JPS6224500B2 - - Google Patents

Info

Publication number
JPS6224500B2
JPS6224500B2 JP6514784A JP6514784A JPS6224500B2 JP S6224500 B2 JPS6224500 B2 JP S6224500B2 JP 6514784 A JP6514784 A JP 6514784A JP 6514784 A JP6514784 A JP 6514784A JP S6224500 B2 JPS6224500 B2 JP S6224500B2
Authority
JP
Japan
Prior art keywords
copper alloy
titanium
titanium nitride
nitrogen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6514784A
Other languages
Japanese (ja)
Other versions
JPS60208476A (en
Inventor
Yasuhiro Arakida
Takumi Tozaki
Susumu Kawauchi
Hiroshi Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP6514784A priority Critical patent/JPS60208476A/en
Publication of JPS60208476A publication Critical patent/JPS60208476A/en
Publication of JPS6224500B2 publication Critical patent/JPS6224500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い硬度と融点を持ち、耐食性にも
すぐれ、更に化学的にも安定であり装飾性にもす
ぐれた窒化チタンを銅合金の表面に形成させるこ
とを特徴とする銅合金の表面処理方法に関するも
のである。 従来、銅合金の表面に窒化チタンを被覆する方
法としては、銅合金に窒化チタンを蒸着又はスパ
ツタリング法で被着する方法、又はチタンを被着
後、窒化させ窒化チタンとする方法があつた。し
かし、これらの方法は高真空の蒸着又はスパツタ
リング装置を必要とし、装置が大型になり操作も
煩雑となる等の欠点があつた。 本発明は、かかる現状に鑑み鋭意研究を行つた
結果、チタンを0.05wt%以上含有する銅合金を特
定の雰囲気で加熱して該合金の表面に窒化チタン
を形成させることを特徴とする表面処理方法を見
出したものである。即ち、本発明方法は窒素ガス
またはアンモニアもしくはアンモニア分解ガスま
たは任意の割合で混合した窒素と水素の混合ガス
雰囲気中で加熱することにより該銅合金の表面に
窒化チタンを形成させることを特徴とする銅合金
の表面処理方法に関するものである。 このようにチタンを含有する銅合金を前記の特
定雰囲気下で加熱するだけで窒化チタンが銅合金
の表面に選択的かつ優先的に形成される現象の機
構は次のように推定される。 すなわち、前記の窒素を含有する雰囲気中でチ
タン含有銅合金を加熱すると該雰囲気中の窒素が
チタン含有銅合金表層部のチタンと反応して窒化
チタンが銅合金表面に形成される。前記窒化チタ
ンの形成により表層部のチタンが消費されて銅合
金中の表層部と内部とで濃度勾配を生ずるが、加
熱された銅合金の内部のチタンは表面に向つて拡
散する。このようにして加熱処理を継続すると銅
合金中に存在するチタンが表面に向つてさらに拡
散し、雰囲気中の窒素と反応して窒化チタン膜が
形成され、この膜は銅合金の表面全体を覆うよう
になる。この結果、黄金色の美麗な窒化チタン膜
を有する銅合金が得られる。 この場合雰囲気中に多量の酸素が混入すると、
銅の酸化物等の複雑な化合物ができて灰黒色の粗
い表面となるので好ましくない。 本発明において銅合金のチタン含有率を0.05wt
%以上としたのは、それよりチタンの含有量が少
ない銅合金では長時間の加熱に対してもチタンの
拡散は起こらず窒化チタンの皮膜の形成という現
象は見出せないからである。 また、拡散の加熱条件としては、温度は500℃
以上必要であり好ましくは800℃以上である。 さらにチタンと同時に他の元素を添加した銅合
金でも窒化チタンの析出を阻害する元素は認めら
れないので本方法はチタンを含有する多元系合金
に適用できるものである。 次に実施例について説明する。 実施例 第1表に示すチタン含有銅合金を窒素ガスまた
はアンモニアもしくはアンモニア分解ガスまたは
任意の割合で混合した窒素と水素の混合ガス雰囲
気中で熱処理を施すと光沢のある美しい黄金色の
表面が得られた。 窒化チタン層はX線回折によつて確認すること
ができるが、第1表に示す窒化チタンはASTM
(American Society for Testing &
Materials)による標準の窒化チタンの回折角度
と比較対照して行つた。この結果、窒化チタンに
特徴的なCuKα線使用の際の回折角(2θ)の
(111)36.8゜及び(200)42.6゜が確認された。 第1表には熱処理条件と表面の窒化チタン析出
層の厚さとの関係を示す。 第1表でチタン含有量0.02wt%では窒化チタ
ン・皮膜は形成されない。
The present invention is a surface treatment for a copper alloy characterized by forming titanium nitride, which has high hardness and melting point, excellent corrosion resistance, chemical stability, and excellent decorative properties, on the surface of the copper alloy. It is about the method. Conventionally, methods for coating the surface of a copper alloy with titanium nitride include a method of depositing titanium nitride on the copper alloy by vapor deposition or sputtering, or a method of depositing titanium and then nitriding it to form titanium nitride. However, these methods require high-vacuum deposition or sputtering equipment, and have drawbacks such as increased equipment size and complicated operations. As a result of extensive research in view of the current situation, the present invention provides a surface treatment characterized by heating a copper alloy containing 0.05 wt% or more of titanium in a specific atmosphere to form titanium nitride on the surface of the alloy. We have found a way. That is, the method of the present invention is characterized in that titanium nitride is formed on the surface of the copper alloy by heating in an atmosphere of nitrogen gas, ammonia, ammonia decomposition gas, or a mixed gas of nitrogen and hydrogen mixed in an arbitrary ratio. This invention relates to a method for surface treatment of copper alloys. The mechanism of the phenomenon in which titanium nitride is selectively and preferentially formed on the surface of the copper alloy simply by heating the titanium-containing copper alloy in the above-mentioned specific atmosphere is estimated as follows. That is, when a titanium-containing copper alloy is heated in the nitrogen-containing atmosphere, the nitrogen in the atmosphere reacts with titanium in the surface layer of the titanium-containing copper alloy, and titanium nitride is formed on the surface of the copper alloy. The formation of titanium nitride consumes titanium in the surface layer, creating a concentration gradient between the surface layer and the interior of the copper alloy, but titanium inside the heated copper alloy diffuses toward the surface. As the heat treatment continues in this way, the titanium present in the copper alloy further diffuses toward the surface and reacts with nitrogen in the atmosphere to form a titanium nitride film, which covers the entire surface of the copper alloy. It becomes like this. As a result, a copper alloy having a beautiful golden titanium nitride film is obtained. In this case, if a large amount of oxygen is mixed into the atmosphere,
Complex compounds such as copper oxides are formed, resulting in a grayish-black and rough surface, which is undesirable. In the present invention, the titanium content of the copper alloy is reduced to 0.05wt.
% or more because copper alloys with a lower titanium content do not diffuse titanium even when heated for a long time, and the phenomenon of formation of a titanium nitride film cannot be observed. In addition, the heating conditions for diffusion are 500℃.
The temperature is preferably 800°C or higher. Furthermore, even in copper alloys in which other elements are added at the same time as titanium, no elements that inhibit the precipitation of titanium nitride are found, so this method can be applied to multi-component alloys containing titanium. Next, an example will be described. Example When the titanium-containing copper alloy shown in Table 1 is heat-treated in an atmosphere of nitrogen gas, ammonia, ammonia decomposition gas, or a mixed gas of nitrogen and hydrogen mixed in an arbitrary ratio, a beautiful shiny golden surface can be obtained. It was done. The titanium nitride layer can be confirmed by X-ray diffraction, and the titanium nitride shown in Table 1 is ASTM
(American Society for Testing &
This was done by comparing and contrasting the diffraction angle with the standard titanium nitride diffraction angle. As a result, the diffraction angles (2θ) of (111) 36.8° and (200) 42.6° when using CuKα radiation, which are characteristic of titanium nitride, were confirmed. Table 1 shows the relationship between the heat treatment conditions and the thickness of the titanium nitride precipitated layer on the surface. In Table 1, no titanium nitride film is formed when the titanium content is 0.02wt%.

【表】 以上、本発明の方法は、スパツタリング、蒸着
等の特別な被覆手段を用いることなく、銅合金表
面に美麗かつ耐食性に優れたチタン窒化物の皮膜
を形成することができる画期的な方法である。
[Table] As described above, the method of the present invention is an epoch-making method that can form a beautiful and highly corrosion-resistant titanium nitride film on the surface of a copper alloy without using special coating means such as sputtering or vapor deposition. It's a method.

Claims (1)

【特許請求の範囲】[Claims] 1 チタンを0.05wt%以上含有する銅合金を窒素
ガスまたはアンモニアもしくはアンモニア分解ガ
スまたは任意の割合で混合した窒素と水素の混合
ガス雰囲気中で加熱し、該銅合金の表面に窒化チ
タンの皮膜を形成させることを特徴とする銅合金
の表面処理方法。
1. A copper alloy containing 0.05 wt% or more of titanium is heated in an atmosphere of nitrogen gas, ammonia, ammonia decomposition gas, or a mixed gas of nitrogen and hydrogen mixed in an arbitrary ratio to form a titanium nitride film on the surface of the copper alloy. A method for surface treatment of a copper alloy, characterized by forming a copper alloy.
JP6514784A 1984-04-03 1984-04-03 Surface treatment of copper alloy Granted JPS60208476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6514784A JPS60208476A (en) 1984-04-03 1984-04-03 Surface treatment of copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6514784A JPS60208476A (en) 1984-04-03 1984-04-03 Surface treatment of copper alloy

Publications (2)

Publication Number Publication Date
JPS60208476A JPS60208476A (en) 1985-10-21
JPS6224500B2 true JPS6224500B2 (en) 1987-05-28

Family

ID=13278473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6514784A Granted JPS60208476A (en) 1984-04-03 1984-04-03 Surface treatment of copper alloy

Country Status (1)

Country Link
JP (1) JPS60208476A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310952A (en) * 1987-06-11 1988-12-19 Fukuhisa Matsuda Surface hardened copper alloy
US5254183A (en) * 1991-12-20 1993-10-19 United Techynologies Corporation Gas turbine elements with coke resistant surfaces
US5298091A (en) * 1991-12-20 1994-03-29 United Technologies Corporation Inhibiting coke formation by heat treating in nitrogen atmosphere
JP4829485B2 (en) * 2003-06-10 2011-12-07 有限会社真空実験室 Vacuum component material, vacuum component, vacuum device, vacuum component material manufacturing method, vacuum component processing method, and vacuum device processing method
JP5208555B2 (en) * 2008-03-31 2013-06-12 Jx日鉱日石金属株式会社 Titanium copper for electronic parts

Also Published As

Publication number Publication date
JPS60208476A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
US4714632A (en) Method of producing silicon diffusion coatings on metal articles
JPS5817615A (en) Method of bonding metal and silicon with low pressure cvd to form metal silicide
US4822642A (en) Method of producing silicon diffusion coatings on metal articles
US1853370A (en) Formation of silicon alloy coatings
US4830886A (en) Process for making cutting insert with titanium carbide coating
JPS6224500B2 (en)
Louro et al. Thermal Oxidation of Tungsten‐Based Sputtered Coatings
US4011107A (en) Boron diffusion coating process
US5064691A (en) Gas phase borosiliconization of ferrous surfaces
US5320689A (en) Surface modified copper alloys
Pelleg et al. Diffusion in the B α-Fe system and compound formation between electron gun deposited boron thin films and steel substrate
CA1245952A (en) Diffusion alloy steel foil
Cocke et al. The surface reactivity of Ti Cu and Ti Al alloys and the ion chemistry of their oxide overlayers
US3015579A (en) Metal coating process
Horvath et al. Vanadizing carbon steels by chemical vapour deposition
Galarie et al. Radiation enhanced diffusion of silicon into iron for high temperature oxidation improvement
KR100305728B1 (en) Powder Composition for Simultaneous Coating of Chrome and Aluminium on Metal Surfaces and Coating Method Thereof
Piscitelli et al. Oxidation of Fe‐29Ni‐17Co Alloy
Sun et al. Effect of rapid thermal annealing on the electrical and physical properties of metalorganic chemical‐vapor‐deposited TiN
Reinhold et al. Plasma nitriding of aluminum alloys
Carbucicchio et al. High temperature solid state reactivity between iron and chromium monoborides
Wein et al. The mechanism of mixing and reactive diffusion in intermetallics (TiFe2, TiCr2)
Russell et al. The Effect of Copper on the Titanium-Silicon Dioxide Rbaction and the Implications for Self-Encapsulatin G. Self-Adhering Metallization Lines
GB1156621A (en) Improvements in or relating to Metal Fibres
KR20230153295A (en) Iron with permanent oxidation resistance by silicon-coated surface and manufacturing method for iron with permanent oxidation resistance by silicon-coated surface