ定電流I8を
出力する。そして、Q 17からの定電流I6はQ 1
5を介して口13. Q 14で(%1B)I2に変換
され、03.06の負荷10.11にそれぞれ接続され
る。
First, Q in the constant current shunt circuit 16. Q17 is Q4
.. From the point where the collectors of and 05 are connected to each other, a constant current I
8 and outputs the same constant current I8 from the collector of Q17. And the constant current I6 from Q17 is Q1
5 through the mouth 13. Q14 is converted to (%1B)I2 and connected to the load 10.11 of 03.06 respectively.

尚、0131口14のエミッタ抵抗器18.19の抵抗
値2R1はQ 15のエミッタ抵抗器20の抵抗値R1
の2倍になっている。
In addition, the resistance value 2R1 of the emitter resistor 18 and 19 of the 0131 port 14 is the resistance value R1 of the emitter resistor 20 of Q15.
It's twice as much.

次に、前記の様にA、Bを変化させた時のVoutの値
を求める。
Next, the value of Vout when A and B are changed as described above is determined.

(11A=Illの時、 14□ (13/2)=Ir=16=IyのためIr=
I5となる。
(When 11A=Ill, 14□ (13/2)=Ir=16=Iy, so Ir=
It becomes I5.

叉、Q6の負荷RLに流れる電流はI4. + (Ie
+/2)だから、Vout= Vcc −q14+(I
F/2))R4=Vcc −IBRL(2)八〉Bの時
、 14 = Is 、 Ir=I6□Oだからl5=OV
out=Vcc−14RL=Vcc−15RL。
Also, the current flowing through the load RL of Q6 is I4. + (Ie
+/2) Therefore, Vout= Vcc -q14+(I
F/2)) R4=Vcc -IBRL (2) When 8〉B, 14=Is, Ir=I6□O, so l5=OV
out=Vcc-14RL=Vcc-15RL.

即ら、A及びBを変化させてもVou tは変化せず、
更に従来例のVout=Vcc −15R1−−Vbe
に比較してvbeだけVoutが高くなるので、入力グ
イナミソクレンジがVbeだけ拡大する。
That is, even if A and B are changed, Vout does not change,
Furthermore, Vout=Vcc −15R1−−Vbe of the conventional example
Since Vout is higher by Vbe than Vbe, the input range is expanded by Vbe.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によれば、へGC制御し
ても直流電位差が一定で、且つ入力グイナミソクレンジ
はVbeだけ拡大すると云う効果がある。
As described in detail above, according to the present invention, the DC potential difference remains constant even with GC control, and the input range is expanded by Vbe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は本発明の実施例の回路図、 第3図は従来例の回路図、 第4図は第3図の波形図、 第5図は第3図の利得特性図を示す。 図において、 10、11は負荷、 30は第1の差動対増幅回路、 31は第2の差動対増幅回路、 32は第3の差動対増幅回路、 33は定電流分流回路を示す。 木登 口R1n厘 哩ブロック 図 第 1 図 従凍伯1n回路図 第3履 士 第3図/7波肋図 第 4 図 +      −A−8 第5国司利41!+特1・′L図 第 5 図 Figure 1 is a block diagram of the principle of the present invention. FIG. 2 is a circuit diagram of an embodiment of the present invention, Figure 3 is a circuit diagram of a conventional example, Figure 4 is the waveform diagram of Figure 3, FIG. 5 shows the gain characteristic diagram of FIG. 3. In the figure, 10 and 11 are loads, 30 is a first differential pair amplifier circuit; 31 is a second differential pair amplifier circuit; 32 is a third differential pair amplifier circuit; 33 indicates a constant current shunt circuit. Kidobori Exit R1n Rin 哘block diagram Figure 1 Juzohaku 1n circuit diagram 3rd shoe scholar Figure 3/7-wave rib chart Figure 4 +      -A-8 5th Kokushiri 41! +Special 1・'L diagram Figure 5

Claims (1)

【特許請求の範囲】 第1及び第2の入力信号の差に対応した電流差を有し、
和が一定の2つの電流を出力する第1の差動対増幅回路
(30)と、該第1の差動対増幅回路のそれぞれの出力
電流を自動利得制御信号に対応した差で分流して利得制
御を行ってそれぞれ一方の電流を第1及び第2の負荷(
10、11)に出力する第2及び第3の差動対増幅回路
(31、32)とから構成された利得可変増幅器におい
て、 該第1及び第2の負荷に出力されない該第2及び第3の
差動対増幅回路(31、32)からの電流を入力とする
定電流分流回路(33)を設け、 該定電流分流回路は入力する該電流を1/2に分流して
出力する2つの出力電流源を持ち、該2つの出力電流源
の出力をそれぞれ該第1及び第2の負荷(10、11)
に接続することを特徴とする直流レベル安定化回路。
[Claims] Having a current difference corresponding to the difference between the first and second input signals,
A first differential pair amplifier circuit (30) outputting two currents with a constant sum, and dividing the respective output currents of the first differential pair amplifier circuit by a difference corresponding to an automatic gain control signal. Gain control is performed to direct one current to the first and second loads (
10, 11), the second and third differential pair amplifier circuits (31, 32) output to the first and second loads. A constant current shunt circuit (33) is provided which inputs the current from the differential pair amplifier circuit (31, 32), and the constant current shunt circuit divides the input current into 1/2 and outputs the divided current. has an output current source, and outputs the outputs of the two output current sources to the first and second loads (10, 11), respectively.
A DC level stabilization circuit characterized by being connected to.
JP9031986A 1986-04-18 1986-04-18 Dc level stabilizing circuit Pending JPS62245810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9031986A JPS62245810A (en) 1986-04-18 1986-04-18 Dc level stabilizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9031986A JPS62245810A (en) 1986-04-18 1986-04-18 Dc level stabilizing circuit

Publications (1)

Publication Number Publication Date
JPS62245810A true JPS62245810A (en) 1987-10-27

Family

ID=13995204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9031986A Pending JPS62245810A (en) 1986-04-18 1986-04-18 Dc level stabilizing circuit

Country Status (1)

Country Link
JP (1) JPS62245810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816772B2 (en) 2010-07-20 2014-08-26 Sumitomo Electric Industries, Ltd. Differential amplifier with function of variable gain and optical receiver implemented with the same
US9608581B2 (en) 2015-03-27 2017-03-28 Sumitomo Electric Industries, Ltd. Differential amplifier
JP2017079447A (en) * 2015-10-22 2017-04-27 住友電気工業株式会社 Drive circuit and variable gain amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816772B2 (en) 2010-07-20 2014-08-26 Sumitomo Electric Industries, Ltd. Differential amplifier with function of variable gain and optical receiver implemented with the same
US9608581B2 (en) 2015-03-27 2017-03-28 Sumitomo Electric Industries, Ltd. Differential amplifier
JP2017079447A (en) * 2015-10-22 2017-04-27 住友電気工業株式会社 Drive circuit and variable gain amplifier

Similar Documents

Publication Publication Date Title
US5719578A (en) Folding amplifier for the construction of an A/D converter
US5563534A (en) Hysteresis comparator circuit for operation with a low voltage power supply
ATE62093T1 (en) LOGICAL CIRCUIT.
JPH0152783B2 (en)
JPS62245810A (en) Dc level stabilizing circuit
JP2990785B2 (en) Logic circuit
KR920008785B1 (en) Circuit for transforming direct-current signals
JP2911494B2 (en) Acceleration switching input circuit
KR100695353B1 (en) Amplitude setting circuit
JPH07169004A (en) Preamplifier circuit device
US6169453B1 (en) Error amplifier with a high common mode rejection
JPH06169225A (en) Voltage current conversion circuit
JPH0527282B2 (en)
SU987796A2 (en) Differential amplifier
JP2947174B2 (en) Variable gain amplifier
JPH0583040A (en) Phase comparator
JPH05299978A (en) Comparator
JP2773504B2 (en) Signal comparison circuit
JPH04334120A (en) Ecl output circuit
SU815866A1 (en) Amplifier
JPS59109923A (en) Parallel type direct current voltage regulator
JPS6084004A (en) Amplitude limit circuit
JPS5857821A (en) Switch circuit
JPS58119014A (en) Power source device
JPH0453325B2 (en)