JPS62244554A - Continuous casting method for casting sheet - Google Patents
Continuous casting method for casting sheetInfo
- Publication number
- JPS62244554A JPS62244554A JP61086204A JP8620486A JPS62244554A JP S62244554 A JPS62244554 A JP S62244554A JP 61086204 A JP61086204 A JP 61086204A JP 8620486 A JP8620486 A JP 8620486A JP S62244554 A JPS62244554 A JP S62244554A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- fixed side
- speed
- casting
- side cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005266 casting Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000009749 continuous casting Methods 0.000 title claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 230000015556 catabolic process Effects 0.000 abstract 2
- 230000000737 periodic effect Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0605—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、薄鋳片を連続鋳造させる際、初期凝固シェル
が破断したり、固定側面冷却体に焼き付くこと防止する
分野に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the field of preventing an initially solidified shell from breaking or seizing on a fixed side cooling body during continuous casting of a thin slab.
(従来の技術)
従来、一定の距離にわたって溶湯を保持するための間隙
を維持して循環する一対の対向して配置された可動ベル
トと、それらの可動ベルトの両側縁部に対向して配置さ
れた固定側面冷却体で形成された空間に、この固定側面
冷却体に当接する溶湯供給ノズルから溶湯を供給して鋳
造する方法が提案されている。しかし、この方法は固定
側面冷却体が固定されているために、この固定側面冷却
体上に形成される初期凝固シェルの引張強度が、このシ
ェルと固定側面冷却体との間の摩擦力よりも小さくなる
と、シェルが破断して固定側面冷却体の上に停滞するた
めに、そのまま鋳造するとブレークアウトに一つながる
。このようなブレークアウトは一般に拘束性ブレークア
ウトと呼ばれるもので、第1図に示すような段階を経て
ブレークアウトが起きる。即し、固定側面冷却体上に停
止しているシェル16と移動しているシェル18との間
に最も薄いシェル17が形成される。このシェル17が
固定側面冷却体14出側まで移動する前に、固定側面冷
却体上に停滞しているシェル16が固定側面冷却体から
離れて移動しているシェル18とともに移動すれば、第
1a図に示すように連続的に鋳造することが可能である
。しかし、固定側面冷却体上に停滞しているシェル16
が固定側面冷却体から離れない場合は、第1b図に示す
ように固定側面冷却体14の出側で溶鋼15が洩れ、所
謂拘束性ブレークアウトが発生ずる。また、固定側面冷
却体に凝固シェルが焼く付いた場合も同様な現象が発生
する。(Prior Art) Conventionally, a pair of movable belts are disposed opposite to each other and circulate while maintaining a gap for holding molten metal over a certain distance, and movable belts are disposed opposite to each other on both side edges of the movable belts. A casting method has been proposed in which molten metal is supplied into a space formed by a fixed side cooling body from a molten metal supply nozzle that comes into contact with the fixed side cooling body. However, in this method, since the fixed side cooling body is fixed, the tensile strength of the initial solidified shell formed on the fixed side cooling body is greater than the frictional force between this shell and the fixed side cooling body. If the shell becomes smaller, it will break and become lodged on the fixed side cooling body, leading to a breakout if it is cast as is. Such a breakout is generally called a restricted breakout, and the breakout occurs through the stages shown in FIG. In other words, the thinnest shell 17 is formed between the shell 16 that is stationary on the fixed side cooling body and the shell 18 that is moving. If the shell 16 staying on the fixed side cooling body moves together with the shell 18 moving away from the fixed side cooling body before this shell 17 moves to the exit side of the fixed side cooling body 14, the first It is possible to cast continuously as shown in the figure. However, the shell 16 stuck on the fixed side cooling body
If the molten steel 15 does not separate from the fixed side cooling body, as shown in FIG. 1b, the molten steel 15 leaks from the outlet side of the fixed side cooling body 14, and a so-called restraint breakout occurs. Furthermore, a similar phenomenon occurs when a solidified shell is baked onto the fixed side cooling body.
そこで、凝固シェルが固定側面冷却体に焼き付くことに
起因するブレークアウトを防止する技術として、対向し
た一対の無端ベルトの両側縁部に配置された本発明の固
定側面冷却体に相当する支持冷却部材に微振動を与えて
凝固シェルが支持冷却部材に焼き付かないようにするこ
とが特開昭59−153553号公報に提案されている
。Therefore, as a technique for preventing breakout caused by the solidified shell being baked into the fixed side cooling body, support cooling members corresponding to the fixed side cooling body of the present invention are arranged at both side edges of a pair of opposing endless belts. Japanese Unexamined Patent Application Publication No. 153553/1983 proposes applying slight vibrations to the cooling member to prevent the solidified shell from seizing on the supporting cooling member.
また、移動鋳型を有する金属の連続鋳造装置で、鋳型の
移動速度を一定の鋳片移動速度よりも大きい一定速度に
することにより、移動鋳型が凝固殻と固着することを防
止することが、特開昭56−165543号公報に提案
されている。In addition, in a continuous metal casting apparatus having a moving mold, it is particularly desirable to prevent the moving mold from sticking to the solidified shell by setting the moving speed of the mold to a constant speed that is higher than the fixed slab moving speed. This is proposed in Japanese Patent Publication No. 56-165543.
(問題点を解決するだめの手段)
しかし、前述した前者の技術は溶湯供給ノズルが支持冷
却部材に当接している構造となっているために、微振動
を与えると溶湯供給ノズルと支持冷却部材との間に間隙
が生じたり、溶湯供給ノズルの先端部が欠損することが
あった。このために、この部分に溶湯が差し込むことに
よって鋳片の表面性状が悪化したり、ブレークアウトが
発生ずる問題があり、前記特開昭59−153553号
公報の固定側面冷却体に微振動を与える技術を適用でき
ない。(An unsuccessful means to solve the problem) However, since the former technique described above has a structure in which the molten metal supply nozzle is in contact with the support cooling member, when slight vibrations are applied, the molten metal supply nozzle and the support cooling member There were cases where a gap was formed between the molten metal and the tip of the molten metal supply nozzle, and the tip of the molten metal supply nozzle was damaged. For this reason, there is a problem that the surface quality of the slab deteriorates or breakout occurs due to the molten metal being inserted into this part, which causes slight vibrations to the fixed side cooling body of JP-A-59-153553. Technology cannot be applied.
また、後者の技術では、無端ベルトで冷却・凝固した初
期凝固シェルは一定速度で引き抜かれており、無端ベル
トと同期して引き抜かれているシェルと固定側面冷却体
上で冷却・凝固し停滞しているシェルとの境界にはすべ
り摩擦が発生する。In addition, in the latter technology, the initially solidified shell cooled and solidified by the endless belt is pulled out at a constant speed, and the shell is pulled out in synchronization with the endless belt and is cooled and solidified on the fixed side cooling body and stagnates. Sliding friction occurs at the boundary between the shell and the shell.
このすべり摩擦力により、固定側面冷却体上で停滞して
いるシェルは固定側面冷却体から引離されるが、この現
象は一定していないので、ブレークアウトの危険性があ
る。This sliding friction force pulls the shell stuck on the stationary side cooling body away from the stationary side cooling body, but since this phenomenon is not constant, there is a risk of breakout.
(問題点を解決するだめの手段)
本発明は、第3図、第4図および第5図に示すような溶
湯供給ノズルが固定側面冷却体に当接する構造の連続鋳
造機により薄鋳片を連続鋳造する際に、薄鋳片め引抜き
速度Vc と一対の無端ベルトあるいはいずれか一方の
無端ベルトの回転移動速度ν8とを周期的に変化させる
ことで前記問題点を解決した。(Means for Solving the Problems) The present invention produces thin slabs using a continuous casting machine having a structure in which a molten metal supply nozzle contacts a fixed side cooling body as shown in FIGS. 3, 4, and 5. The above problem was solved by periodically changing the thin slab drawing speed Vc and the rotational movement speed ν8 of the pair of endless belts or one of the endless belts during continuous casting.
また、上記薄鋳片の引抜き速度VCと無端ベルトの回転
移動速度VBを周期的に変化させる態様としては、第2
a図右よび第2b図に示すように無端ベルトの回転移動
速度の波形と薄鋳片の引抜き速度の波形とを一致させ、
各瞬時における各速度を一致させる態様も含まれる。Further, as a mode of periodically changing the drawing speed VC of the thin slab and the rotational movement speed VB of the endless belt, the second method is as follows.
As shown on the right side of Figure A and Figure 2B, the waveform of the rotational movement speed of the endless belt and the waveform of the drawing speed of the thin slab are made to match,
Also included is a mode in which the speeds at each instant are matched.
上述した無端ベルトの回転移動速度VBおよび薄鋳片の
引抜き速度Vcを周期的に変化させる電気的手段として
は、各々の速度を常に検知して予め設定した周期1/f
(fは振動数〉および振幅a1さらにはパルス幅l〕
に合うように、無端ベルトおよびピンチロールの駆動モ
ーターの回転数を制御する。前記2a図および第2【1
図に示した薄鋳片の引抜き速度Vc と無端ペルー・の
回転移動速度VBの周期1/fは、実験の結果、初期凝
固シェルの引抜き速度をV。、固定側面冷却体の長さに
等しいIc
サイクル当たりのピッチをり、、とするとOく一< L
h (mm/c) 、つまり1回の無端ベルトおよび薄
鋳片引抜き速度の周期的な速度により初期凝固シェルが
間欠的に引き抜かれるピッチがQ+++mより大きく固
定側面冷却長さ未満になるように周期1/fυ、
よい。The electrical means for periodically changing the rotational movement speed VB of the endless belt and the drawing speed Vc of the thin slab mentioned above include constantly detecting each speed and adjusting the preset period 1/f.
(f is the frequency> and amplitude a1 and pulse width l]
Control the rotational speed of the endless belt and pinch roll drive motor to match. Figure 2a and Figure 2 [1]
As a result of experiments, the drawing speed of the thin slab shown in the figure, Vc, and the period 1/f of the rotational movement speed, VB, of the endless Peruvian shell were determined to be V, the drawing speed of the initially solidified shell. , Ic, which is equal to the length of the fixed side cooling body, and the pitch per cycle is , , then O<L
h (mm/c), that is, the periodicity is such that the pitch at which the initially solidified shell is intermittently pulled out by one endless belt and the periodic speed of thin slab drawing speed is greater than Q+++m and less than the fixed side cooling length. 1/fυ, good.
また、第2C図に示すように無端ベルトの回転移動速度
VB と薄鋳片引抜き速度ν。を周期的に変化させる場
合も、無端ベルトの回転移動速度VBの周期1/f1お
よび振幅a1や薄鋳片の引抜き速度Vcの周期1/f2
および振幅a2は、前記第2a図におけると同様に与え
ればよいが、望ましくは1/f2<1/f2にするとよ
い。Further, as shown in FIG. 2C, the rotational movement speed VB of the endless belt and the drawing speed ν of the thin slab. Even when changing periodically, the period 1/f1 and amplitude a1 of the rotational movement speed VB of the endless belt and the period 1/f2 of the drawing speed Vc of the thin slab
The amplitude a2 may be given in the same manner as in FIG. 2a, but preferably 1/f2<1/f2.
(作 用)
本発明法は、無端ベルトの回転移動速度Vnと鋳片引抜
き速度V。を周期的に変化させることにより、この周期
的な速度変化に対応してすべり摩擦力を周期的に変化さ
せることができ、固定側面冷却体上に停滞している初期
凝固シェルを周期的に引き離すことが可能となる。(Function) The method of the present invention is based on the rotational movement speed Vn of the endless belt and the slab drawing speed V. By periodically changing the sliding friction force, the sliding friction force can be changed periodically in response to the periodic velocity changes, and the initially solidified shell stagnant on the fixed side cooling body is periodically separated. becomes possible.
また、無端ベルトの回転移動速度と鋳片引抜き速度の周
期的な速度変化により初期凝固シェルに振動を与えるの
で、固定側面冷却体に当接している溶湯供給ノズルおよ
び固定側面冷却体には、殆ど振動が伝播されない。In addition, the periodic speed changes in the rotational movement speed of the endless belt and the slab withdrawal speed give vibration to the initially solidified shell, so that the molten metal supply nozzle and the fixed side cooling body that are in contact with the fixed side cooling body have almost no vibration. Vibrations are not propagated.
(実施例1)
注入ノズル9からの溶湯を溶湯保持容器5および溶湯供
給ノズル3を介して、駆動ロール8、テンションロール
7および入側ロール4により回転移動し水膜冷却箱6で
背面を冷却している無端ベルト1と図示しない長さ30
0 mmの固定側面冷却体で形成された空間に溶湯15
を注入する装置を第3図に示す。この装置を用いて、厚
さ20mm、幅600mmの薄鋳片(SS41)を平均
5m/minの鋳片引抜き速度v0で引き抜き、」1下
の無端ベルトの回転移動速度VBおよび初期凝固シェル
の引抜き速度V。(Example 1) The molten metal from the injection nozzle 9 is rotated through the molten metal holding container 5 and the molten metal supply nozzle 3 by the drive roll 8, the tension roll 7, and the inlet roll 4, and the back side is cooled by the water film cooling box 6. Endless belt 1 and length 30 (not shown)
The molten metal 15 is placed in the space formed by the fixed side cooling body of 0 mm.
Figure 3 shows an apparatus for injecting . Using this device, a thin slab (SS41) with a thickness of 20 mm and a width of 600 mm is pulled out at an average slab drawing speed v0 of 5 m/min, and the rotational movement speed VB of the endless belt below and the drawing of the initial solidified shell are Speed V.
を、第1a図に示すようにvoを基準としてasin2
πftとなるように周期的に変動させて鋳造した。asin2 with vo as the reference as shown in Figure 1a.
Casting was performed by periodically varying the amount of πft.
なお、この時のaを0.3 m/min とし、fを6
0回/minに設定した。Note that a at this time is 0.3 m/min, and f is 6
It was set to 0 times/min.
(実施例2)
実施例1と同一ザイズの鋳片を平均鋳片引抜き速度(V
o ) 7m/minで引き抜いた。この際、無端ベ
ルトの回転移動速度vBおよび初期凝固シェルの引抜き
速度V。を第2b図のパターンで、aを0.5m/mi
n 、 bを0.2〜0.3秒、rを60回/minに
設定した。(Example 2) The average slab drawing speed (V
o) Pulled out at 7m/min. At this time, the rotational movement speed vB of the endless belt and the drawing speed V of the initially solidified shell. with the pattern shown in Figure 2b, a is 0.5m/mi
n and b were set to 0.2 to 0.3 seconds, and r was set to 60 times/min.
(実施例3)
厚さ10mm、幅fi [10m mの薄鋳片(spc
c)をν。= 10m/min、 VBの平均値11m
/min、 f、=60回/min、 f2=30回/
min、 a、=Q、3Qm/min、 a2=Q
、15m/min、 L=450として鋳造した3、
比較のため従来のように引抜き速度と無端ベルトの回転
移動速度を定速とし、鋳造した結果を第1表に示す。(Example 3) A thin slab (spc) with a thickness of 10 mm and a width fi [10 mm
c) ν. = 10m/min, average value of VB 11m
/min, f, = 60 times/min, f2 = 30 times/
min, a,=Q, 3Qm/min, a2=Q
, 15 m/min, L = 450. For comparison, Table 1 shows the results of casting with the drawing speed and the rotational movement speed of the endless belt constant as in the conventional case.
この表からもわかるように、完鋳率は43%から100
%に増加し、鋳片の表面は美麗で、無端ベルトの周期
的な速度変化に対応したりラブルマークが鋳片側面に見
られるものの、シェルが固定側面回転移動速度vn、初
期凝固シェルの引抜き速度Vcおよび平均鋳片引抜き速
度V。との関係を表す図、
第3図、第4図および第5図は、本発明の方法に使用す
る装置を示す図である。As you can see from this table, the complete casting rate ranges from 43% to 100%.
%, the surface of the slab is beautiful, and although some rub marks can be seen on the sides of the slab due to the periodic speed changes of the endless belt, the shell has a fixed side rotational movement speed vn, and the initial solidified shell is pulled out. Speed Vc and average slab drawing speed V. Figures 3, 4 and 5 are diagrams showing the apparatus used in the method of the present invention.
1・・・mt 端ヘルド2・・・ピンチロール3・・・
溶湯供給ノズル 4・・・入側ロール5・・・溶湯保
持容器 6・・・水膜冷却箱7・・・デンションロ
ール 訃・・駆動ロール9・・・注入ノズル 1
0・・・不活性ガス人口11・・・雰囲気調整カバー
12・・・薄鋳片13・・・曲げロール 14・
・・固定側面冷却体15・・・溶湯16・・・停滞シェ
ル
17・・・薄いシェル 18・・・移動シェルく
)
堡目暎
閃
懸重さ 個物
、OU1...mt End held 2...Pinch roll 3...
Molten metal supply nozzle 4...Inlet roll 5...Molten metal holding container 6...Water film cooling box 7...Dension roll End...Drive roll 9...Injection nozzle 1
0...Inert gas population 11...Atmosphere adjustment cover
12...Thin slab 13...Bending roll 14.
... Fixed side cooling body 15 ... Molten metal 16 ... Stagnant shell 17 ... Thin shell 18 ... Moving shell)
Claims (1)
持しつつ循環する一対の対向して配置された循環体と、
それらの循環体の両側縁部に対向して配置された固定側
面冷却体とで形成された空間に、該固定側面冷却体と当
接した溶湯供給ノズルから溶湯を供給して薄鋳片を連続
鋳造する方法において、前記循環体の回転移動速度と引
き抜かれる鋳片の引抜速度を周期的に変化させながら鋳
造することを特徴とする薄鋳片の連続鋳造方法。 2、循環体の回転移動速度の波形と鋳片の引抜き速度の
波形とを一致させ、各瞬時における各速度を一致させる
ことを特徴とする特許請求の範囲第1項記載の薄鋳片の
連続鋳造方法。[Claims] 1. A pair of circulating bodies disposed opposite to each other that circulate while maintaining a gap to hold the molten metal over a certain distance;
The molten metal is supplied from the molten metal supply nozzle that is in contact with the fixed side cooling bodies into the space formed by the fixed side cooling bodies placed opposite to both side edges of the circulation body to continuously form thin slabs. A continuous casting method for thin slabs, characterized in that casting is carried out while periodically changing the rotational movement speed of the circulating body and the drawing speed of the slabs to be drawn. 2. Continuation of thin slabs according to claim 1, characterized in that the waveform of the rotational movement speed of the circulating body and the waveform of the withdrawal speed of the slab are matched, and the respective speeds at each instant are made to match. Casting method.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8620486A JPH0616924B2 (en) | 1986-04-16 | 1986-04-16 | Continuous casting method for thin slabs |
KR1019860005093A KR940008621B1 (en) | 1985-06-27 | 1986-06-25 | Casting method & apparatus for endless strip |
AU59358/86A AU588335B2 (en) | 1985-06-27 | 1986-06-26 | Method and apparatus for casting endless strip |
CA000512549A CA1278415C (en) | 1985-06-27 | 1986-06-26 | Method and apparatus for casting endless strip |
BR8602964A BR8602964A (en) | 1985-06-27 | 1986-06-26 | PROCESS AND APPARATUS FOR THE ENGINEERING OF A METAL STRIP |
AT86401432T ATE70753T1 (en) | 1985-06-27 | 1986-06-27 | METHOD AND DEVICE FOR CASTING ENDLESS METAL STRIPS. |
US06/879,278 US4735254A (en) | 1985-06-27 | 1986-06-27 | Method and apparatus for casting endless strip |
EP86401432A EP0210891B1 (en) | 1985-06-27 | 1986-06-27 | Method and apparatus for casting endless strip |
DE8686401432T DE3683099D1 (en) | 1985-06-27 | 1986-06-27 | METHOD AND DEVICE FOR CASTING ENDLESS SHEET METAL TAPES. |
US07/102,114 US4817702A (en) | 1985-06-27 | 1987-09-29 | Apparatus for casting endless strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8620486A JPH0616924B2 (en) | 1986-04-16 | 1986-04-16 | Continuous casting method for thin slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62244554A true JPS62244554A (en) | 1987-10-24 |
JPH0616924B2 JPH0616924B2 (en) | 1994-03-09 |
Family
ID=13880245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8620486A Expired - Lifetime JPH0616924B2 (en) | 1985-06-27 | 1986-04-16 | Continuous casting method for thin slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0616924B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113878099A (en) * | 2021-10-12 | 2022-01-04 | 山东理工大学 | Method for inhibiting temperature descending of reflux zone and double-roller casting and rolling system applying same |
-
1986
- 1986-04-16 JP JP8620486A patent/JPH0616924B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113878099A (en) * | 2021-10-12 | 2022-01-04 | 山东理工大学 | Method for inhibiting temperature descending of reflux zone and double-roller casting and rolling system applying same |
CN113878099B (en) * | 2021-10-12 | 2023-06-02 | 山东理工大学 | Method for inhibiting temperature downlink of reflux zone and double-roller casting and rolling system applying method |
Also Published As
Publication number | Publication date |
---|---|
JPH0616924B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1097880A (en) | Horizontal continuous casting method and apparatus | |
JPS62244554A (en) | Continuous casting method for casting sheet | |
JPS63180348A (en) | Method and apparatus for continuously casting metallic strip | |
JPS6199541A (en) | Belt type continuous casting machine for casting ingot having optional width | |
JPS62240146A (en) | Continuous casting method for casting sheet | |
JPS59153551A (en) | Horizontal continuous casting equipment of thin walled billet | |
JP3061229B2 (en) | Belt type continuous casting equipment | |
JPH0450097B2 (en) | ||
JPS61129260A (en) | Synchronous type continuous casting machine | |
JPS6250052A (en) | Continuous casting method for this ingot | |
JPH09239500A (en) | Slab continuous casting apparatus | |
JPS6241832B2 (en) | ||
JP2002178113A (en) | Cast slab having excellent solidified structure and steel obtained by working the same | |
JPH07276008A (en) | Fixing wair in single belt type continuous casting machine | |
JPH04197565A (en) | Method for continuously casting steel | |
JP2801042B2 (en) | Continuous casting equipment | |
JPH06182502A (en) | Single gelt type band metal continuous casting apparatus | |
JP2510360B2 (en) | Dummy sheet in twin roll type continuous casting | |
JPS63126651A (en) | Belt type continuous casting method | |
JPS6268661A (en) | Continuous casting machine for thin ingot | |
JPS59153552A (en) | Horizontal continuous casting equipment of thin walled billet | |
JPH04361856A (en) | Twin belt type continuous casting apparatus | |
JP2000042691A (en) | Method for oscillating mold for continuous casting | |
JPS58107255A (en) | Method and device for charging molten metal in continuous casting | |
JPS63149044A (en) | Short side plate for continuous casting machine for cast strip |