JPS6224305A - Method for detecting servo abnormality of industrial robot - Google Patents

Method for detecting servo abnormality of industrial robot

Info

Publication number
JPS6224305A
JPS6224305A JP60162004A JP16200485A JPS6224305A JP S6224305 A JPS6224305 A JP S6224305A JP 60162004 A JP60162004 A JP 60162004A JP 16200485 A JP16200485 A JP 16200485A JP S6224305 A JPS6224305 A JP S6224305A
Authority
JP
Japan
Prior art keywords
value
deviation
reference value
servo
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60162004A
Other languages
Japanese (ja)
Inventor
Yukiji Shimomura
霜村 来爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60162004A priority Critical patent/JPS6224305A/en
Publication of JPS6224305A publication Critical patent/JPS6224305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To detect the servo abnormality with high reliability by deciding the servo abnormality when the absolute value of the deviation between the command value and the present value of a drive source exceeds both the reference value and time of the deviation accordant with the relevant action mode. CONSTITUTION:When the servo control is normal, the command value (g) is fetched by a command means 12 together with the present value (d) of the position of an actuator 13 fetched by a position detector 14. While a subtractor calculates the absolute value ¦g-d¦ of the deviation E. Then it is decided whether the deviation absolute value E is larger or not than the servo abnormality detecting constant, i.e., the deviation reference value accordant with the action mode. If the value E is larger than the detecting constant, the time during which the value E last is counted. Then it is decided whether this counted time is larger or not than the servo abnormality detecting constant tR of time, i.e., the time reference value accordant with the action mode. If the constant tR is larger than the reference value, the emergency stoppage of the robot main body, the cut-off of the power supply to a servo control circuit, etc. are carried out by the servo abnormality signal. At the same time, the abnormality is displayed by the servo abnormality processing. Then the information on the servo abnormality is informed to an operator.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、サーボ制御される産業用ロボットにおいて、
ロボット本体の異常動作を検出する方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a servo-controlled industrial robot.
The present invention relates to a method for detecting abnormal operation of a robot body.

〔発明の背景〕[Background of the invention]

産業用ロボットにあっては、信頼性及び安全性を高める
為、ロボット本体の異常動作を検出するものが種々提案
され、実用に供されている。
In industrial robots, in order to improve reliability and safety, various methods for detecting abnormal movements of the robot body have been proposed and put into practical use.

例えば、可動部が位置決め停止した場合、目標値と実際
に停止した位置とに一定値以上の偏差が生じたときに異
常検出することが特開昭51−38982号公報に開示
されている。また或いは、可動部が目標値に移動する際
、その目標値までの移動時間を監視し、移動中に所定時
間が経過したときに異常検出するものがある。
For example, Japanese Patent Laid-Open No. 51-38982 discloses that when a movable part is positioned and stopped, an abnormality is detected when a deviation of a certain value or more occurs between the target value and the actual stopped position. Alternatively, when the movable part moves to a target value, there is a device that monitors the time taken to reach the target value and detects an abnormality when a predetermined time elapses during the movement.

前者は、外力によって瞬間的に一定値以上の偏差が生じ
た場合でも異常検出されるので、ロボットの作業能率が
低下するおそれがある。後者は、所定時間が経過しない
と異常検出できないので、所定時間内に異常が発生した
場合、その異常を直ちに検出できず、即応性に乏しい。
In the former case, even if a deviation of a certain value or more momentarily occurs due to an external force, an abnormality is detected, so there is a risk that the working efficiency of the robot will decrease. In the latter, an abnormality cannot be detected until a predetermined period of time has elapsed, so if an abnormality occurs within a predetermined period of time, the abnormality cannot be detected immediately, resulting in poor responsiveness.

しかも、ティーチングのような手動運転時には目標値ま
での到達時間を予測することが難しく、手動動作中に所
定時間が経過した場合、不必要に異常検出されるおそれ
がある。
Moreover, during manual operation such as teaching, it is difficult to predict the time required to reach the target value, and if a predetermined time elapses during manual operation, there is a risk that an abnormality will be detected unnecessarily.

ところで、一般の産業用ロボットは、サーボ制御される
為、駆動源が指令値に対しある程度の時間遅れをもって
追従するので、指令値と、駆動源の現在値とに追従誤差
、即ち偏差が生じる。この偏差は、特に指令値の急激な
変化、即ち、駆動源が急激に加減速すると大きぐなり、
従って、駆動源の停止、低速、高速間においては偏差に
大きな巾がある。
By the way, since general industrial robots are servo-controlled, the drive source follows the command value with a certain time delay, so a tracking error, ie, deviation, occurs between the command value and the current value of the drive source. This deviation becomes especially large when there is a sudden change in the command value, that is, when the drive source suddenly accelerates or decelerates.
Therefore, there is a wide range of deviation between the stop of the drive source, low speed, and high speed.

そこで、この点を考慮して、前述の不具合を解消する為
には、予め指令値と現在値との偏差に基準値を設定して
おき、指令値と現在値との偏差の絶対値が、前記偏差の
基準値を越えた状態で、かつ一定基準時間続いたときに
異常検出することが容易に類推される。
Therefore, in consideration of this point, in order to eliminate the above-mentioned problem, a reference value is set in advance for the deviation between the command value and the current value, and the absolute value of the deviation between the command value and the current value is It can be easily inferred that an abnormality is detected when the deviation exceeds the reference value and continues for a certain reference time.

しかし乍ら、そのようにした場合、前記偏差の基準値を
高速時にも適合できるように広い範囲に設定しなければ
ならず、そのため、特に手動運転時に駆動源が指定速度
より速くなった場合に危険を招き、安全性が低下する。
However, in such a case, the reference value of the deviation must be set in a wide range so that it can be applied even at high speeds. Inviting danger and reducing safety.

一方、偏差の基準値の範囲を小さくすると、安全性を向
上させることができるが、高速時に異常が頻発するので
、信頼性が極度に低下してしまう。
On the other hand, if the range of the deviation reference value is reduced, safety can be improved, but since abnormalities occur frequently at high speeds, reliability is extremely reduced.

この点を解消する為には、運転状態の差異に拘らず、一
定量以下の偏差しか生じないものを製作する必要がある
が、その場合、駆動源としてのア −クチュエータの容
量や剛性を不必要なまでに大きくしなければならず、或
いはアクチュエータを急加減速できるように複雑な制御
を必要とし、そのため、性能及びコスト面で難点がある
In order to solve this problem, it is necessary to manufacture a device that produces only a certain amount of deviation or less regardless of differences in operating conditions, but in that case, the capacity and rigidity of the actuator as a driving source must be The actuator must be made as large as necessary, or requires complicated control so that the actuator can be rapidly accelerated or decelerated, which poses drawbacks in terms of performance and cost.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記事情に鑑み、ロボットの動作モー
ドに応じて異常を検出することができ、また目標値まで
の移動時間内であっても迅速に異常検出できると共に、
瞬間的に外力が加わったとき徒らに異常検出することが
なく、更に信頼性及び安全性に優れ、実際の作業内容に
即した産業用ロボットの異常検出方法を提供するにある
In view of the above-mentioned circumstances, an object of the present invention is to be able to detect an abnormality according to the operation mode of the robot, and to quickly detect an abnormality even within the travel time to a target value.
To provide an abnormality detection method for an industrial robot that does not needlessly detect an abnormality when an external force is momentarily applied, has excellent reliability and safety, and is suitable for actual work contents.

〔発明の概要〕[Summary of the invention]

前記の目的を達成せんが為、本発明は、産業用ロボット
の動作モードが電源投入時の停止状態と。
In order to achieve the above object, the present invention provides a system in which the operating mode of an industrial robot is set to a stopped state when the power is turned on.

ティーチング等の手動運転状態と、プレイバックの自動
運転状態との3つの状態に大別できることに着目し、夫
々3つの動作モードに応じて偏差の基準値と時間の基準
値とを夫々予め設定しておく。
Focusing on the fact that it can be roughly divided into three states: manual operation state such as teaching, and automatic operation state such as playback, we set the deviation reference value and time reference value in advance according to each of the three operation modes. I'll keep it.

そして、何れかの動作モードで駆動源が制御されたとき
、駆動源に対する指令値と、駆動源の現在値との偏差の
絶対値が、その動作モードに応じた偏差の基準値と時間
の基準値との双方を越えたとき、サーボ異常とする。
When the drive source is controlled in any operation mode, the absolute value of the deviation between the command value for the drive source and the current value of the drive source is the deviation reference value and time reference according to that operation mode. When both values are exceeded, it is considered a servo error.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を添付図面に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を実施する為の産業用ロボットを示
している。この産業用ロボットは、大別すると、ロボッ
ト本体1と制御装置2とから構成されている。
FIG. 1 shows an industrial robot for carrying out the method of the invention. This industrial robot is broadly divided into a robot body 1 and a control device 2.

前記ロボット本体1は、例えば多関節タイプの溶接ロボ
ットであって、旅回台3.支柱4.上腕5、前腕61手
首7よりなる可動部と、これらを駆動させる為の駆動源
とを備えている。前記制御装置2は、ロボット本体1を
操作する為の操作部8と、ロボット本体1の動作状態を
表示する為の表示器9と、前記操作部8と略同様の機能
を持つ可搬形の操作部10とを備えている。操作部10
及び      。
The robot main body 1 is, for example, a multi-joint type welding robot, and includes a traveling table 3. Pillar 4. It includes movable parts consisting of an upper arm 5, a forearm 61, and a wrist 7, and a drive source for driving these parts. The control device 2 includes an operation section 8 for operating the robot body 1, a display 9 for displaying the operating status of the robot body 1, and a portable operation device having substantially the same functions as the operation section 8. 10. Operation unit 10
as well as .

□ 8は、ロボット本体1の駆動源に対するサーボ電源のオ
ン−オフ、起動−停止を操作できるように構成されてい
る。
□ 8 is configured to be able to turn on/off and start/stop the servo power source for the drive source of the robot body 1.

また制御装置2には、ロボット本体1の各々の    
  。
In addition, the control device 2 includes each of the robot main bodies 1.
.

駆動源をサーボ制御する為にサーボ制御回路11が夫々
内蔵されている。
A servo control circuit 11 is incorporated in each drive source to servo control the drive source.

該サーボ制御回路11は、第2図に示すように。The servo control circuit 11 is as shown in FIG.

指令手段12からの指令によって駆動源としてのアクチ
ュエータ13を駆動させるが、その際2位置検出器14
がアクチュエータ13の位置を検出してその検出信号を
カウンタ回路15に出力すると、カウンタ回路15がそ
の入力信号をカウントしてアクチュエータ13の現在値
dを求める。そして、指令値gと現在値dとの偏差Eを
演算し、その偏差E信号がリミッタ16. D/A変換
器17を介しサーボアンプ18に入力することにより、
サーボアンプ18が偏差Eに応じてアクチュエータ13
を駆動制御させる。
The actuator 13 as a drive source is driven by a command from the command means 12, and at this time, the two position detectors 14
detects the position of the actuator 13 and outputs the detection signal to the counter circuit 15, and the counter circuit 15 counts the input signal to obtain the current value d of the actuator 13. Then, the deviation E between the command value g and the current value d is calculated, and the deviation E signal is sent to the limiter 16. By inputting it to the servo amplifier 18 via the D/A converter 17,
The servo amplifier 18 operates the actuator 13 according to the deviation E.
control the drive.

なお、19は速度検出器である。Note that 19 is a speed detector.

このようなサーボ制御回路11は、第3図に示すように
、マイクロプロセッサ20を用い、該マイクロプロセッ
サ20が指令値g及び現在値dの取込みとその偏差Eの
演算とをできるようになっている。
As shown in FIG. 3, such a servo control circuit 11 uses a microprocessor 20, and the microprocessor 20 is capable of taking in a command value g and a current value d, and calculating a deviation E thereof. There is.

因みに前記マイクロプロセッサ20は、第4図に示すよ
うに、CPU部2部上1プログラム用メモリ22と、入
口ポート23と、出力ポート24とをデータバス25上
に接続して構成されている。
Incidentally, the microprocessor 20 is constructed by connecting two CPU sections, a first program memory 22, an input port 23, and an output port 24 on a data bus 25, as shown in FIG.

しかして、産業用ロボットには、ロボット本体1を動作
させるとき、ロボット本体1の動作シーケンス等を教示
するプログラミングモートと、ロボット本体1を手動で
操作して動作経路や補間条件等を教示するティーチング
モードと、教示された内容に従ってロボット本体1を忠
実に動作させるプレイバックモードとの動作モードがあ
る。これらの各動作モードは操作部8によって選択でき
るように構成されており、かつ前記サーボ制御回路11
への通電状態で分けると、プレイバックモードによる自
動運転状態、ティーチングモードによる手動運転状態、
プログラミングモードによる停止状態、の3つに大別さ
れる。前記停止状態とは、サーボ制御回路11への通電
下においてアクチュエータに起動や停止のような指令が
送付されていないときのアクチュエータの停止状態であ
り、手動及び自動運転時のような停止指令による停止状
態とは基本的に異なるものである。
Therefore, when operating the robot body 1, an industrial robot has a programming mode that teaches the operation sequence of the robot body 1, and a teaching mode that teaches the operation path, interpolation conditions, etc. by manually operating the robot body 1. There are two operating modes: a playback mode and a playback mode in which the robot body 1 is operated faithfully according to the taught contents. Each of these operation modes is configured to be selectable by the operation section 8, and the servo control circuit 11
When divided by the power supply state, there are automatic operation state in playback mode, manual operation state in teaching mode,
It is roughly divided into three types: a stopped state depending on the programming mode. The stopped state is the stopped state of the actuator when no command to start or stop is sent to the actuator while the servo control circuit 11 is energized. It is fundamentally different from state.

前記自動運転状態及び手動運転状態並びに停止状態にお
いては、夫々の動作モードに応じ、指令値gと現在値d
との偏差Eに差が生じる。即ち、自動運転状態ではロボ
ット本体1が高速動作する場合もあるので偏差Eが大き
く、手動運転状態では作業者がロボット本体1に接近す
るので安全上の見地から低速動作とする為に偏差が小さ
く、停止状態では偏差が殆どないと云うことになる。従
って、夫々の動作モードにおける偏差の関係は。
In the automatic operation state, manual operation state, and stop state, the command value g and the current value d are set according to the respective operation modes.
There is a difference in the deviation E from That is, in the automatic operation state, the robot body 1 may operate at high speed, so the deviation E is large, and in the manual operation state, the worker approaches the robot body 1, so the deviation is small because the robot operates at a low speed from a safety standpoint. , it can be said that there is almost no deviation in the stopped state. Therefore, the relationship between the deviations in each operating mode is as follows.

下記の関係になる。The relationship is as follows.

EA>E)J>EP  ・・・・・・・・・・・・・・
・(1)但し、EA:自動運転時の偏差量 EM:手動運転時の偏差量 EP:停止状態の偏差量 そこで本発明方法においては、前記(1)式に着目し、
駆動源13に対する指令値と、駆動源の駆動されるべき
現在値との偏差に、夫々の動作モードに応じて基準値E
Ai+ EM i+ EPiを予め設定しておく。この
偏差基準値EAit EM iy EP(は、偏差の絶
対値と比較する為の目安となるものであり、夫々が自動
運転状態1手動運転状態、停止状態に対応している。な
お、前記偏差基準値EAipEM+eEINは各々の駆
動源13ごとに適宜の値に選定される。
EA>E)J>EP・・・・・・・・・・・・・・・
・(1) However, EA: Deviation amount during automatic operation EM: Deviation amount during manual operation EP: Deviation amount during stopped state Therefore, in the method of the present invention, focusing on the above equation (1),
A reference value E is set for the deviation between the command value for the drive source 13 and the current value at which the drive source should be driven, depending on the respective operation mode.
Ai+EM i+EPi are set in advance. This deviation reference value EAit EM iy EP (is a guideline for comparison with the absolute value of the deviation, and corresponds to the automatic operation state, manual operation state, and stopped state, respectively. The value EAipEM+eEIN is selected to be an appropriate value for each drive source 13.

また、前記夫々の偏差基準値EAi+EM i、EPi
に対応させて時間の基準値jAiy jMiy tPi
も予め夫々設定しておく。該時間基準値jAi+tMi
ttPiの夫々は、ロボット本体1の可動部が動作開始
時のようにある瞬間だけ、偏差の基準値EAi+EMi
tEP+を越えることがあるので、この瞬間的に大きな
偏差を許容できるように適宜の時間に設定されている。
In addition, the respective deviation reference values EAi+EM i, EPi
The time reference value jAiy jMiy tPi corresponds to
are also set in advance. The time reference value jAi+tMi
Each of ttPi is set to the deviation reference value EAi + EMi only at a certain moment, such as when the movable part of the robot body 1 starts operating.
Since tEP+ may be exceeded, an appropriate time is set to allow this instantaneous large deviation.

この時間の基準値tAi+tlJi+jP+も偏差の基
準値と同様前記(1)式に準じた大小関係となっている
This time reference value tAi+tlJi+jP+ also has a magnitude relationship based on the above-mentioned equation (1), similar to the deviation reference value.

゛前記時間基準値tAiy tMi+ tPiと偏差基
準値EAiy EMip EPiとは、第5図(a)、
 (b)に示すように、夫々が互いにプログラム用メモ
リ22内の基準値テーブルに動作モード別に格納され、
動作モードに応じて呼び出されるようになっている。
゛The time reference value tAiy tMi+ tPi and the deviation reference value EAiy EMip EPi are shown in Fig. 5(a),
As shown in (b), each is stored in the reference value table in the program memory 22 according to the operation mode,
It is called depending on the operating mode.

そして、ロボット本体1を運転したとき、指令値と実際
の現在値との偏差の絶対値が、その動作モードに応じた
偏差基準値と時間基準値との双方を越えたとき、サーボ
異常と判定するようになつている。即ち、自動運転状態
においては偏差の絶対値がその偏差基準値EAiと基準
時間値tAiとを越えると、また手動運転状態において
は偏差の絶対値がその偏差基準値EMIと基準時間値t
IJ +とを越えると、さらに停止状態においては偏差
の絶対値が偏差基準値EPiと基準時間値tPiとを越
えると、夫々サーボ異常とするようになっている。
When the robot body 1 is operated, if the absolute value of the deviation between the command value and the actual current value exceeds both the deviation reference value and time reference value according to the operation mode, it is determined that the servo is abnormal. I'm starting to do that. That is, in the automatic operation state, when the absolute value of the deviation exceeds the deviation reference value EAi and the reference time value tAi, and in the manual operation state, the absolute value of the deviation exceeds the deviation reference value EMI and the reference time value tAi.
If the absolute value of the deviation exceeds the deviation reference value EPi and the reference time value tPi in the stopped state, a servo abnormality is determined.

このサーボ異常の判定はCPU部21によって行なわれ
、該CPU部21はサーボ異常の判定後直ちにサーボ制
御回路11への電源を遮断したり2表示器9にその旨を
表示する等の処理を行なえるようになっている。
This servo abnormality determination is made by the CPU unit 21, and the CPU unit 21 immediately performs processing such as cutting off the power to the servo control circuit 11 and displaying a message to that effect on the 2nd display 9. It has become so.

次に、本発明方法の具体的な動作を第6図のフローで示
す。
Next, the specific operation of the method of the present invention will be shown in the flowchart of FIG.

即ち、Sllにおいてサーボ制御が正常に行なわれてい
るか否かが判定される。該判定結果、正常に行なわれて
いない場合には後述するサーボ異常処理を行う(520
)、一方、正常に行なわれている場合は、指令値gを取
込み(S12)、また現在値dを取込み(S13)、偏
差の絶対値E=Ig−dlを演算する( S 14)。
That is, it is determined whether servo control is being performed normally in Sll. As a result of this judgment, if the servo is not being operated normally, the servo abnormality processing described below is performed (520).
), on the other hand, if the execution is normal, the command value g is fetched (S12), the current value d is fetched (S13), and the absolute value of the deviation E=Ig-dl is calculated (S14).

そして、偏差の絶対値Eが、サーボ異常検出定数ER1
即ち動作モードに応じた偏差基準値より大きいか否かが
判定される(S 15)。該判定結果、絶対値Eがサー
ボ異常検出定数ERより小さい場合には、S19以降の
処理を実行するが、サーボ異常検出定数ERより大きい
と、絶対値Eの継続している時間がカウントされ(81
6)、カウントされた時間tが、時間のサーボ異常検出
定数tR即ち動作モードに応じた時間基準値より大きい
か否かが判定される(SL?)。
Then, the absolute value E of the deviation is the servo abnormality detection constant ER1
That is, it is determined whether the deviation is larger than a deviation reference value according to the operation mode (S15). As a result of this determination, if the absolute value E is smaller than the servo abnormality detection constant ER, the processes from S19 onward are executed, but if it is larger than the servo abnormality detection constant ER, the time during which the absolute value E continues is counted ( 81
6) It is determined whether the counted time t is larger than a time servo abnormality detection constant tR, that is, a time reference value according to the operation mode (SL?).

該判定結果、前記時間のサーボ異常検出定数tRより小
さい場合には、S19以降の処理が行われるが、逆に大
きいと、次の処理(518)が行われる。
If the determination result is smaller than the servo abnormality detection constant tR for the above-mentioned time, the processes from S19 onward are performed, but if it is larger, the next process (518) is performed.

即ち、サーボ異常信号がロボット本体1の緊急停止やサ
ーボ制御回路11への電源遮断等を行うべきハードがわ
に出力されると共に、異常フラグがセットされ(818
)、一定時間の経過後(S19)、S11の処理が行わ
れる。この場合、Sllの処理結果、81gの処理によ
ってサーボ制御が正常に行われていない判定がされるの
で1表示器9に異常表示する等のサーボ異常処理を行な
って、その旨を作業者に知らせる。
That is, a servo abnormality signal is output to the hardware that should emergency stop the robot body 1, cut off the power to the servo control circuit 11, etc., and an abnormality flag is set (818).
), and after a certain period of time has elapsed (S19), the process of S11 is performed. In this case, as a result of the Sll processing, it is determined that the servo control is not being performed normally by the processing of 81g, so servo abnormality processing such as displaying an abnormality on the 1 display 9 is performed and the operator is notified to that effect. .

このように、偏差基準値と時間値との双方が予め動作モ
ードに応じて夫々設定され、しかもそれら双方の基準値
を越えたときにサーボ異常と判定するので、サーボ異常
の判定基準を動作モードの種類に応じて確実に変更させ
ることができる。
In this way, both the deviation reference value and the time value are set in advance according to the operating mode, and a servo abnormality is determined when both of these reference values are exceeded. can be reliably changed depending on the type of

その結果、指令値と現在値との偏差のみによって異常判
定する公知例と比較すると、瞬間的に外力が加わって偏
差が大きくなっても、徒に異常処理されることがなく、
また目標値までの到達時間によって異常判定する公知例
と比較すると、異常が発生したとき直ちに異常処理でき
るので、即応性を持たせることができる。さらに、手動
運転状態では自動運転状態より小さい範囲の基準値に選
定すれば、駆動源13が自動運転時の許容範囲内で暴走
することがなくなり、そのため、可動部が作業者や周囲
の物体に当たるおそれが解消されるので安全性を高める
ことができる。しかも、精緻にサーボ異常を判定するの
で、それだけ信頼性を高めることもできる。
As a result, compared to known examples in which an abnormality is determined based only on the deviation between the command value and the current value, even if an external force is momentarily applied and the deviation becomes large, the abnormality is not processed unnecessarily.
Furthermore, compared to known examples in which an abnormality is determined based on the time it takes to reach a target value, it is possible to handle the abnormality immediately when it occurs, so it is possible to provide immediate response. Furthermore, if the reference value is selected in a smaller range in the manual operation state than in the automatic operation state, the drive source 13 will not run out of control within the allowable range during automatic operation, and as a result, the movable part will hit the worker or surrounding objects. Since the fear is eliminated, safety can be improved. Moreover, since servo abnormality is precisely determined, reliability can be increased accordingly.

第7図及び第8図は本発明方法の第2の実施例を示して
いる。この場合は、自動運転時では実際に低速と高速と
の何れの動作もあることを考慮し。
7 and 8 show a second embodiment of the method of the invention. In this case, we take into account that during automatic operation, there are actually both low-speed and high-speed operations.

自動運転時にのみサーボ異常検出定数を高速用と低速用
とに2種類設定し、これに基づいてサーボ異常を検出で
きるようにしている。
Two types of servo abnormality detection constants are set for high speed and low speed only during automatic operation, and servo abnormalities can be detected based on these constants.

即ち、自動運転時には、高速用のサーボ異常検出定数と
しての前記偏差基準値EAtと時間基準値iAiとを設
定する他、低速用のサーボ異常検出定数として、偏差基
準値EALiと時間基準値jALiとを予め夫々設定し
ておく。この場合、夫々の基準値は、 EAi> EALi LA+<tAt+ として、互いに数倍〜数十倍の大小関係に設定する。
That is, during automatic operation, in addition to setting the deviation reference value EAt and time reference value iAi as servo abnormality detection constants for high speed, the deviation reference value EALi and time reference value jALi are set as servo abnormality detection constants for low speed. are set in advance. In this case, the respective reference values are set to be several times to several tens of times larger than each other as EAi>EALi LA+<tAt+.

そして、動作モードが自動運転に切換えられたとき、指
令値gと現在値dとの偏差の絶対値Eが。
Then, when the operation mode is switched to automatic operation, the absolute value E of the deviation between the command value g and the current value d is.

低速用サーボ異常検出定数としての偏差基準値EALと
時間基準値tALとを越えたとき、もしくは高速用サー
ボ異常検出定数としての偏差基準値E^と基準時間値t
Aとを越えたときにサーボ異常を検出できるようになっ
ている。なお、第8図において第6図と同様の処理内容
のものについては同一符号を付しであるので、ここでは
省略する。
When the deviation reference value EAL as a low-speed servo abnormality detection constant exceeds the time reference value tAL, or the deviation reference value E^ and the reference time value t as a high-speed servo abnormality detection constant
Servo abnormality can be detected when the value exceeds A. Note that in FIG. 8, processing contents similar to those in FIG. 6 are designated by the same reference numerals, and therefore will not be described here.

従って、この実施例によれば、低速及び高速の2つの判
定基準に基づいてサーボ異常を検出するので、自動運転
の実状に即してより精緻に検出することができる。
Therefore, according to this embodiment, since servo abnormality is detected based on the two criteria of low speed and high speed, it is possible to detect it more precisely in accordance with the actual situation of automatic driving.

また、低速用の処理内容(S105〜S 107)と高
速用の処理内容(3108〜S 110)とは、低速〜
高速間で常時行なうので、低速時及び高速時に夫々の速
度判定を行うものと比較すると、制御部の処理を筒略化
することができる。しかも、低速用の処理内容(S L
05〜S 107)が、手動運転時と停止状態とでは機
能しないので、処理のいっそうの簡略化を図ることがで
きる。
Furthermore, the processing contents for low speed (S105 to S107) and the processing contents for high speed (3108 to S110) are different from those for low speed to
Since the process is always performed between high speeds, the processing of the control section can be simplified compared to the case where speed determination is performed separately at low speeds and high speeds. Moreover, the processing content for low speed (S L
05 to S107) do not function during manual operation or in a stopped state, so that the processing can be further simplified.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明方法は、各々の動作モードに
応じて偏差基準値と時間基準値とを予め設定し、何れか
一方の動作モードで駆動源を制御した場合、偏差の絶対
値が、その動作モードに応じた偏差基準値と時間基準値
との双方を越えたときにサーボ異常とするので、目櫟値
までの到達時間内であっても迅速に異常検出することが
できると共に、瞬間的に外力が加わっても徒に異常検出
することがない。しかも精緻に異常検出することができ
るので、安全性を高めることができると共に、信頼性を
高めることもでき、実際の作業内容に即したサーボ異常
を検出することができる。
As described above, in the method of the present invention, when the deviation reference value and the time reference value are set in advance according to each operation mode, and the drive source is controlled in either operation mode, the absolute value of the deviation is Since a servo abnormality is determined when both the deviation reference value and the time reference value according to the operating mode are exceeded, the abnormality can be quickly detected even within the time required to reach the target value. Even if an external force is momentarily applied, no abnormality will be detected unnecessarily. Moreover, since abnormalities can be detected precisely, safety and reliability can be improved, and servo abnormalities can be detected in accordance with the actual work contents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した一実施例を示す溶接ロボ
ットの全体図、第2図はサーボ制御回路図、第3図はマ
イクロプロセッサを用いたサーボ制御回路図、第4図は
マイクロプロセッサの概略図、第5図(a)及び(b)
は本発明方法の要部を示す説明図及びフローチャート、
第6@は処理内容を示すフローチャート、第7図は本発
明方法の第2の実施例を示す説明図、第8図は処理内容
を示すフローチャートである。 1・・・ロボット本体、3〜7・・・可動部、13・・
・駆動源、2・・・制御部、11・・・サーボ制御回路
、EA・・・自動運転状態の偏差基準値、EM・・・手
動運転状態の偏差基準値、EP・・・停止状態の偏差基
準値、tA・・・自動運転状態の時間基準値、tM・・
・手動運転状態の時間基準値、tp・・・停止状態の時
間基準値、g・・指令値、d・・・現在値、E・・・偏
差、EAL・・・自動運転状態における低速用の偏差基
準値、tAL・・・自動運転状態における低速用の時間
基準値。
Fig. 1 is an overall diagram of a welding robot showing one embodiment of the method of the present invention, Fig. 2 is a servo control circuit diagram, Fig. 3 is a servo control circuit diagram using a microprocessor, and Fig. 4 is a microprocessor Schematic diagram of FIG. 5(a) and (b)
are explanatory diagrams and flowcharts showing the main parts of the method of the present invention,
No. 6 @ is a flowchart showing the processing contents, FIG. 7 is an explanatory diagram showing the second embodiment of the method of the present invention, and FIG. 8 is a flowchart showing the processing contents. 1...Robot body, 3-7...Movable part, 13...
- Drive source, 2...Control unit, 11...Servo control circuit, EA...Difference reference value in automatic operation state, EM...Deviation reference value in manual operation state, EP...Difference reference value in stopped state Deviation reference value, tA...Time reference value in automatic operation state, tM...
・Time reference value in manual operation state, tp...Time reference value in stop state, g...command value, d...current value, E...deviation, EAL...low speed value in automatic operation state. Deviation reference value, tAL: Time reference value for low speed in automatic driving state.

Claims (1)

【特許請求の範囲】 1、各々の可動部を駆動させる駆動源を、通電下におけ
る停止状態と手動運転状態と自動運転状態との何れか一
方の動作モードでサーボ制御させる産業用ロボットにお
いて、前記駆動源に対する指令値と、駆動源の駆動され
るべき現在値との偏差に、動作モードに応じて基準値を
予め夫々設定すると共に、該夫々の偏差基準値と対応さ
せて時間基準値を設定し、前記駆動源を何れか一方の動
作モードで制御させた場合、指令値と実際の現在値との
偏差の絶対値が、その動作モードに応じた偏差基準値と
時間基準値との双方を越えたときにサーボ異常とするこ
とを特徴とする産業用ロボットのサーボ異常検出方法。 2、特許請求の範囲第1項において、前記偏差の基準値
及び時間基準値は自動運転状態において高速用と低速用
との2種類に設定され、何れか一方の偏差基準値及び時
間基準値を越えたときに自動運転状態でのサーボ異常と
することを特徴とする産業用ロボットのサーボ異常検出
方法。
[Scope of Claims] 1. In an industrial robot in which a drive source for driving each movable part is servo-controlled in one of the operation modes of a stopped state under energization, a manual operation state, and an automatic operation state, the above-mentioned A reference value is set in advance for the deviation between the command value for the drive source and the current value at which the drive source should be driven, depending on the operation mode, and a time reference value is set in correspondence with each deviation reference value. However, when the drive source is controlled in one of the operation modes, the absolute value of the deviation between the command value and the actual current value is equal to both the deviation reference value and the time reference value according to the operation mode. A method for detecting a servo abnormality in an industrial robot, characterized in that a servo abnormality is determined when the abnormality is exceeded. 2. In claim 1, the reference value and time reference value of the deviation are set to two types, one for high speed and one for low speed, in the automatic driving state, and either one of the deviation reference value and time reference value is set. A method for detecting a servo abnormality in an industrial robot, characterized in that a servo abnormality is detected in an automatic operation state when the abnormality is exceeded.
JP60162004A 1985-07-24 1985-07-24 Method for detecting servo abnormality of industrial robot Pending JPS6224305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162004A JPS6224305A (en) 1985-07-24 1985-07-24 Method for detecting servo abnormality of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162004A JPS6224305A (en) 1985-07-24 1985-07-24 Method for detecting servo abnormality of industrial robot

Publications (1)

Publication Number Publication Date
JPS6224305A true JPS6224305A (en) 1987-02-02

Family

ID=15746209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162004A Pending JPS6224305A (en) 1985-07-24 1985-07-24 Method for detecting servo abnormality of industrial robot

Country Status (1)

Country Link
JP (1) JPS6224305A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414643A2 (en) * 1989-08-16 1991-02-27 Megamation Incorporated Method and apparatus for monitoring and controlling linear motor robot apparatus and the like
JPH056218A (en) * 1991-03-28 1993-01-14 Nachi Fujikoshi Corp System for controlling industrial robot
EP0589668A1 (en) * 1992-09-21 1994-03-30 Pitney Bowes Inc. DC motor stall-detection system
JPH06282319A (en) * 1993-03-26 1994-10-07 Toyoda Mach Works Ltd Motor control device
JP2000218589A (en) * 1999-02-02 2000-08-08 Sony Corp Control device and method for actuator
WO2004009303A1 (en) * 2002-07-18 2004-01-29 Kabushiki Kaisha Yaskawa Denki Robot controller and robot system
EP1927440A1 (en) * 2006-11-30 2008-06-04 Abb Research Ltd. Method and device for monitoring the condition of an industrial robot
JP2009140325A (en) * 2007-12-07 2009-06-25 Sony Corp Information processor, information processing method, and program
CN108638128A (en) * 2018-05-24 2018-10-12 哈工大机器人(合肥)国际创新研究院 A kind of real-time method for monitoring abnormality and its system of industrial robot
JP2019508075A (en) * 2016-01-20 2019-03-28 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for rapid arrest and recovery of motion deviations in a medical device repositionable arm

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414643A2 (en) * 1989-08-16 1991-02-27 Megamation Incorporated Method and apparatus for monitoring and controlling linear motor robot apparatus and the like
US5081593A (en) * 1989-08-16 1992-01-14 Megamation Incorporated Method and apparatus for monitoring and controlling linear motor robot apparatus and the like
JPH056218A (en) * 1991-03-28 1993-01-14 Nachi Fujikoshi Corp System for controlling industrial robot
EP0589668A1 (en) * 1992-09-21 1994-03-30 Pitney Bowes Inc. DC motor stall-detection system
JPH06282319A (en) * 1993-03-26 1994-10-07 Toyoda Mach Works Ltd Motor control device
JP2000218589A (en) * 1999-02-02 2000-08-08 Sony Corp Control device and method for actuator
WO2004009303A1 (en) * 2002-07-18 2004-01-29 Kabushiki Kaisha Yaskawa Denki Robot controller and robot system
US7391178B2 (en) 2002-07-18 2008-06-24 Kabushiki Kaisha Yaskawa Denki Robot controller and robot system
EP1927440A1 (en) * 2006-11-30 2008-06-04 Abb Research Ltd. Method and device for monitoring the condition of an industrial robot
US8090475B2 (en) 2006-11-30 2012-01-03 Abb Research Ltd. Method and device for monitoring the condition of an industrial robot
JP2009140325A (en) * 2007-12-07 2009-06-25 Sony Corp Information processor, information processing method, and program
JP2019508075A (en) * 2016-01-20 2019-03-28 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for rapid arrest and recovery of motion deviations in a medical device repositionable arm
US11246669B2 (en) 2016-01-20 2022-02-15 Intuitive Surgical Operations, Inc. System and method for rapid halt and recovery of motion deviations in medical device repositionable arms
US11779415B2 (en) 2016-01-20 2023-10-10 Intuitive Surgical Operations, Inc. System and method for rapid halt and recovery of motion deviations in repositionable arms
CN108638128A (en) * 2018-05-24 2018-10-12 哈工大机器人(合肥)国际创新研究院 A kind of real-time method for monitoring abnormality and its system of industrial robot

Similar Documents

Publication Publication Date Title
US5834916A (en) Industrial robot and its control unit
JP3288250B2 (en) Robot controller
JPH03281194A (en) Stop control method for industrial robot
JP2819367B2 (en) Manipulator safe operation system
EP1804148A1 (en) Numerical controller with smooth velocity transition at switchover to servo-on state
JP4261470B2 (en) Control device
KR0144650B1 (en) Method of detecting and regulating load on servomotor
JP3169838B2 (en) Servo motor control method
JP2009050958A (en) Apparatus for controlling robot having stop monitoring function
EP0203199B1 (en) Injection molding machine which uses a servo motor and which is provided with a protecting function
JPS6224305A (en) Method for detecting servo abnormality of industrial robot
JPH11296213A (en) Machine device
JP5778891B2 (en) Robot controller
US20020161477A1 (en) Robot restarting method
JPS63245389A (en) Method of controlling robot
JPH0739190A (en) Brake malfunction detecting method for automatic machine
JP4233559B2 (en) Numerically controlled machine tool
JP2001202134A (en) Control device, its method and alarm output method for the control device
JP3997405B2 (en) Mobile manipulator control device and mobile manipulator
CN113843825B (en) Method and system for tracking and processing conveyor belt
JP2000042865A (en) Servo control device
JPH0584681A (en) Method for detecting collision of robot arm against foreign matter
JP3855629B2 (en) Robot interference detection device
JP7333940B2 (en) Control device, control method and program
WO2023062821A1 (en) Welding gun control device, welding gun control system, and welding system