JPS62245155A - Residual life evaluation for ferrite heat-resisting steel - Google Patents

Residual life evaluation for ferrite heat-resisting steel

Info

Publication number
JPS62245155A
JPS62245155A JP61086979A JP8697986A JPS62245155A JP S62245155 A JPS62245155 A JP S62245155A JP 61086979 A JP61086979 A JP 61086979A JP 8697986 A JP8697986 A JP 8697986A JP S62245155 A JPS62245155 A JP S62245155A
Authority
JP
Japan
Prior art keywords
rate
residual life
life
heat
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61086979A
Other languages
Japanese (ja)
Other versions
JPH0713639B2 (en
Inventor
Nobuhiko Nishimura
宣彦 西村
Fujimitsu Masuyama
不二光 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61086979A priority Critical patent/JPH0713639B2/en
Publication of JPS62245155A publication Critical patent/JPS62245155A/en
Publication of JPH0713639B2 publication Critical patent/JPH0713639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To nondestructively and rapidly measure the residual life of a ferrite heat-resisting steel with a high accuracy by measuring the spheroidizing rate of carbide precipitated on a grain boundary and evaluating the residual life by using a residual life evaluation criterion chart indicative of the relationship between a life consumption rate and the spheroidizing rate. CONSTITUTION:A variety of ferrite heat-resisting steels which have been used in such environment at a high temperature and a high pressure as in a boiler superheater tube for a thermal power generation or the like are observed under an electron microscope and the maximum and minimum diameters la and lb, respectively, of an intergranular carbide 2 on a grain boundary 1 are measured to calculate the spheroidizing rate la/lb. Then, a creep rupture test is conducted on a used material and a life consumption rate is calculated from the ratio of the creep rupture time of the used material to that of an unused material to make a residual life evaluation criterion chart indicative of the relationship between the spheroidizing rate of the intergranular carbide and a creep rupture life consumption rate. Thus, the residual life of the heat-resisting steel can be accurately evaluated without a destructive test.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温で使用されるフェライト系耐熱鋼の余寿命
を評価する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for evaluating the remaining life of ferritic heat-resistant steel used at high temperatures.

〔従来の技術〕[Conventional technology]

例えば、火力発電用ボイラ過熱器管は高温高圧環境下で
使用されるために、長時間の使用に伴い材質が劣化し、
噴破等の事故を招く恐れがある。従来このような事故の
防止を目的としt耐熱鋼部品の余寿命評価方法としては
、使用された部材のクリープ破断試験により余寿命を評
価する方法や硬さ等の機械的性質の変化に着目した男法
が知られている。
For example, boiler superheater tubes for thermal power generation are used in high-temperature, high-pressure environments, so the material deteriorates over long periods of use.
There is a risk of causing an accident such as a blowout. Conventional methods for evaluating the remaining life of heat-resistant steel parts aimed at preventing such accidents have focused on evaluating the remaining life through creep rupture tests of the used parts and on changes in mechanical properties such as hardness. Men's laws are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、クリープ破断試験による方法は、使用中の部材
の切断や長時間の試験が必要であり非破壊的に且つ迅速
に余寿命を評価することはできなかつ几。ま几硬さ等の
機械的性質の変化に着目する方法は、その変化が寿命の
末期に起こる上にその変化にばらつきが大きい几めに寿
命の比較的初期の段階から寿命の末期までの使用材の余
寿命を的確に評価する事はできなかった。
However, the creep rupture test method requires cutting of the member during use and long-term testing, and cannot quickly and non-destructively evaluate the remaining life. The method that focuses on changes in mechanical properties such as hardness is used from a relatively early stage of life to the end of life, since these changes occur at the end of life and there is large variation in these changes. It was not possible to accurately evaluate the remaining life of the material.

一方、フェライト系耐熱鋼の機械的性質が析出する炭化
物と密接な関係にあり、高温で使用した場合前記炭化物
が時間の経過とともにしだいに成長粗大化することは知
られていたが、前記炭化物の中でも長時間使用された該
耐熱鋼の劣化状態に大きな影響を与える粒界炭化物に着
目した余寿命評価法はなかつ九。
On the other hand, it has been known that the mechanical properties of ferritic heat-resistant steel are closely related to precipitated carbides, and when used at high temperatures, the carbides gradually grow and become coarser over time. Among these, there is a method for evaluating remaining life that focuses on grain boundary carbides, which have a large effect on the deterioration state of heat-resistant steel that has been used for a long time.

本発明は、この粒界炭化物に着目した余寿命評価方法を
提供しようとするものである。
The present invention aims to provide a remaining life evaluation method that focuses on these grain boundary carbides.

〔問題点全解決する九めの手段〕[Ninth method to solve all problems]

本発明者らは、高温で長時間使用され念フェライト系耐
熱鋼について検討し九ところ、該耐熱鋼は高温下で長時
間使用されると、使用時間に伴ない粒界析出物が球状化
し、その球状化の度合は使用温度、使用応力に依存する
ことを確認し友。
The present inventors have investigated ferritic heat-resistant steels that are used at high temperatures for long periods of time, and have found that when these heat-resistant steels are used at high temperatures for long periods of time, grain boundary precipitates become spheroidal with the use time. Please confirm that the degree of spheroidization depends on the operating temperature and operating stress.

そこで、長時間高温で使用され九フェライト系耐熱鋼の
粒界炭化物の球状化の程度を表わす尺度として、該炭化
物の径の最大値と最小値の比を球状化率として測定し九
ところ、この新規なファクターの球状化率はクリープ破
断寿命消費率ま之は応力解析に基づく寿命消費率と良い
相関関係があることを見出し、粒界炭化物の球状化率か
ら余寿命を容易にしかも的確に評価しうろことを見出し
、本発明を完成した。
Therefore, as a measure of the degree of spheroidization of grain boundary carbides in ferritic heat-resistant steel that has been used at high temperatures for long periods of time, the ratio of the maximum and minimum diameters of the carbides was measured as the spheroidization rate. We found that the new factor spheroidization rate has a good correlation with the creep rupture life consumption rate and the life consumption rate based on stress analysis, making it easy and accurate to evaluate the remaining life from the spheroidization rate of grain boundary carbides. He discovered that there is a silver lining and completed the present invention.

すなわち、本発明は上記知見に基づき高温高圧下で長時
間使用され九フェライト系耐熱鋼の粒界に析出し友炭化
物の球状化率の測定と、予め準備した使用材の破壊試験
による寿命消費率ま几は応力解析による寿命消費率と前
記炭化物の球状化率との関係を示す余寿命評価基準線図
を用いて、該耐熱鋼の余寿命を評価することを特徴とす
るものである。
That is, based on the above knowledge, the present invention is based on the measurement of the spheroidization rate of friend carbides that precipitate at the grain boundaries of nine-ferritic heat-resistant steel that has been used for a long time under high temperature and high pressure, and the life consumption rate through a destructive test of the materials used in advance. The method is characterized in that the remaining life of the heat-resistant steel is evaluated using a remaining life evaluation reference diagram showing the relationship between the life consumption rate determined by stress analysis and the spheroidization rate of the carbide.

上述しt本発明によれば、長時間使用されたフェライト
系耐熱鋼の余寿命を、破壊試験等に供することなく非破
壊的に、容易に且つ精度よく評価することができる。
As described above, according to the present invention, the remaining life of ferritic heat-resistant steel that has been used for a long time can be evaluated non-destructively, easily and accurately without subjecting it to a destructive test or the like.

〔実施例〕〔Example〕

以下に本発明の実施例を図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

先ず事業用ボイラの高温耐圧部材として長時間使用され
九2%Or −I Mo@fはじめとするフェライト系
耐熱fAf電子顕微鏡により観察した。
First, it was observed using a heat-resistant fAf electron microscope of a ferrite type such as 92% Or -I Mo@f, which was used for a long time as a high-temperature and pressure-resistant member of a commercial boiler.

第1図は電子顕微鏡組織の模式図であるが、種々の使用
材について粒界1上の粒界炭化物2の径の最大値l!、
と最小値lb′fI:測定し、球状化1=5)ヶ□、え
FIG. 1 is a schematic diagram of the structure under an electron microscope, and shows the maximum value l! of the diameter of grain boundary carbide 2 on grain boundary 1 for various materials used! ,
and the minimum value lb'fI: Measure and spheroidize 1 = 5) □, eh.

次に該耐圧部材のクリープ破断試験を実施して未使用材
とのクリープ破断時間の比から寿命消費率を算出して、
第2図の如き粒界炭化物の球状化率とクリープ破断寿命
消費率との関係を示す余寿命評価基準線図を作成した。
Next, a creep rupture test is performed on the pressure-resistant member, and the life consumption rate is calculated from the ratio of the creep rupture time to that of the unused material.
A remaining life evaluation reference diagram showing the relationship between the spheroidization rate of grain boundary carbides and the creep rupture life consumption rate as shown in FIG. 2 was created.

次いで事業用ボイラで長時間使用された過熱器管の表面
から抽出レプリカ試料を採取し前記方法に基づき粒界炭
化物の球状化率を測定し、余寿命評価基準線図によりク
リープ破断寿命消費率を推定し穴ところ50%のfil
が得られた。
Next, an extracted replica sample was taken from the surface of a superheater tube that had been used for a long time in a commercial boiler, and the spheroidization rate of grain boundary carbides was measured based on the method described above, and the creep rupture life consumption rate was calculated using the remaining life evaluation standard diagram. Estimated hole is 50% fill
was gotten.

これに対して該過熱器管とその未使用材についてる00
C1応力’ Oky / m1I2でのクリープ破断試
験を実施したところその破断時間は該使用材が1100
時間、該未使用材が2140時間で該使用材の寿命消費
率は51.4Xであり、本発明の方法によって求めた寿
命消費率と精度よく一致して29本発明の方法によって
長時間高温で使用され友フェライト系耐熱鋼の余寿命を
精度よく求めることができ友。
On the other hand, 00 on the superheater tube and its unused material
When a creep rupture test was conducted at C1 stress 'Oky / m1I2, the rupture time was 1100 for the material used.
The life consumption rate of the used material is 51.4X when the virgin material is 2140 hours, which is in good agreement with the life consumption rate determined by the method of the present invention. It is possible to accurately determine the remaining life of the ferritic heat-resistant steel used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、フェライト系耐熱鋼
の余寿命を破壊試験によらず非破壊的に且つ迅速に推定
することができ、その推定精度も十分高い余寿命評価法
を提供できる。
As detailed above, according to the present invention, the remaining life of ferritic heat-resistant steel can be estimated non-destructively and quickly without using a destructive test, and a remaining life evaluation method with sufficiently high estimation accuracy can be provided. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粒界炭化物の球状化率を測定するための電子顕
微鏡組織を示す模式図であり、第2図は粒界析出物の球
状化率とクリープ破断寿命消費率との関係を示す余寿命
評価基準線図である。1・・・粒界、2・・・粒界析出
物。
Figure 1 is a schematic diagram showing an electron microscope structure for measuring the spheroidization rate of grain boundary carbides, and Figure 2 is a schematic diagram showing the relationship between the spheroidization rate of grain boundary precipitates and the creep rupture life consumption rate. It is a life evaluation standard diagram. 1... Grain boundary, 2... Grain boundary precipitate.

Claims (1)

【特許請求の範囲】 高温環境下で使用されたフェライト系耐熱鋼の余寿命を
評価する方法において、該耐熱鋼の結晶粒界に析出した
炭化物の下記の定義の球状化率を求める第1工程と 球状化率=粒界炭化物の径の最小値/粒界炭化物の径の
最大値予め求めた使用材の破壊試験による寿命消費率ま
たは応力解析に基づく寿命消費率と前記炭化物の球状化
率との関係を示す余寿命評価基準線図より該耐熱鋼の余
寿命を求める第2工程とからなることを特徴とするフェ
ライト系耐熱鋼の余寿命評価方法。
[Claims] In a method for evaluating the remaining life of ferritic heat-resistant steel used in a high-temperature environment, a first step of determining the spheroidization rate of carbides precipitated at grain boundaries of the heat-resistant steel as defined below. and spheroidization rate = minimum value of grain boundary carbide diameter / maximum value of grain boundary carbide diameter A method for evaluating the remaining life of a ferritic heat-resistant steel, comprising: a second step of determining the remaining life of the heat-resistant steel from a remaining life evaluation reference diagram showing the relationship between the following:
JP61086979A 1986-04-17 1986-04-17 Evaluation method for residual life of ferritic heat resistant steel Expired - Lifetime JPH0713639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086979A JPH0713639B2 (en) 1986-04-17 1986-04-17 Evaluation method for residual life of ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086979A JPH0713639B2 (en) 1986-04-17 1986-04-17 Evaluation method for residual life of ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JPS62245155A true JPS62245155A (en) 1987-10-26
JPH0713639B2 JPH0713639B2 (en) 1995-02-15

Family

ID=13901989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086979A Expired - Lifetime JPH0713639B2 (en) 1986-04-17 1986-04-17 Evaluation method for residual life of ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JPH0713639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907475A (en) * 2019-10-17 2020-03-24 上海发电设备成套设计研究院有限责任公司 Method for evaluating residual life of martensite heat-resistant steel
CN113032985A (en) * 2021-03-11 2021-06-25 北京必创科技股份有限公司 Intelligent service life assessment method and device for wireless sensing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101859A (en) * 1979-01-31 1980-08-04 Toshiba Corp Method of measuring deteriorating degree of ferrite refractory steel component
JPS5655854A (en) * 1979-10-13 1981-05-16 Toshiba Corp Measuring method for life of heat-resisting steel
JPS5960347A (en) * 1982-09-30 1984-04-06 Toshiba Corp Method for evaluating deterioration degree of low-alloy heat-resistant steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101859A (en) * 1979-01-31 1980-08-04 Toshiba Corp Method of measuring deteriorating degree of ferrite refractory steel component
JPS5655854A (en) * 1979-10-13 1981-05-16 Toshiba Corp Measuring method for life of heat-resisting steel
JPS5960347A (en) * 1982-09-30 1984-04-06 Toshiba Corp Method for evaluating deterioration degree of low-alloy heat-resistant steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907475A (en) * 2019-10-17 2020-03-24 上海发电设备成套设计研究院有限责任公司 Method for evaluating residual life of martensite heat-resistant steel
CN113032985A (en) * 2021-03-11 2021-06-25 北京必创科技股份有限公司 Intelligent service life assessment method and device for wireless sensing equipment

Also Published As

Publication number Publication date
JPH0713639B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
Forrest et al. Some experiments on the alternating stress fatigue of a mild steel and an aluminium alloy at elevated temperatures
CA1302122C (en) Method of predicting remaining lifetime of metal material
JPS62245155A (en) Residual life evaluation for ferrite heat-resisting steel
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
JP3825378B2 (en) Life evaluation method of heat-resistant steel
JP3807268B2 (en) Method for diagnosing the remaining life of heat-resistant steel
Goldhoff Paper 8: Stress Concentration and Size Effects in a Cr-Mo-V Steel at Elevated Temperatures
Hyde et al. An overview of small specimen creep testing
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
JPS6327731A (en) Method for forecasting life of metallic material
JP4522828B2 (en) Remaining life diagnosis method for Cr-Mo heat resistant steel
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
JPS63228062A (en) Predicting method for remaining life of metallic material
JPH04340440A (en) Method for evaluating remaining life heat-resistant steel
JPH0713637B2 (en) Method for evaluating remaining life of heat-resistant steel
JPH1164326A (en) Method for evaluating creep damage of weld of high-cr ferrite steel
JPH03170036A (en) Temperature hysteresis indicator
Coffin Notch fatigue crack initiation studies in a high strength nickel base superalloy
SU1004808A1 (en) Method of determining residual resource of unstable structure material article
Arai et al. Determination of High-Temperature Creep Property of High-Cr Steel Based Upon Indentation Test
JP3202462B2 (en) Creep strain measurement method for heat resistant ferritic steel
US3757567A (en) Method for determining formability of material
JPH01250736A (en) Method for determining corrosion resistance of zirconium alloy for nuclear reactor
JPS5917384B2 (en) Method for measuring the degree of deterioration of ferritic heat-resistant steel parts