JPS62245148A - Oxygen concentration sensor - Google Patents

Oxygen concentration sensor

Info

Publication number
JPS62245148A
JPS62245148A JP8866086A JP8866086A JPS62245148A JP S62245148 A JPS62245148 A JP S62245148A JP 8866086 A JP8866086 A JP 8866086A JP 8866086 A JP8866086 A JP 8866086A JP S62245148 A JPS62245148 A JP S62245148A
Authority
JP
Japan
Prior art keywords
oxygen concentration
oxygen
concentration sensor
sensor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8866086A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Fujitani
藤谷 義保
Hideaki Muraki
村木 秀昭
Koji Yokota
幸治 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8866086A priority Critical patent/JPS62245148A/en
Publication of JPS62245148A publication Critical patent/JPS62245148A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To averagely detect the concn. of oxygen, by mounting an oxygen concn. sensor element and a heat generator and covering the oxygen concn. sensor element with a substance occluding and releasing oxygen and a catalytic component. CONSTITUTION:A heater is provided in the zirconia element 4 of an oxygen concn. sensor element and a lead wire 6 is connected to said heater 5. an exhaust side electrode, a spacer and a surface cover layer are successively provided to the inside of the zirconia element 4 from the inside surface thereof and an atmospheric side electrode is provided to the outside thereof and an output lead wire 7 is connected to said electrode. The surface cover layer is constituted of a substance occluding and releasing oxygen and a substance containing a catalytic component. As the surface cover layer, one formed by coating cerium with platinum, palladium or rhodium being the catalytic component is used. Because the element 4 is covered with the substance occluding and releasing oxygen to occlude and release oxygen with respect to an exhaust gas atmosphere varying with the elapse of time and the component to be purified in exhaust gas is eliminated by the catalytic component, the average concn. of oxygen can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素濃度センサ、更に詳しくは内燃機関の排気
を理論空燃比に制御するために使用する酸素濃度センサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxygen concentration sensor, and more particularly to an oxygen concentration sensor used to control the exhaust gas of an internal combustion engine to a stoichiometric air-fuel ratio.

〔従来の抄術ン 自動車等の内燃機関からの排気ガス中の酸素濃度を検出
して、その検出値に基づいて内燃機関に送る空気量及び
燃料供給量をコントロールし、内燃機関の燃費低減及び
排気ガス浄化を行うために酸素濃度センサが使用されて
いる。又、前記酸素濃度センサとともに排気ガス浄化用
の三元触媒が通常使用される。
[Conventional method] Detects the oxygen concentration in the exhaust gas from the internal combustion engine of an automobile, etc., and controls the amount of air and fuel supplied to the internal combustion engine based on the detected value, thereby reducing fuel consumption and reducing the fuel consumption of the internal combustion engine. Oxygen concentration sensors are used to purify exhaust gas. Additionally, a three-way catalyst for exhaust gas purification is usually used together with the oxygen concentration sensor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来、三元触媒システムに使用されてい
る酸素濃度センサは排気ガスの雰囲気の変化(リッチか
らり一ンあるいはり一ンからリッチ)に対する応答速度
が異なる。しかもこの応答速度は酸素濃度センサの種類
、製品のバラツキ、使用温度並びに経時変化に影響され
る。
However, the oxygen concentration sensors conventionally used in three-way catalyst systems have different response speeds to changes in the exhaust gas atmosphere (from rich to rich or from rich to rich). Furthermore, this response speed is affected by the type of oxygen concentration sensor, product variations, operating temperature, and changes over time.

然して上記応答速度の影響により、三元触媒に流入する
排気の平均空燃比は理論空燃比(A/F)からずれてし
まう。現在、この対策としては例えばリッチあるいはり
一ンに切り換わる際に電気的な遅延回路によシ補正し、
二つの応答速度を等しくすべく努力が払われているが、
遅延回路を必要とするため制御が複雑となり、又、信頼
性や精度も十分ではない。
However, due to the influence of the response speed, the average air-fuel ratio of the exhaust gas flowing into the three-way catalyst deviates from the stoichiometric air-fuel ratio (A/F). Currently, as a countermeasure for this, for example, when switching from rich to rich, electrical delay circuits are used to compensate for this.
Although efforts are being made to equalize the two response speeds,
Control is complicated because a delay circuit is required, and reliability and accuracy are also insufficient.

本発明者らは種々の検討を加えた結果酸素濃度セ/すを
高速で応答させ、その出力を直接的にA/F制御に使用
しようとする限り何等解決の目処は無いという結論に到
った。
As a result of various studies, the inventors of the present invention came to the conclusion that there is no prospect of a solution as long as the oxygen concentration sensor is made to respond at high speed and its output is directly used for A/F control. Ta.

いうまでもなく、理想的な酸素濃度センサは理論A/F
を境として出力信号が大きく変化するものであるから、
実際、酸素濃度センサを理想に近づけることができるな
らばその出力種度、ひいてはA/F制御梢度が向上する
はずである。
Needless to say, the ideal oxygen concentration sensor is the theoretical A/F.
Since the output signal changes greatly after
In fact, if the oxygen concentration sensor can be made close to ideal, its output level and, by extension, the A/F control level should improve.

すなわち、酸素濃度セ/すを理想的な状態で使用するた
めの条件は、 (1)内燃機関の排気ガスのうち、少なくとも酸素6度
センサに触れるガスは化学的に平衡に達していること、 (2)  セ/すの応答速度よシ雰囲気変動速度が十分
に遅いこと、 である。(1)に関しては、例えば酸素濃度センサの表
面(排気ガスに触れる部分)に触媒を前置するなどの対
策により解決できる。しかし、(2)については、従来
技術では解決できない。
In other words, the conditions for using the oxygen concentration sensor in an ideal state are: (1) Among the exhaust gas of the internal combustion engine, at least the gas that comes into contact with the oxygen 6 degree sensor must reach chemical equilibrium; (2) The speed of atmospheric fluctuation is sufficiently slower than the response speed of the center and the center. Regarding (1), it can be solved by, for example, placing a catalyst on the surface of the oxygen concentration sensor (the part that comes into contact with exhaust gas). However, regarding (2), it cannot be solved by the conventional technology.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは排気ガス雰囲気の
変動に応じて酸素を吸蔵・放出することによって平均的
な酸素濃度を検出することができる酸素濃度センサを提
供することにある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to detect the average oxygen concentration by absorbing and releasing oxygen according to changes in the exhaust gas atmosphere. The purpose of this invention is to provide an oxygen concentration sensor that can

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明の酸素濃度センサは、酸素濃度センサ素
子と該素子を加熱する発熱体とを備えてなり、該素子の
被測定ガスと接触する面上に酸素を吸蔵・放出する物質
と触媒成分とを被覆したことを特徴とする。
That is, the oxygen concentration sensor of the present invention includes an oxygen concentration sensor element and a heating element that heats the element, and a substance that absorbs and releases oxygen and a catalyst component on the surface of the element that comes into contact with the gas to be measured. It is characterized by being coated with.

酸素濃度センサ素子としては、固体電解質例えば立方晶
ジルコニアを用いた、酸素濃淡電池型の酸素!1度セン
サ素子、あるいは半導体例えばチタニアを用いた酸素濃
度によシ抵抗の変化するような酸素濃度センサ素子が使
用できる・これらの素子のうち、内燃機関の排気ガスに
触れる部分に排気ガス中の成分のうちA/Fによりその
濃度が大きく変化する成分すなわち酸素を吸蔵・放出で
きる物質例えば酸化セリウムを触媒成分例えば貴金属(
白金、ロジウム、パラジウムのうちから1種あるいは複
数組合せたもの)とともにコートシ、かつ、酸素濃度セ
ンサ素子を所定温度に加熱できる発熱体例えば棒状など
所定性状のセラミックヒータ等のヒータを有する構造と
する。
As an oxygen concentration sensor element, an oxygen concentration battery type oxygen sensor using a solid electrolyte such as cubic zirconia can be used. An oxygen concentration sensor element, or an oxygen concentration sensor element that uses a semiconductor such as titania and whose resistance changes depending on the oxygen concentration, can be used. Among the components, components whose concentration changes greatly depending on A/F, that is, substances that can store and release oxygen, such as cerium oxide, are used as catalyst components, such as noble metals (
The structure includes a heater such as a ceramic heater having a predetermined shape such as a rod shape, and a heating element capable of heating the oxygen concentration sensor element to a predetermined temperature.

具体的には、例えば片方を閉じた円筒形の立方晶ジルコ
ニア素子の外側(排気側)と内側(大気側)とにそれぞ
れ多孔質の白金よりなる電極を設けた後、排気側電極表
面上に、アルミナ粉末にパラジウム及び酸化セリウムを
担持して調製した触媒層を被覆し、一方ジルコ二アより
なる円筒内部にはζ−夕を装着したものなどが挙げられ
る。又、センサ素子の形状としては円板状等の板状でも
よく、特に限定されない。
Specifically, for example, electrodes made of porous platinum are provided on the outside (exhaust side) and inside (atmosphere side) of a cylindrical cubic zirconia element with one end closed, and then electrodes made of porous platinum are placed on the surface of the exhaust side electrode. Examples include those coated with a catalyst layer prepared by supporting palladium and cerium oxide on alumina powder, and equipped with a ζ-layer inside a cylinder made of zirconia. Further, the shape of the sensor element may be a plate shape such as a disk shape, and is not particularly limited.

言うまでもなくジルフニアセンサ以外の!I2素澁度セ
ンサ例えばチタニアセンサに対して上記と同様の処理を
行なっても同じ効果が得られる。
Needless to say, other than Zilphnia sensor! The same effect can be obtained by performing the same processing as above on an I2 elemental pressure sensor, for example, a titania sensor.

センサ表面に触媒層を被覆する場合には直接被接しても
良いが、よシ好1しくけ、適当なセパレータを介して被
覆する方i艮い。このセパレータの役割は触媒成分と酸
素濃度センサの素子あるいは電極とが使用中に反応する
等による性能悪化を防ぐことにある。したがって、セパ
レータの成分としては、例えば金属酸化物すなわちスピ
ネル(MgAl雪04 ) % ジルコニア(ZrOz
)、あるいはコランダム(tt −klx Os )な
ど、高温及び種々の排気ガス組成に対して化学的に安定
な物質が望ましく、又、触媒層を通過したガスが速やか
にセンサ素子表面に達するようにするため多孔質である
ことが必要となる。セパレータの厚さとしては0〜20
0 pm 、  好ましくは20〜50μmが良い。2
00 pm以上では、セパレータとして用いた物質の材
質にもよるがガスの透過が悪化する。又、セパレータの
多孔度合を決定するセパレータの成分の粒径としては1
105〜1μm が良い。粒径が105 pm以上では
ガスの透過が悪化し、粒径が1 pm以上では触媒成分
が孔に入り込むため、セパレータとしての効果が失なわ
れてしまう。
When coating the sensor surface with a catalyst layer, it may be applied directly, but it is preferable to coat the sensor surface with a suitable separator interposed therebetween. The role of this separator is to prevent deterioration in performance due to reaction between catalyst components and the element or electrode of the oxygen concentration sensor during use. Therefore, the components of the separator include, for example, metal oxides such as spinel (MgAl Snow 04), zirconia (ZrOz
) or corundum (tt-klxOs), which are chemically stable against high temperatures and various exhaust gas compositions, are desirable, and also allow the gas that has passed through the catalyst layer to quickly reach the sensor element surface. Therefore, it needs to be porous. The thickness of the separator is 0 to 20
0 pm, preferably 20 to 50 μm. 2
At 0.00 pm or higher, gas permeation deteriorates, although it depends on the material used as the separator. In addition, the particle size of the separator component that determines the porosity of the separator is 1
105 to 1 μm is good. If the particle size is 105 pm or more, gas permeation will deteriorate, and if the particle size is 1 pm or more, the catalyst component will enter the pores, resulting in a loss of effectiveness as a separator.

セリア(Ce02)以外の酸素の吸蔵・放出を行なう物
質としては、例えば酸化バナジウム酸化コバルトなどの
不定比化合物、希土類酸化物、ジルコニアにカルシウム
、イツトリウムなどを添加したような欠陥ホタル石型構
造を有する化合物などでも良い。これらの物質の物理的
形状としては、速やかに電極まで排気ガスが透過でき、
かつ、ガス交換が容易なことが必要であシ、対象とする
エンジン制御方式にもよるが粒径IIL1〜5pm、被
覆層の厚さ20〜200 pmが瑣ましい。この粒径が
上記物質で達成できない場合には、適当な化学的に安定
な物質、例えばθ−アルミナ、ジルコニア、スピネルな
どの粉末上に上記物質を形成してもよい。又、吸蔵・放
出の効果を有する物質のみでは、ガスの交換速度は遅い
ため、触媒成分として貴会IA(Pt%Pd、 Phの
いづれか、あるいは2種以上を組合せたもの)を担持さ
せておくことが必要である。このように触媒化させるこ
とにより、センサ素子に達するガスを化学的に平衡状態
にする効果もある。
Substances that store and release oxygen other than ceria (Ce02) include, for example, nonstoichiometric compounds such as vanadium oxide and cobalt oxide, rare earth oxides, and defective fluorite-type structures such as zirconia added with calcium, yttrium, etc. It may also be a compound. The physical shape of these substances allows exhaust gas to quickly pass through to the electrodes.
In addition, it is necessary that gas exchange be easy, and the particle size IIL is preferably 1 to 5 pm and the thickness of the coating layer is 20 to 200 pm, depending on the target engine control system. If this particle size cannot be achieved with the materials described above, the materials may be formed on a suitable chemically stable material, such as a powder of theta-alumina, zirconia, spinel, etc. In addition, since the gas exchange rate is slow with only substances that have the effect of occluding and desorbing, it is recommended to support IA (Pt%Pd, Ph, or a combination of two or more types) as a catalyst component. It is necessary. By catalyzing the gas in this manner, there is also the effect of bringing the gas reaching the sensor element into a chemically balanced state.

触媒成分の担持量は吸蔵・放出する物質に対しテ12−
1.5wt%が良い。
The amount of supported catalyst components is determined by
1.5wt% is good.

上記粉末をセンサ素子の電極上あるいはセパレータ上に
必要ならば適当な焼結助剤(硝酸アルミニウムなど)を
用いてコートし、焼きつける。
The above powder is coated on the electrodes of the sensor element or on the separator using a suitable sintering aid (aluminum nitrate, etc.) if necessary, and baked.

センサに取付けるヒータなどの発熱体は種類を問わない
が、センサ素子及びコートした物質の両者を500℃以
上、望ましくは、600℃−800℃に加熱できるもの
が必要である。好ましくは、温度に対して正の抵抗値変
化を示すような発熱体たとえば白金線を使用したものが
良い。これは定電圧で使用することによシはぼ一定の温
度に設定できる利点がある。
The type of heating element such as a heater attached to the sensor does not matter, but it must be capable of heating both the sensor element and the coated substance to 500°C or higher, preferably 600°C to 800°C. Preferably, a heating element such as a platinum wire that exhibits a positive resistance change with temperature is used. This has the advantage of being able to be set at a nearly constant temperature by using a constant voltage.

本発明の酸素濃度センサ(以下平均酸素濃度センサと記
す)の使用法としては、該#!l素濃度センサを単独で
使用する方法と、従来型酸素濃度センサと組み合わせて
使用する方法とがある。
The method of using the oxygen concentration sensor of the present invention (hereinafter referred to as average oxygen concentration sensor) is as follows. There are two methods: using the oxygen concentration sensor alone and using it in combination with a conventional oxygen concentration sensor.

後者の使用法としては、従来型戚素娘度センサを主制御
に使用し、本発明の平均酸素濃度センサの信号をもとに
従来型酸素濃度センサの応答ずれを補正すると良い。最
大補正遅延時間は200m5程度が良い。第10図に平
均酸素濃度セ/すを用いて従来型酸素濃度センサの応答
ずれを補正するための装置の概略構成図を示す。
In the latter method, it is preferable to use the conventional oxygen concentration sensor for main control and correct the response deviation of the conventional oxygen concentration sensor based on the signal of the average oxygen concentration sensor of the present invention. The maximum correction delay time is preferably about 200m5. FIG. 10 shows a schematic configuration diagram of an apparatus for correcting response deviation of a conventional oxygen concentration sensor using an average oxygen concentration sensor.

第10図において、従来技術による酸素濃度センサの信
号により、リッチ・リーンを判定し、゛  その結果を
各種空燃比制御(例えば、第8図の三方電磁弁13)に
使用する。このままでは、従来酸素濃度センサの欠点(
応答速度の違い)が出るため、平均酸素濃度センサによ
り、適当な遅延を上記出力に加えることにより補正する
In FIG. 10, rich/lean conditions are determined based on the signal from the conventional oxygen concentration sensor, and the results are used for various air-fuel ratio controls (for example, the three-way solenoid valve 13 in FIG. 8). As things stand, the drawbacks of conventional oxygen concentration sensors (
This is corrected by adding an appropriate delay to the above output using the average oxygen concentration sensor.

すなわち、平均酸素濃度センサの出力信号に対し、リッ
チ・リーン判別器、積分器及び、遅延方向判別器を用い
て、平均空燃比のずれの方向と、その大きさとを判別し
、その結果をもとに、前述の従来型センサの出力に対し
、適度な遅延をほどこす。
That is, the direction and magnitude of the deviation in the average air-fuel ratio are determined using a rich/lean discriminator, an integrator, and a delay direction discriminator with respect to the output signal of the average oxygen concentration sensor, and the results are also used. In addition, an appropriate delay is applied to the output of the conventional sensor mentioned above.

言うまでもなく、この装置は、一般の他の酸素センサを
用いた空燃比補償回路に応用できるものである。又、第
11図に@10図中の信号A%B及びCの電圧波形を示
し、信号Cによって従来型酸素濃度センサの遅延回路の
応答ずれを補正する。又、平均酸素濃度センサの信号を
従来型センサのリッチ・リーン判別器に作用させること
もできる。すなわち、リッチ・リーン判別器は、ジルコ
ニアセンサの場合では、ある電圧値、チタニアセンサの
場合では、ある抵抗値を基準としてリッチ・リーンの判
別を行なっているが、この判別基準を平均酸素濃度セン
サの出力に従って変化させても、遅延回路を用いた場合
と同様の効果が得られる。この方法は制御範囲が若干狭
くなるが、遅延回路を含まないため、全体の制御速度を
速くすることができるという利点がある。もちろん、遅
延回路制御と併用しても良い。
Needless to say, this device can be applied to air-fuel ratio compensation circuits using other general oxygen sensors. Further, FIG. 11 shows the voltage waveforms of the signals A%B and C in FIG. @10, and the response deviation of the delay circuit of the conventional oxygen concentration sensor is corrected by the signal C. It is also possible to apply the signal of the average oxygen concentration sensor to a rich/lean discriminator of a conventional sensor. In other words, the rich/lean discriminator discriminates between rich and lean based on a certain voltage value in the case of a zirconia sensor and a certain resistance value in the case of a titania sensor. Even if the output is changed according to the output of the delay circuit, the same effect as when using a delay circuit can be obtained. Although this method has a slightly narrower control range, it has the advantage of increasing the overall control speed because it does not include a delay circuit. Of course, it may be used in combination with delay circuit control.

平均酸素濃度センサを単独で使用する方法としては、例
えば、キャプレタ等により内燃機関からの排気ガス雰囲
気をわずかにリッチに調節し、2次空気を排気管内〈導
入し、理論A/Fに相当する排気ガスとする方法がある
。具体的には、空気を1〜10Hzで断続的に排気パイ
プより注入し、その時の08時間をセンサ信号により制
御するものである。第12図にこの場合の装置の概略構
成図を示す。第12図において、エンジンから排出され
る排気ガスは、わずか空気不足(リッチ)であるとする
To use the average oxygen concentration sensor alone, for example, adjust the exhaust gas atmosphere from the internal combustion engine to be slightly rich using a capretor, etc., and introduce secondary air into the exhaust pipe, which corresponds to the theoretical A/F. There is a way to make it into exhaust gas. Specifically, air is intermittently injected from an exhaust pipe at a frequency of 1 to 10 Hz, and the time period of 08 hours is controlled by a sensor signal. FIG. 12 shows a schematic configuration diagram of the apparatus in this case. In FIG. 12, it is assumed that the exhaust gas discharged from the engine is slightly air-deficient (rich).

発振器(三角波を発生)の信号に従りて電磁弁を断続的
に開き、排気管にパルス状に空気を導入する。この下流
に平均酸素濃度センサを設置し、排気ガスの酸素濃度を
検出する。この出力をリッチ・リーン判別器及び積分器
を通して整形した後比較器5により、電磁弁の開閉の時
間割合を変化させる。すなわち、平均空燃比がリッチな
らば、空気を導入する時間割合を増加させ、リーフなら
ば逆に作用させる。比較器3は、三角波の電磁弁動作レ
ベルを制御する。
The solenoid valve is opened intermittently according to the signal from the oscillator (which generates a triangular wave), and air is introduced into the exhaust pipe in a pulsed manner. An average oxygen concentration sensor is installed downstream of this to detect the oxygen concentration of the exhaust gas. After shaping this output through a rich/lean discriminator and an integrator, a comparator 5 changes the time ratio of opening and closing of the solenoid valve. That is, if the average air-fuel ratio is rich, the time ratio for introducing air is increased, and if the average air-fuel ratio is leaf, the opposite effect is applied. Comparator 3 controls the triangular wave solenoid valve operation level.

このようにして触媒に導入される排気ガスを理論空燃比
とすることができる。
In this way, the exhaust gas introduced into the catalyst can be brought to the stoichiometric air-fuel ratio.

なお、平均酸素濃度センサを単独で使用する方法として
はこの図に限ることがない。又、空気の導入口は、セン
サの上流であれば良く、例えばエンジンの上流であって
も良い。第15図に第12図中の信号B%D及びEの電
圧波形を示す。なお、信号Ao電圧波形は第11図に示
すものと同一である。
Note that the method of using the average oxygen concentration sensor alone is not limited to this diagram. Further, the air inlet may be upstream of the sensor, for example, upstream of the engine. FIG. 15 shows the voltage waveforms of the signals B%D and E in FIG. 12. Note that the voltage waveform of the signal Ao is the same as that shown in FIG.

〔実施例〕〔Example〕

以下の実施例において本発明を更に詳細に説明する。な
お、本発明は下記実施例に限定されるものではない。
The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.

片方を閉じた円筒形に成形され九安定化ジルコニアより
なる素子の内側(正極:大気側)及び外側(負+f&:
排気側)に白金メッキを施した。
The inside (positive electrode: atmosphere side) and outside (negative +f&:
The exhaust side) is plated with platinum.

この素子の外側にスピネル(MgA/sO+ )  を
プラズマ溶射したものを試料1とした。
Sample 1 was prepared by plasma spraying spinel (MgA/sO+) on the outside of this element.

r−アルミナをボールミルにて平均粒径1゜pm以下に
粉砕した粉末に塩化白金酸及び塩化ロジウムの水溶液を
加えて攪拌しスラリー状とした後、110℃で10時間
乾燥し、次いで600℃5時間空気中で焼成して触媒粉
末を作成した。白金の担持量は触媒粉末に対し2wt%
、ロジウムの担持量はα2 wt%とし之。
An aqueous solution of chloroplatinic acid and rhodium chloride was added to a powder of r-alumina ground to an average particle size of 1° pm or less using a ball mill, stirred to form a slurry, dried at 110°C for 10 hours, and then heated at 600°C for 5 hours. A catalyst powder was prepared by calcining in air for an hour. The amount of platinum supported is 2wt% based on the catalyst powder.
, the amount of rhodium supported was α2 wt%.

上記触媒粉末100部に対しアルミナゾル(アルミナ含
有量10wt%)70部、硝酸アルミニウム3部、水3
0部を加えて湿式ホールミルにて攪拌しスラリーを作成
した。□このスラリーに試料1の外側部分を浸し、11
0”Qで10時間乾燥させ、次いで700 T!で1部
間空ダ中で焼成したものを試料2とした。
For 100 parts of the above catalyst powder, 70 parts of alumina sol (alumina content 10wt%), 3 parts of aluminum nitrate, 3 parts of water
0 part was added and stirred in a wet-type whole mill to prepare a slurry. □Immerse the outer part of sample 1 in this slurry,
Sample 2 was prepared by drying at 0''Q for 10 hours and then firing at 700 T! for a portion in a vacuum chamber.

市販の酸化セリウム粉末に硝酸ハラジウム水溶液を加え
て攪拌し、10時間110℃で乾燥した後空気中500
℃で3時間焼成した。このパラジウム−セリウム0末を
試料2と同様の方法で試料1にコートして試料3を作成
した。同様にして試料2及び試料3の内部に白金発熱体
からなると一夕を装着した試料4及び5を作成した。な
お、とのヒータは酸素濃度センサを約700℃に加熱す
ることができる。第1図に本発明の平均酸素濃度センサ
(試料3)のセンサ素子部分の断面図を示す。図中、4
はジルコニア素子、5はヒータ、6はヒータ用リード線
、7はセンサ出力用リード線である。又、第2図に第1
図の実線で囲んだ部分■の拡大断面図を示す。図中、8
は大気側電極、9は排気側電極、10はセパレータ、1
1は酸素を吸蔵・放出する物質と触媒成分とを含む表面
被覆層である。
A haladium nitrate aqueous solution was added to commercially available cerium oxide powder, stirred, and dried at 110°C for 10 hours.
It was baked at ℃ for 3 hours. Sample 3 was prepared by coating Sample 1 with this palladium-cerium 0 powder in the same manner as Sample 2. Similarly, Samples 4 and 5 were prepared by attaching a platinum heating element inside Samples 2 and 3. Note that the heater can heat the oxygen concentration sensor to about 700°C. FIG. 1 shows a cross-sectional view of the sensor element portion of the average oxygen concentration sensor (sample 3) of the present invention. In the diagram, 4
5 is a zirconia element, 5 is a heater, 6 is a heater lead wire, and 7 is a sensor output lead wire. Also, Figure 2 shows the first
An enlarged cross-sectional view of the portion (3) surrounded by a solid line in the figure is shown. In the figure, 8
is an atmosphere side electrode, 9 is an exhaust side electrode, 10 is a separator, 1
1 is a surface coating layer containing a substance that stores and releases oxygen and a catalyst component.

第3図に空燃比(A/F =空気の重さくI)/燃料の
重さくI))と排気ガス中の各有害成分の浄化率との関
係を示す。21■3図から明らかなように本発明の平均
酸素a度センサを用いて空燃比を理論空燃比(14,6
)に制御すれば、排気ガス浄化用触媒の浄化率が総合的
に向上する。
FIG. 3 shows the relationship between the air-fuel ratio (A/F = air weight I)/fuel weight I) and the purification rate of each harmful component in the exhaust gas. As is clear from Figure 21-3, the air-fuel ratio is adjusted to the stoichiometric air-fuel ratio (14,6
), the purification rate of the exhaust gas purification catalyst is improved overall.

実験1゜ 自動車用内燃機関の排気ガスに似せたモデルガス(第1
表参照)を用意し、ガス温400℃及び600“Cにお
ける上記試料1〜5の各酸素濃度センサの静特性を測定
した。
Experiment 1゜A model gas that resembles the exhaust gas of an automobile internal combustion engine (first
(see table) were prepared, and the static characteristics of each of the oxygen concentration sensors of Samples 1 to 5 were measured at gas temperatures of 400°C and 600"C.

とすると、S=1、すなわち当世点で酸素a度センサの
信号が変化するものは第4図に示すようにガス温400
℃の場合は試料4と5のみであった。又、ガス温600
℃の場合は第5図に示すように試料2,5.4及び5で
信号が切換つたO 実験λ 第1表におけるガス組成において酸素濃度Cl3チのガ
スIと1.0%のガス■とを交互にQ、5秒づつ流し、
酸素濃度センサの応答性を見た。ガス温度は500℃と
した。第6図及び第7図から明らかなように、試料1で
は十分な出力変化が得られない。又、試料2と4では出
力レベルにしてα4■以上(リッチ領域)と14V以下
(リーン領域)の時間割合が等しくない。すなわち、こ
のような酸素濃度センサでは、リーン→リッチ及びリッ
チ→リーンの応答性に違いがあることがわかる。
If S = 1, that is, the signal of the oxygen a degree sensor changes at the current point, as shown in Figure 4, the gas temperature is 400.
In the case of ℃, only samples 4 and 5 were used. Also, gas temperature 600
In the case of ℃, as shown in Fig. 5, the signal changed for samples 2, 5.4, and 5. Alternately play Q for 5 seconds each,
We looked at the responsiveness of the oxygen concentration sensor. The gas temperature was 500°C. As is clear from FIGS. 6 and 7, sample 1 does not provide a sufficient change in output. In addition, in samples 2 and 4, the proportion of time at the output level of α4■ or more (rich region) is not equal to that of 14V or less (lean region). That is, it can be seen that in such an oxygen concentration sensor, there is a difference in responsiveness from lean to rich and from rich to lean.

したがって、このような酸素濃度センサをA/F 制御
に用いた場合には、平均A/F  を理論A/F に調
節することはできない。試料3と5ではこの周期のガス
変動に対しては6答していないことがわかる。
Therefore, when such an oxygen concentration sensor is used for A/F control, the average A/F cannot be adjusted to the theoretical A/F. It can be seen that samples 3 and 5 do not respond to gas fluctuations in this period.

実験3 ガソリンエンジン(排気量約1,500cc)  の排
気管に第8図の様な装置を取り付けた0第8図において
、酸素濃度センサ14の信号によ勺アンプ15を介して
三方電磁弁13を駆動する〇すなわち、酸素濃度センサ
14の信号が、排気ガス中の酸素が不足(リッチ)の状
態であることを示しているならば、三方電磁弁13を介
して、エアコントロールパルプ18の空気室へ負圧が導
入され、弁が開く。弁には圧力調整弁により一定の空気
圧がかかつているので、弁の開度に応じた空気量が排気
ガス中に導入される。
Experiment 3 A device as shown in FIG. 8 was attached to the exhaust pipe of a gasoline engine (displacement approximately 1,500 cc). In FIG. In other words, if the signal from the oxygen concentration sensor 14 indicates that the exhaust gas is deficient (rich) in oxygen, the air in the air control pulp 18 is activated via the three-way solenoid valve 13. Negative pressure is introduced into the chamber and the valve opens. Since a constant air pressure is applied to the valve by the pressure regulating valve, an amount of air is introduced into the exhaust gas according to the opening degree of the valve.

逆に酸素濃度センサが排気ガス中の酸素濃度が過剰であ
ることを示せば、三方電磁弁13は切換り、エアコント
ロールバルブ1Bの空気室が大気圧となり弁は閉じ排気
中への空気導入は停止される。このような制御により、
三元触媒16に導入される排気ガスは化学(理論当量点
空燃比)付近に14 gされる。ただし、エンジン排気
は常にわずかリッチ側に制御されているものとする。キ
ャブレタを、9!!Mして200 Orpm 、吸気マ
ニホルド自圧−350朋Hfとした。これに試料4の従
来型の酸=−j(o度センサを取り付け、三元触媒16
通過後のNO,Co%HC各エミッションが最低となる
ように、圧力調整弁を調節した0次に、マニホルド負圧
を−450mm、Hg及び−250imHg  と変え
浄化率を測定した。結果を第2表に示す。
Conversely, if the oxygen concentration sensor indicates that the oxygen concentration in the exhaust gas is excessive, the three-way solenoid valve 13 switches, and the air chamber of the air control valve 1B becomes atmospheric pressure, closing the valve and preventing air from being introduced into the exhaust gas. will be stopped. With such control,
The exhaust gas introduced into the three-way catalyst 16 is brought to a chemical concentration of 14 g near the theoretical equivalence point air-fuel ratio. However, it is assumed that the engine exhaust is always controlled to be slightly rich. Carburetor, 9! ! M was set at 200 Orpm, and the intake manifold pressure was -350 Hf. To this, the conventional acid of sample 4 = -j (o temperature sensor was attached, three-way catalyst 16
The pressure regulating valve was adjusted so that the NO and Co%HC emissions after passing were the lowest, and the manifold negative pressure was changed to -450 mm, Hg, and -250 imHg, and the purification rate was measured. The results are shown in Table 2.

第2表6成分浄化率(%) 負圧(朋Hg)No  Co  He 第2表から明らかなように、−a50msHgの場合に
はNo浄化率が低く、リーン側で制御され、−250m
iHgの場合、にはHe浄化率が低く、リッチ側で制御
されていることがわかる。この理由としては、従来型の
酸素濃度センサでは平均空燃比が測定できないことが挙
げられる。
Table 2 6 component purification rate (%) Negative pressure (Hg) No Co He As is clear from Table 2, in the case of -a50msHg, the No purification rate is low, and it is controlled on the lean side, and -250 m
In the case of iHg, the He purification rate is low and it can be seen that it is controlled on the rich side. The reason for this is that the average air-fuel ratio cannot be measured with conventional oxygen concentration sensors.

実験4゜ 実験3の装はの酸素濃度センサの取付部分を第9図に示
すように改良して、同様の実験を行なった0 すなわち、第9図においては、第8図の酸素a度センサ
14及びアンプ15を酸素濃度センサ21(従来型セン
サ、試料4)と本発明の酸素濃度センサ22(試料3)
及びコンピュータに変更した。なお、コンピュータの内
容は第10図に示すものである。結果を第3表に示す。
Experiment 4 A similar experiment was carried out by modifying the mounting part of the oxygen concentration sensor of the equipment in Experiment 3 as shown in Fig. 9. In other words, in Fig. 9, the oxygen concentration sensor of Fig. 8 was 14 and the amplifier 15 are connected to the oxygen concentration sensor 21 (conventional sensor, sample 4) and the oxygen concentration sensor 22 of the present invention (sample 3).
and changed to computer. The contents of the computer are shown in FIG. The results are shown in Table 3.

負圧(mHg)  NOCo  HC 上記表の結果より、いずれの負圧においてもNo及びH
C浄化率がともに高く、理論A/F近傍に極めて近い条
件下で作動していることがわかる。
Negative pressure (mHg) NOCo HC From the results in the table above, both No and H
It can be seen that both C purification rates are high, and that they are operating under conditions extremely close to the theoretical A/F.

実験5 第12図に示した装置に酸素濃度センサ試料4および5
を取付けて、実験5と同様の実験を行なった。結果を第
4表に示す。
Experiment 5 Oxygen concentration sensor samples 4 and 5 were installed in the apparatus shown in Figure 12.
was installed, and an experiment similar to Experiment 5 was conducted. The results are shown in Table 4.

第4.&各成分浄化率(チ) 第4表よシ、従来型酸素濃度センサを用いる場合に比べ
、本発明の平均酸素濃度センサを用いる場合には、 N
O及びHC浄化率がともに向上し、極めて精度の高い空
燃比制御を行なうことができる。
4th. & Purification rate of each component (H) Table 4 shows that when using the average oxygen concentration sensor of the present invention, compared to when using a conventional oxygen concentration sensor, N
Both O and HC purification rates are improved, and extremely accurate air-fuel ratio control can be performed.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明の滅ぶ濃度センサは、酸素濃度セン
?素子と該素子を加熱する発熱体とを備えてなり、該素
子の被測定ガスと接触する面上に酸素を吸麓・放出する
物質と触媒成分とを被覆したものであるため、経時的に
変動する排気ガス雰囲気に対して酸素を吸蔵・放出し、
かつ排気ガス中の浄化すべき成分を触媒成分の作用によ
って消滅させることにより、雰囲気変動の影響を受ける
ことなく平均的な酸素濃度を測定することができる。
As mentioned above, the concentration sensor of the present invention is an oxygen concentration sensor? It is equipped with an element and a heating element that heats the element, and the surface of the element that comes into contact with the gas to be measured is coated with a substance that absorbs and releases oxygen and a catalyst component. It stores and releases oxygen in the fluctuating exhaust gas atmosphere,
In addition, by eliminating the components to be purified in the exhaust gas by the action of the catalyst component, the average oxygen concentration can be measured without being affected by atmospheric fluctuations.

したがって、センサ素子の酸素濃度を検出する部分に到
達するガス成分は、化学的に平衡組成になっており、成
分の変動速度は測定に必要十分なだけ遅いため、ヒータ
による加熱も含めて、はぼ理想的に作動し、正確なA/
F  制御の基準信号とすることができる。
Therefore, the gas components that reach the part of the sensor element that detects the oxygen concentration have a chemically equilibrium composition, and the rate of fluctuation of the components is slow enough for measurement. Operates ideally and provides accurate A/
It can be used as a reference signal for F control.

結果として、従来と比較し、経時変化の少ない、しかも
精度の良いA/F 制御が可能になり排気ガス中の有害
成分を大幅に低減できる。
As a result, compared to the conventional method, it is possible to perform A/F control with less change over time and higher accuracy, and harmful components in exhaust gas can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸素濃度センサの一実施例のセンサ素
子の断面図、 第2図は第1図の実線で囲んだ部分Hの拡大断面図、 化率との関係を示すグラフ、 第4図は排気ガス塩400 ’Qにおける各種酸素濃度
センサの使用酸素量/要求酸素量とセンサ出力との関係
を示すグラフ、 第5図は排気ガス塩600℃における各種酸素濃度セン
サの使用酸素t/要求酸素量とセンサ出力との関係を示
すグラフ、 第6図及び第7図は酸素濃度18%及び1.0−の排気
ガスを交互に流した場合の各種酸素濃度セ/すの出力の
変化を示すグラフ、 第8図は酸素濃度センサの性能評価装置の一例の概略構
成図、 第9図は第8図の装置を改良した装置の酸素濃度センサ
の取付部分の概略構成図、 第10図は本発明の酸素濃度センサを用いて従来型酸素
濃度センサの応答のずれを補正するための装置の概略構
成図、 第11図は第10図中の信号A、B及びCの電圧波形図
、 912図は本発明の酸素濃度センサを用いて排気ガスの
性状を制御する装置の概略構成図、第13図は第12図
中の信号B%D及びEの電圧波形図である。 図中、 4・・・ジルコニア素子  5・・・ヒータ8・・・大
気側電極    ?・・・排気側電極10・・・セパレ
ータ   11・・・表面被覆層(ほか1名) 才1図 牙 2 図       5−セータ ■ 牙3図 宣嬉比(^/F) 24図 便用隘素畳/嘗東酸↑l 牙5図 (t!用@素量/雰載猷l 牙6図 晴 間(秤) 矛8図
FIG. 1 is a sectional view of a sensor element of an embodiment of the oxygen concentration sensor of the present invention, FIG. 2 is an enlarged sectional view of a portion H surrounded by a solid line in FIG. 1, and a graph showing the relationship with the conversion rate. Figure 4 is a graph showing the relationship between the amount of oxygen used/required oxygen by various oxygen concentration sensors and the sensor output when the exhaust gas salt is 400'Q, and Figure 5 is the graph showing the relationship between the amount of oxygen used/the amount of oxygen required by various oxygen concentration sensors and the sensor output when the exhaust gas salt is 400'Q. Figures 6 and 7 are graphs showing the relationship between required oxygen amount and sensor output. Figures 6 and 7 show the output of various oxygen concentration sensors when exhaust gas with an oxygen concentration of 18% and 1.0- Graph showing changes; Figure 8 is a schematic configuration diagram of an example of an oxygen concentration sensor performance evaluation device; Figure 9 is a schematic configuration diagram of the oxygen concentration sensor mounting part of a device that is an improved version of the device in Figure 8; The figure is a schematic configuration diagram of a device for correcting the response deviation of a conventional oxygen concentration sensor using the oxygen concentration sensor of the present invention. Figure 11 is a voltage waveform diagram of signals A, B, and C in Figure 10. , 912 is a schematic configuration diagram of an apparatus for controlling the properties of exhaust gas using the oxygen concentration sensor of the present invention, and FIG. 13 is a voltage waveform diagram of signals B%D and E in FIG. 12. In the figure, 4... Zirconia element 5... Heater 8... Atmospheric side electrode? ...Exhaust side electrode 10...Separator 11...Surface coating layer (1 other person) Sai1 Izu Fang 2 Figure 5 - Sweater Tatami / Katosan ↑l Fang 5 diagram (t! for @ elemental quantity / Atsaiyu l Fang 6 diagram Haru Ma (scale) Spear 8 diagram

Claims (4)

【特許請求の範囲】[Claims] (1) 酸素濃度センサ素子と該素子を加熱する発熱体
とを備えてなり、該素子の被測定ガスと接触する面上に
酸素を吸蔵・放出する物質と触媒成分とを被覆したこと
を特徴とする酸素濃度センサ。
(1) It comprises an oxygen concentration sensor element and a heating element that heats the element, and is characterized in that the surface of the element that comes into contact with the gas to be measured is coated with a substance that absorbs and releases oxygen and a catalyst component. Oxygen concentration sensor.
(2) 酸素を吸蔵・放出する物質が酸化セリウム、酸
化バナジウム、酸化コバルト又は欠陥ホタル石型化合物
から選択された少なくとも1種からなることを特徴とす
る特許請求の範囲第1項記載の酸素濃度センサ。
(2) The oxygen concentration according to claim 1, wherein the substance that absorbs and releases oxygen is composed of at least one selected from cerium oxide, vanadium oxide, cobalt oxide, or defective fluorite-type compounds. sensor.
(3) 酸素を吸蔵・放出する物質と触媒成分とを無機
多孔質からなるセパレータを介して被覆したことを特徴
とする特許請求の範囲第1項記載の酸素濃度センサ。
(3) The oxygen concentration sensor according to claim 1, characterized in that a substance that stores and releases oxygen and a catalyst component are coated with an inorganic porous separator interposed therebetween.
(4) 触媒成分が白金、パラジウム又はロジウムのう
ちの少なくとも1種からなることを特徴とする特許請求
の範囲第1項記載の酸素濃度センサ。
(4) The oxygen concentration sensor according to claim 1, wherein the catalyst component is made of at least one of platinum, palladium, and rhodium.
JP8866086A 1986-04-17 1986-04-17 Oxygen concentration sensor Pending JPS62245148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8866086A JPS62245148A (en) 1986-04-17 1986-04-17 Oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8866086A JPS62245148A (en) 1986-04-17 1986-04-17 Oxygen concentration sensor

Publications (1)

Publication Number Publication Date
JPS62245148A true JPS62245148A (en) 1987-10-26

Family

ID=13948977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8866086A Pending JPS62245148A (en) 1986-04-17 1986-04-17 Oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JPS62245148A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021532A (en) * 1987-03-13 1990-01-05 Mitsubishi Motors Corp Oxygen sensor and air-fuel ratio controller of internal combustion engine applied with the same sensor
US5160598A (en) * 1989-02-14 1992-11-03 Ngk Spark Plug Co., Ltd. Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
US5443711A (en) * 1988-12-02 1995-08-22 Ngk Spark Plug Co., Ltd. Oxygen-sensor element
US5849165A (en) * 1988-11-01 1998-12-15 Ngk Spark Plug Co. Ltd. Oxygen sensor for preventing silicon poisoning
JP2000241385A (en) * 1999-02-19 2000-09-08 Robert Bosch Gmbh Sensor for measuring gas component and/or gas concentration of gas mixture
JP2002306964A (en) * 2001-04-16 2002-10-22 Ict:Kk Catalyst
JP2003504617A (en) * 1999-07-09 2003-02-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor for measuring the concentration of gaseous components in gas mixtures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192853A (en) * 1981-05-25 1982-11-27 Toyota Central Res & Dev Lab Inc Oxygen concentration detection element and oxygen concentration detector using it
JPS6179115A (en) * 1984-09-26 1986-04-22 Furuno Electric Co Ltd Depth indicator
JPS6179155A (en) * 1984-09-27 1986-04-22 Nissan Motor Co Ltd Oxygen sensor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192853A (en) * 1981-05-25 1982-11-27 Toyota Central Res & Dev Lab Inc Oxygen concentration detection element and oxygen concentration detector using it
JPS6179115A (en) * 1984-09-26 1986-04-22 Furuno Electric Co Ltd Depth indicator
JPS6179155A (en) * 1984-09-27 1986-04-22 Nissan Motor Co Ltd Oxygen sensor element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021532A (en) * 1987-03-13 1990-01-05 Mitsubishi Motors Corp Oxygen sensor and air-fuel ratio controller of internal combustion engine applied with the same sensor
US5849165A (en) * 1988-11-01 1998-12-15 Ngk Spark Plug Co. Ltd. Oxygen sensor for preventing silicon poisoning
US5443711A (en) * 1988-12-02 1995-08-22 Ngk Spark Plug Co., Ltd. Oxygen-sensor element
US5160598A (en) * 1989-02-14 1992-11-03 Ngk Spark Plug Co., Ltd. Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
JP2000241385A (en) * 1999-02-19 2000-09-08 Robert Bosch Gmbh Sensor for measuring gas component and/or gas concentration of gas mixture
JP4518349B2 (en) * 1999-02-19 2010-08-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor for measuring the gas component and / or gas concentration of a gas mixture
JP2003504617A (en) * 1999-07-09 2003-02-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor for measuring the concentration of gaseous components in gas mixtures
JP4690617B2 (en) * 1999-07-09 2011-06-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor for measuring the concentration of gaseous components in a gas mixture
JP2002306964A (en) * 2001-04-16 2002-10-22 Ict:Kk Catalyst

Similar Documents

Publication Publication Date Title
US4253302A (en) Exhaust gas purifying device for internal combustion engine
EP1760461B1 (en) Gas sensor and method for forming same
US4834051A (en) Oxygen sensor and an air-fuel ratio control apparatus of an internal combustion engine using the same
JP2009541041A (en) Three-way catalyst
JP2002181769A (en) Oxygen sensor element and production method thereof
JPH0688520A (en) Device for purifying exhaust gas flow
JPH10239276A (en) Carbon monoxide gas sensor and measuring device using it
JPS6365812B2 (en)
JP3377016B2 (en) Limit current type oxygen sensor for measuring oxygen concentration in exhaust gas
JPH10202102A (en) Catalyst for purifying exhaust gas
JPS62245148A (en) Oxygen concentration sensor
JP2013130146A (en) Exhaust emission control device
JPH0576575B2 (en)
JP2001141696A (en) Gas-detecting apparatus
JPS6179155A (en) Oxygen sensor element
US4692429A (en) Catalyst composition and multi-functional sensor
JPH10288593A (en) Gas sensor
JP2006133039A (en) Nitrogen oxide sensor
JP3885357B2 (en) Gas sensor
JPH10115597A (en) Gas sensor
JP3556790B2 (en) Exhaust gas sensor and exhaust gas sensor system
JPS6366448A (en) Gas detector
JPH0778483B2 (en) Oxygen detector
JPS5824850A (en) Film type oxygen sensor with heater and oxygen detector employing said sensor
US9970342B2 (en) Exhaust gas purification device for internal combustion engine