JPS6224048B2 - - Google Patents

Info

Publication number
JPS6224048B2
JPS6224048B2 JP56143229A JP14322981A JPS6224048B2 JP S6224048 B2 JPS6224048 B2 JP S6224048B2 JP 56143229 A JP56143229 A JP 56143229A JP 14322981 A JP14322981 A JP 14322981A JP S6224048 B2 JPS6224048 B2 JP S6224048B2
Authority
JP
Japan
Prior art keywords
air
greenhouse
water
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56143229A
Other languages
Japanese (ja)
Other versions
JPS5843721A (en
Inventor
Yukio Nogiwa
Ichiro Watabe
Toyoki Kozai
Toshitaka Kikui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSHIN KISETSU KK
Original Assignee
TOSHIN KISETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSHIN KISETSU KK filed Critical TOSHIN KISETSU KK
Priority to JP56143229A priority Critical patent/JPS5843721A/en
Publication of JPS5843721A publication Critical patent/JPS5843721A/en
Publication of JPS6224048B2 publication Critical patent/JPS6224048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Mushroom Cultivation (AREA)

Description

【発明の詳細な説明】 温室で果物、野菜、草花などを育成する場合、
病虫害を受けることが多い。温室では外気と遮断
されているため室内の湿度が異状に高くなること
多く、従つて病菌、害虫の繁殖に好条件を 与えることになる。又密閉されているため病菌
の浮遊胞子、害虫などが散失されず、従つて繁殖
の機会が多くなるからである。
[Detailed Description of the Invention] When growing fruits, vegetables, flowers, etc. in a greenhouse,
It is often attacked by pests and diseases. Because greenhouses are isolated from the outside air, the indoor humidity often becomes abnormally high, which creates favorable conditions for the breeding of disease bacteria and pests. In addition, since it is sealed, airborne spores of disease bacteria, pests, etc. are not dispersed, and therefore there are many opportunities for reproduction.

この病虫害を防ぐため時折農薬散布の必要にせ
まられるが、温室内での農薬散布は作業員の健康
に対し悪影響を与える心配がある。又生産物に農
薬が附着したまま収穫販売されることあり、需要
者の健康に対する影響も絶無とは云えない。
To prevent these pests, it is sometimes necessary to spray pesticides, but there are concerns that spraying pesticides inside greenhouses may have a negative impact on the health of workers. In addition, products are sometimes harvested and sold with pesticides still attached to them, which can have a negative impact on the health of consumers.

本発明は温室内の空気を引き出して一旦ヒート
ポンプの蒸発器側空気冷却器を通して冷却除湿
し、湿度100%近くになつた冷空気を消毒水シヤ
ワーで消毒し、次にヒートポンプの凝縮器側空気
加熱器を通し加温した上で温室に戻す。即ち温室
の空気を除湿装置、消毒装置を通して循環させ、
温室空間内の浮遊胞子その他病菌害虫を極力少な
くすることにより、温室の消毒を人手なしで実施
するものである。
This invention draws air from the greenhouse, cools and dehumidifies it through an air cooler on the evaporator side of a heat pump, disinfects the cold air with a humidity of nearly 100% using a disinfectant water shower, and then heats the air on the condenser side of the heat pump. Pass it through the container to warm it up and then return it to the greenhouse. That is, the air in the greenhouse is circulated through a dehumidifying device and a disinfecting device,
By minimizing floating spores and other pests and diseases in the greenhouse space, the greenhouse can be disinfected without human intervention.

本発明を実施例につき詳しく説明すると次の通
りである。
The present invention will be described in detail with reference to examples as follows.

附図は本発明の一実施例を示すフローダイヤグ
ラムである。図に於て1は温室を示し、温室1内
の空気はブロワー2により矢印3の様に循環す
る。4は冷媒の圧縮機、5は膨脹弁、6はフイン
コイルによる蒸発器、7はフインコイルによる凝
縮器であり、この4つでヒートポンプの冷媒サイ
クルが完結する。冷媒は矢印8の様に循環する。
9は空気消毒器である。下部にたまつている消毒
水10をポンプ11で揚水し、上部のシヤワー装
置12から霧状に落下させ、空気消毒器9を通過
する空気と充分に接触する様にし消毒水は下に落
ちて再び下部にたまる様になつている。空気中に
浮遊する病菌の胞子、害虫その他はここで霧状消
毒水に捕らえられ死滅する。13はエリミネータ
ーである。霧状の消毒水の一部が空気の流れに乗
つて運ばれて出るから、このエリミネータ13で
空気と消毒水を分離し、水は集められて配管で矢
印14の様に戻される。15は空気・水熱交換
器、16は水槽である。凝縮器7から出て来る空
気の温度が高過ぎる時は、水槽16の水をポンプ
17で揚水し熱交換器15を通して空気を冷却
し、水槽16に戻す。水槽16の水温は段々上昇
し、従つて蓄熱されることになる。一方凝縮器7
を通つて来る空気の温度が低過ぎる時は水槽16
の水をポンプ17で循環し、熱交換器15で空気
を加温する。18は調節バルブで、これにより循
環水量を加減して空気の冷却、加温の程度を調節
する。
The attached figure is a flow diagram showing one embodiment of the present invention. In the figure, 1 indicates a greenhouse, and the air in the greenhouse 1 is circulated by a blower 2 as shown by an arrow 3. 4 is a refrigerant compressor, 5 is an expansion valve, 6 is an evaporator with a fine coil, and 7 is a condenser with a fine coil, and these four complete the refrigerant cycle of the heat pump. The refrigerant circulates as shown by arrow 8.
9 is an air sterilizer. Disinfecting water 10 accumulated at the bottom is pumped up by a pump 11 and dropped in the form of mist from the shower device 12 at the top, so that it comes into sufficient contact with the air passing through the air sterilizer 9, so that the disinfectant water falls to the bottom. It seems to accumulate at the bottom again. Here, the spores of disease bacteria, pests, etc. floating in the air are captured by the atomized disinfectant water and killed. 13 is an eliminator. Since a portion of the mist disinfecting water is carried along with the air flow and exits, the eliminator 13 separates the air from the disinfecting water, and the water is collected and returned through piping as shown by the arrow 14. 15 is an air/water heat exchanger, and 16 is a water tank. When the temperature of the air coming out of the condenser 7 is too high, the water in the water tank 16 is pumped up by a pump 17, the air is cooled through a heat exchanger 15, and then returned to the water tank 16. The water temperature in the water tank 16 gradually rises, and therefore heat is stored. On the other hand, condenser 7
When the temperature of the air coming through is too low, the water tank 16
The water is circulated by the pump 17, and the air is heated by the heat exchanger 15. Reference numeral 18 denotes a control valve, which adjusts the amount of circulating water to adjust the degree of cooling and heating of the air.

この実施例の装置に基き、具体的数値の一例を
交えて説明すると次の通りである。
Based on the apparatus of this embodiment, an explanation will be given as follows, including an example of specific numerical values.

冬期快晴日の正午に於て温室1内の空気を温度
23℃、湿度80%として運転する場合を想定する。
温室1から矢印3に従つて引き出された空気は温
室1内と同じく23℃、湿度80%である。蒸発器6
はフイン付き管で構成され、冷媒の蒸発により直
接空気を冷却する形式のものである。空気が矢印
3に従つて蒸発器6を通過すると冷却され、且つ
水分がフイン上に結露し除湿される。除湿により
生じた水は流れて下の受け皿19の上に落ち、集
つて管20により外に排出される。蒸発器6を適
当に設計して温度23℃、湿度80%で入つて来た空
気が冷却・除湿され温度15℃前後、湿度100%近
くにすることができる。この空気が空気消毒器9
に入る。空気消毒器9では先きに述べた通り、霧
状の消毒水と空気が充分に接触するから空気中に
浮遊している胞子その他病菌、害虫などが捕らえ
られ消毒される。空気消毒器9に入る空気は湿度
100%近くになつているからこの中では水の蒸発
は殆んど起らない。ただ、消毒水が霧状になつて
いるから一部が空気の流れに乗つて出口に運ばれ
る。それで次のエリミネータ13(気液分離器)
で水滴を収集し、収集された水は配管により矢印
14の様に元に戻される。エリミネーター13を
出て凝縮器7に入る空気は温度15℃前後、湿度
100%である。凝縮器7はフイン付き管で構成さ
れ、冷媒の凝縮により直接空気を加熱する形式の
ものである。凝縮器7で空気に与える熱量は23
℃、湿度80%の空気のエンタルピーと温度15℃、
湿度100%の空気のエンタルピーとの差に空気流
量を掛けた熱量と、圧縮器4の出力エネルギーと
の和に等しい。従つて凝縮器7では著しく温度が
上昇し35℃前後になる。凝縮器7の次に熱交換器
15が配置されている。水槽16の水はポンプ1
7で熱交換器15を循環し、空気の顕熱を奪い、
空気は温度23℃、湿度60%となる。この空気がブ
ロワー2を通つて温室1に送り込まれる。温室1
の中では太陽熱の一部(約60%)は顕熱となり空
気を温めるが、一方外気の温度が低いから屋根、
外壁からの熱損失がある。顕熱の入熱と熱損失と
が大よそバランスし、送り込まれる空気の温度23
℃はそのまま上下せず、温室1内は23℃に保たれ
る。温室1の中に入つた太陽熱の残部(約40%)
は植物の葉面と土壌の表面から水分を蒸発させる
ための潜熱となる。従つて温室1内では水分の蒸
発が盛んである。ブロワー2を通つて温室1に送
り込まれる空気は温度23℃、湿度60%であり、温
室1内では顕熱の入熱・出熱がバランスしている
から温度23℃はそのまま保たれるが、湿度は水分
の蒸発により60%から80%迄上昇する。この様に
して温室1内は温度23℃、湿度80%に保たれる。
Temperature of the air inside greenhouse 1 at noon on a clear day in winter
Assuming operation at 23°C and 80% humidity.
The air drawn out from greenhouse 1 according to arrow 3 has the same temperature as inside greenhouse 1, 23°C and 80% humidity. Evaporator 6
It consists of a finned tube and directly cools the air by evaporating the refrigerant. When the air passes through the evaporator 6 in accordance with the arrow 3, it is cooled, and moisture condenses on the fins to dehumidify the air. The water produced by the dehumidification flows and falls onto the lower tray 19, where it is collected and discharged to the outside through a pipe 20. By appropriately designing the evaporator 6, the air that comes in at a temperature of 23°C and a humidity of 80% can be cooled and dehumidified to a temperature of around 15°C and a humidity of nearly 100%. This air is an air sterilizer 9
to go into. As mentioned earlier, in the air sterilizer 9, the mist of sterilizing water comes into sufficient contact with the air, so that spores, pathogens, pests, etc. floating in the air are captured and sterilized. The air entering the air sterilizer 9 is humid
Since it is close to 100%, there is almost no evaporation of water in this area. However, since the disinfectant water is in the form of a mist, some of it is carried to the exit by air currents. So the next eliminator 13 (gas-liquid separator)
The water droplets are collected at , and the collected water is returned to the source as shown by the arrow 14 through piping. The air that exits the eliminator 13 and enters the condenser 7 has a temperature of around 15°C and humidity.
It is 100%. The condenser 7 is composed of a finned tube and is of a type that directly heats air by condensing a refrigerant. The amount of heat given to the air by condenser 7 is 23
℃, enthalpy of air with humidity 80% and temperature 15℃,
It is equal to the sum of the heat amount obtained by multiplying the difference between the enthalpy of air with 100% humidity and the air flow rate, and the output energy of the compressor 4. Therefore, the temperature in the condenser 7 rises significantly to around 35°C. A heat exchanger 15 is arranged next to the condenser 7. Water in tank 16 is pumped 1
7 circulates through the heat exchanger 15 and removes sensible heat from the air.
The temperature of the air is 23℃ and the humidity is 60%. This air is sent into the greenhouse 1 through the blower 2. Greenhouse 1
Inside, some of the solar heat (approximately 60%) becomes sensible heat and warms the air, but on the other hand, because the temperature of the outside air is low, the roof
There is heat loss from the exterior walls. Sensible heat input and heat loss are roughly balanced, and the temperature of the air being sent is 23
The temperature inside greenhouse 1 is maintained at 23°C without changing its temperature. The remainder of the solar heat that entered greenhouse 1 (approximately 40%)
is the latent heat that evaporates water from the plant leaves and soil surface. Therefore, moisture evaporates rapidly within the greenhouse 1. The air sent into the greenhouse 1 through the blower 2 has a temperature of 23°C and a humidity of 60%, and since the sensible heat input and output are balanced within the greenhouse 1, the temperature remains at 23°C. Humidity increases from 60% to 80% due to evaporation of water. In this way, the temperature inside greenhouse 1 is maintained at 23°C and humidity at 80%.

温室1内の空気は矢印3の様に循環し、循環中
に除湿・消毒されて温室1に戻る。太陽熱を受け
る日中、この装置を連続して運転すれば、温室1
は除湿・消毒され、且つ余分の熱は水槽16に蓄
熱される。夜になつて温室1の温度が下がり暖房
の必要を生じた時、ブロワー2とポンプ17を運
転すると熱交換器15は空気加熱器となり、昼間
に蓄熱された熱量を夜間暖房に利用することがで
きる。
The air inside the greenhouse 1 is circulated as shown by arrow 3, dehumidified and disinfected during the circulation, and returned to the greenhouse 1. If you operate this device continuously during the day when it receives solar heat, the greenhouse will be heated up to 1
is dehumidified and disinfected, and excess heat is stored in the water tank 16. When the temperature of the greenhouse 1 falls at night and heating becomes necessary, when the blower 2 and pump 17 are operated, the heat exchanger 15 becomes an air heater, and the amount of heat stored during the day can be used for nighttime heating. can.

曇天又は雨天で昼間の日照の少ない時は、他の
エネルギー源(例えば石油暖房)によつて温室を
所要の温度に温めなければならない。その時はポ
ンプ17を止め、即ち熱交換器15を働かさない
でその他の装置を運転すれば良い。余分の熱がな
いから蓄熱することはできないが、除湿・消毒だ
けを行なうわけである。
In cloudy or rainy weather with little daytime sunlight, the greenhouse must be heated to the required temperature by other energy sources (eg oil heating). In that case, it is sufficient to stop the pump 17, that is, to operate other devices without operating the heat exchanger 15. Since there is no excess heat, it cannot be stored, but only dehumidifies and disinfects.

この実施例では空気冷却器6は冷媒蒸発により
直接冷却するもの、又空気加熱器7は冷媒凝縮に
より直接加熱するものとして説明したが、これは
次の様に間接冷却・間接加熱のものでもかまわな
い。即ち冷媒蒸発により冷媒・水熱交換器を通し
て冷水を作り、その冷水が空気冷却器を通つてポ
ンプで循環する様にして空気を冷却・除湿し、又
冷媒凝縮により冷媒・水熱交換器を通して温水を
作り、その温水が空気加熱器を通つてポンプで循
環する様にして空気を加熱するものである。この
場合は熱交換器15を省略する。そして水槽16
の水をポンプ17で冷媒凝縮器の水側を通し、引
続き水・空気熱交換器を通して空気を温めた後水
槽16に戻る様にする。冷媒凝縮の熱量が空気加
熱の熱量より大きい時は水槽16の水温が徐々に
上がり蓄熱できる。夜間暖房の時は同じく水槽1
6の水をポンプ17で水・空気熱交換器を循環さ
せれば良い。
In this embodiment, the air cooler 6 has been described as one that directly cools by evaporating the refrigerant, and the air heater 7 is one that directly heats by condensing the refrigerant, but it is also possible to use indirect cooling or indirect heating as described below. do not have. That is, by evaporating the refrigerant, cold water is produced through a refrigerant/water heat exchanger, and the cold water is circulated by a pump through an air cooler to cool and dehumidify the air, and by condensing the refrigerant, hot water is produced through the refrigerant/water heat exchanger. The hot water is circulated by a pump through an air heater to heat the air. In this case, the heat exchanger 15 is omitted. and aquarium 16
The water is passed through the water side of the refrigerant condenser by a pump 17, and then returned to the water tank 16 after being passed through a water/air heat exchanger to warm the air. When the amount of heat from condensing the refrigerant is larger than the amount of heat from heating the air, the water temperature in the water tank 16 gradually rises and heat can be stored. When heating at night, the same water tank 1
6 can be circulated through the water/air heat exchanger using the pump 17.

これ迄の説明では昼間に消毒する場合だけにつ
いて説明したが必要があれば夜間暖房中の時、又
は無暖房の時も昼間の場合に準じて消毒運転を続
けることができる。
In the explanation so far, only the case of disinfection during the daytime has been explained, but if necessary, the disinfection operation can be continued during nighttime heating or when there is no heating in the same way as in the daytime.

消毒水は温室1内の作物の種類・病菌、害虫な
どの種類により適当な農薬を選べば良い。農薬の
極く薄い溶液で足りるし、農薬の消費量も極めて
少なくてすむ。空気循環の量は温室1内の全空気
が5〜15分の間に一巡する程度に適当に選べば良
い。温室1内の作物に直接農薬が掛からないから
収穫物に農薬が着かない。しかも温室1内の空気
は充分に消毒されているから作物に病虫害の発生
することがない。
For disinfecting water, an appropriate pesticide may be selected depending on the type of crops, disease bacteria, pests, etc. in the greenhouse 1. An extremely dilute solution of pesticides is sufficient, and the consumption of pesticides is extremely low. The amount of air circulation may be appropriately selected so that all the air in the greenhouse 1 circulates once in 5 to 15 minutes. Since pesticides are not applied directly to the crops in greenhouse 1, pesticides do not reach the crops. Moreover, since the air inside the greenhouse 1 is sufficiently disinfected, the crops are free from pests and diseases.

この様にして本発明の方法により温室1内の空
気の除湿・消毒を行えば、作物の病虫害発生を防
ぐことができる。即ち消毒を人手なしで自動的に
行うことができ、作業員の健康に害を及ぼす心配
がない。しかも収穫物に農薬の着くことがなく、
農薬の消費量も極めて少なくすることができて、
斯界に大きな利益をもたらすものである。
By dehumidifying and disinfecting the air in the greenhouse 1 using the method of the present invention in this manner, it is possible to prevent the occurrence of pests and diseases on crops. In other words, disinfection can be performed automatically without human intervention, and there is no fear of harm to the health of workers. What's more, there are no pesticides on the harvest,
The consumption of pesticides can be extremely reduced,
This will bring great benefits to the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

附図は本発明の実施例を説明する要領図であ
る。 1…温室、2…ブロワー、4…圧縮機、5…膨
脹弁、6…蒸発器(空気冷却器)、7…凝縮器
(空気加熱器)、9…空気消毒器、10…消毒水、
11…ポンプ、12…シヤワー装置、13…エリ
ミネーター、15…水・空気熱交換器、16…水
槽、17…ポンプ、18…バルブ。
The accompanying drawings are schematic diagrams for explaining embodiments of the present invention. 1... Greenhouse, 2... Blower, 4... Compressor, 5... Expansion valve, 6... Evaporator (air cooler), 7... Condenser (air heater), 9... Air sterilizer, 10... Disinfecting water,
11...Pump, 12...Shower device, 13...Eliminator, 15...Water/air heat exchanger, 16...Water tank, 17...Pump, 18...Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 温室内の空気を引き出しヒートポンプの蒸発
器側空気冷却器を通して冷却除湿し、湿度100%
近くになつた冷空気を消毒水シヤワーで消毒し、
次にヒートポンプの凝縮器側空気加熱器を通し加
温した上で温室に戻すことを特徴とする温室の消
毒方法。
1 Air is drawn from the greenhouse and cooled and dehumidified through the air cooler on the evaporator side of the heat pump until the humidity reaches 100%.
Disinfect the nearby cold air with a disinfectant water shower,
A greenhouse disinfection method characterized by heating the air through a heat pump condenser side air heater and then returning it to the greenhouse.
JP56143229A 1981-09-11 1981-09-11 Method and apparatus for disinfecting greenhouse Granted JPS5843721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143229A JPS5843721A (en) 1981-09-11 1981-09-11 Method and apparatus for disinfecting greenhouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143229A JPS5843721A (en) 1981-09-11 1981-09-11 Method and apparatus for disinfecting greenhouse

Publications (2)

Publication Number Publication Date
JPS5843721A JPS5843721A (en) 1983-03-14
JPS6224048B2 true JPS6224048B2 (en) 1987-05-26

Family

ID=15333897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143229A Granted JPS5843721A (en) 1981-09-11 1981-09-11 Method and apparatus for disinfecting greenhouse

Country Status (1)

Country Link
JP (1) JPS5843721A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887676B2 (en) * 2005-07-12 2012-02-29 吉川アールエフシステム株式会社 Switch operation detection circuit
CN102210247B (en) * 2011-04-02 2012-10-31 武汉凯迪控股投资有限公司 Method and equipment for providing heat and carbon dioxide for vegetables and/or algae by using flue gas of power plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49311U (en) * 1972-04-07 1974-01-05
JPS5138860U (en) * 1974-09-17 1976-03-23
JPS5517451B2 (en) * 1978-01-11 1980-05-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923486Y2 (en) * 1978-07-21 1984-07-12 三菱電機株式会社 Heat storage greenhouse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49311U (en) * 1972-04-07 1974-01-05
JPS5138860U (en) * 1974-09-17 1976-03-23
JPS5517451B2 (en) * 1978-01-11 1980-05-12

Also Published As

Publication number Publication date
JPS5843721A (en) 1983-03-14

Similar Documents

Publication Publication Date Title
US10736274B2 (en) Growing system mixing box
DE60110945T2 (en) Dehumidification system for a room
Misra et al. Evaporative cooling technologies for greenhouses: a comprehensive review
US20030188477A1 (en) Environmentally friendly conditioning system particularly for a greenhouse
ES2418836T3 (en) Greenhouse, control system of the air conditioning of a greenhouse and control procedure of the air conditioning of a greenhouse
JP2009529124A (en) Apparatus and method for dehumidifying greenhouse air and temperature
CN112639364B (en) Liquid desiccant cooling system and method
KR20170103252A (en) Dehumidifier capable of heating and disinfection for greenhouse
EP0476929A2 (en) Method of and apparatus for controlling the heat load on enclosures
WO2019217592A1 (en) Improved growing system mixing box
JPH05153873A (en) Method and means to air-condition inside of enclosure
US20220264809A1 (en) Greenhouse
Islam et al. Evaluation of a new heat transfer and evaporative design for a zero energy storage structure
KR100514434B1 (en) Dehumidifier for greenhouse
NL9201357A (en) METHOD AND APPARATUS FOR STORING ORNAMENTAL PLANTS.
KR100754772B1 (en) Dehumidifier for equipment greenhouse using condensation water
JP2015204787A (en) plant factory
JPS6224048B2 (en)
JPH0728615B2 (en) Method and apparatus for reducing the amount of heat supplied to a greenhouse
EP3800988B1 (en) Method and device for cultivation of crops
CA1305857C (en) Method of and means for controlling the condition of air in an enclosure
US4869070A (en) Method of and means for controlling the condition of air in an enclosure
CN111567280A (en) Disease prevention machine for greenhouse
Boyaci Investigation of The Effectiveness of The Fan-Pad Cooling System and The Horizontal Temperature and Relative Humidity Changes in The Greenhouse
CA3050794C (en) Improved growing system mixing box