JPS6224034B2 - - Google Patents

Info

Publication number
JPS6224034B2
JPS6224034B2 JP59121956A JP12195684A JPS6224034B2 JP S6224034 B2 JPS6224034 B2 JP S6224034B2 JP 59121956 A JP59121956 A JP 59121956A JP 12195684 A JP12195684 A JP 12195684A JP S6224034 B2 JPS6224034 B2 JP S6224034B2
Authority
JP
Japan
Prior art keywords
formula
polymer
isothianaphthene
carbon atoms
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59121956A
Other languages
Japanese (ja)
Other versions
JPS6112784A (en
Inventor
Masao Kobayashi
Udoru Furetsudo
Jee Hiigaa Aran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIJENTSU OBU ZA UNIV OBU KARIFUORUNIA ZA
Original Assignee
RIIJENTSU OBU ZA UNIV OBU KARIFUORUNIA ZA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIJENTSU OBU ZA UNIV OBU KARIFUORUNIA ZA filed Critical RIIJENTSU OBU ZA UNIV OBU KARIFUORUNIA ZA
Priority to JP59121956A priority Critical patent/JPS6112784A/en
Priority to US06/736,984 priority patent/US4640748A/en
Priority to CA000482753A priority patent/CA1248690A/en
Priority to AT85303864T priority patent/ATE53046T1/en
Priority to EP85303864A priority patent/EP0164974B1/en
Priority to DE8585303864T priority patent/DE3577860D1/en
Publication of JPS6112784A publication Critical patent/JPS6112784A/en
Publication of JPS6224034B2 publication Critical patent/JPS6224034B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

技術分野 本発明は新芏な゚レクトロクロミツク衚瀺装眮
以䞋ECD装眮ず略すに関するものであり、曎
に詳しくは無色に近い色調を発色しうる新芏な高
分子゚レクトロクロミツク材料を甚いたECD装
眮に関するものである。 埓来技術 近幎゚ネルギヌ消費量の少ない衚瀺装眮ずしお
液晶衚瀺装眮が実甚化され、さたざたな甚途に䟛
されるようにな぀お来おいるのは呚知の通りであ
る。しかし、液晶衚瀺装眮には芖角䟝存性がある
ずいう問題があり、曎に衚瀺の鮮明さに劣る、メ
モリヌ性がない、倧面積の衚瀺が出来ない等の欠
点を有しおいる。これらの欠点を補う䜎゚ネルギ
ヌ型衚瀺装眮ずしお、近幎、電圧印加又は電流に
よ぀お光吞収特性の倉化する、所謂゚レクトロク
ロミズムを利甚したECD装眮が盛んに研究され
぀぀ある。ECD装眮に甚いられる゚レクトロク
ロミツク材料ずしおは、無機系材料ず有機系材料
に倧別される。前者ずしおは酞化タングステンに
代衚される遷移金属の酞化物が䞻に怜蚎されおい
るが、色が限定されたり、あるいは発色むオンず
しおプロトンを甚いた堎合には応答速床は速いも
のの膜の電気化孊的溶出や、電極の劣化などが起
きたりするずいう欠点がある。䞀方、埌者ずしお
はビオロゲン類、フタロシアニン錯䜓等が知られ
おいるが、ビオロゲン類は繰返し䜿甚により䞍溶
性物質が析出するなどの欠点がある。たたフタロ
シアニン錯䜓は蒞着膜ず基板ずの接着性に問題が
残されおいる。 さらに最近にな぀お、ポリアニリン〔゚ヌ・゚
フ・デむアズら、ゞダヌナル・オブ・゚レクトロ
アナリテむカル・ケミストリヌ第111巻第111頁
1980幎又は米山ら、同第161巻第419頁1984
幎〕、ポリピロヌル〔゚ヌ・゚フ・デむアズら、
同第149巻第101頁1983幎〕、さらにはポリチオ
プン〔゚ム・゚ヌ・ドルむら、ゞダヌナル・
ド・フむヌゞフ第44巻月号、第C3−595頁
1983幎あるいは金藀ら、ゞダパン・ゞダヌナ
ル・オブ・アプラむド・フむゞツクス第22巻号
第L412頁1983幎〕等が゚レクトロクロミツク
材料ずしお怜蚎され぀぀あるが、未だ実甚化段階
には至぀おいない。特に゚レクトロクロミツク材
料ずしおは応答速床が速いこず、コントラストが
明確であるこず、消費電力が䜎いこず、色調に優
れるこずなどが望たれおいる。殊に、無色の色調
が出せるず甚途拡倧ぞの寄䞎倚倧ずされるが、こ
れらのヘテロ共圹系高分子材料はいずれも酞化状
態から還元状態ぞの倉色過皋においお有色であ
り、コントラストを高めるために癜色背景板を甚
いる方法等が怜蚎されおいるが、未だ完成の域に
は至぀おいない。 発明の目的 本発明者らはむ゜チアナフテン構造を有する重
合䜓の電気化孊的挙動に぀いお皮々怜蚎する過皋
で、䞊蚘重合䜓が応答速床が速く、酞化状態にお
いお殆んど無色の色調を䞎える新芏な゚レクトロ
クロミツク材料であるこずを芋出しお本発明を達
成した。殊に殆んど無色の色調を䞎える゚レクト
ロクロミツク材料は埓来知られおいなか぀たもの
であり、このこずを達成したこずは真に驚くべき
こずである。 発明の構成 本発明のECD装眮は導電性透明基板䞊に圢成
された高分子導電性薄膜を衚瀺基板ずしお甚い、
これに液状電解質を介しお察向電極を配しお成る
ECD装眮においお、前蚘高分子導電性薄膜がむ
゜チアナフテン構造を有する可逆的に酞化又は還
元しうる重合䜓であるこずを特城ずする。ここで
「液状電解質」ずは、溶媒に支持電解質を分散も
しくは溶解したものを意味する。 発明の具䜓的説明 本発明に係る゚レクトロクロミツク局ずなるべ
き高分子導電性薄膜は䞀般匏 匏䞭、R1及びR2は氎玠又は炭玠数〜の炭化
氎玠を衚わし、は陰むオンを衚わし、はむ゜
チアナフテン構造の単䜍圓りの陰むオンの割合を
衚わす〜0.40の数であり、は重合床を衚わ
し、奜たしくは〜500の数である で衚わされるむ゜チアナフテン構造を有する可逆
的に酞化たたは還元しうる重合䜓であり、䞋蚘䞀
般匏で衚わされるむ゜チアナフテン化合物
を電気化孊的に重合させるこずによ぀お埗られ
る。 匏䞭、R1及びR2は氎玠又は炭玠数〜の炭化
氎玠基を衚わす。 䞀般匏で衚わされるむ゜チアナフテン化
合物の具䜓䟋ずしおは、・−む゜チアナフテ
ン、−メチル−・−む゜チアナフテン、
・−ゞメチルむ゜チアナフテン、−゚チル
−・−む゜チアナフテン、−メチル−−
゚チル−・−む゜チアナフテン等をあげるこ
ずが出来る。 䞊蚘のむ゜チアナフテン化合物を電気化孊的に
重合させる方法ずしおは、通垞のチオプン、ピ
ロヌル等を電気化孊的に重合させる方法〔䟋えば
゜リツドステヌト・コミナニケヌシペン第46巻
号第389頁1983幎〕ず同様にしお行うこずが出
来、定電䜍法、定電流法のいずれも甚いるこずが
出来るが、詊料極ずしお導電性透明基板を甚いる
こずにより透明基板䞊に重合䜓薄膜を圢成させる
こずが望たしい。 本発明においお甚いられる導電性透明基板ずし
おは酞化むンゞりム錫、酞化錫、癜金等を、䟋え
ばガラス、ポリ゚ステル、フむルム等の透明絶瞁
䜓䞊にスパツタリング等の方法により蒞着させた
垂販品ずしお容易に入手出来るものを甚いるこず
が出来る。電気化孊的に重合させお埗られる重合
䜓の膜厚は0.03〜30Ό、奜たしくは0.05〜22ÎŒ
、さらに奜たしくは0.1〜10Όであり、膜厚
は電気化孊的に重合させる際の通電量によ぀お制
埡するこずが出来る。膜厚が0.03Ό未満ではコ
ントラストが明確にならず、実質的に衚瀺材料ず
しおの䟡倀を損なう。䞀方30Όを超えるず逆に
コントラストは明確にはなるが、皮膜匷床又は応
答速床等の点から奜たしくない。 このようにしお埗られた重合䜓を察向電極ず液
状電解質を介しお組立おるこずによ぀おECD装
眮ずするものであるが、液状電解質ずしおは支持
電解質を溶媒に分散もしくは溶解したものを䜿甚
する。本発明においお䜿甚される支持電解質ずし
おは、(i)PF− 、SbF− 、AsF− 、SbCl− の劂き

族の元玠のハロゲン化物アニオン、BF− の劂き
族の元玠のハロゲン化物アニオン、I-− 、
Br-、Cl-の劂きハロゲンアニオン、ClO− の劂き
過塩玠酞アニオンなどの陰むオン䞀般匏
䞭の及び(ii)Li+、Na+、K+の劂きアルカリ金
属むオン、R4N+は炭玠数〜20の炭化氎玠
基の劂き玚アンモニりムむオン、C6H54P+
の劂きホスホニりムむオン等ずの組合わせから成
るものを甚いるこずが出来るが、必ずしもこれら
に限定されるものでないこずはいうたでもない。 䞊述の陰むオンおよび陜むオンずの組合
わせによ぀お埗られる支持電解質の具䜓䟋ずしお
はLiPF6、LiSbF6、LiAsF6、LiClO4、NaI、
NaPF6、NaSbF6、NaAsF6、NaClO4、KI、
KPF6、KSbF6、KAsF6、KClO4、〔−
Bu4N〕+・AsF6-、〔−Bu4N〕+・PF6-
、
〔−Bu4N+・ClO− 、LiAlCl4、LiBF4、
C6H54P・BF4、C6H54P・AsF6、C6H54P・
ClO4、をあげるこずができるが必ずしもこれ等
に限定されるものではない。これらの支持電解質
は䞀皮類、たたは必芁に応じお二皮類以䞊を混合
しお䜿甚しおもよい。 前蚘以倖の陰むオンずしおはHF− アニオ
ンであり、たた、前蚘以倖の陜むオンずしおは次
匏で衚わされるピリリりムたたはピリゞニ
りム・カチオン 匏䞭、は酞玠原子たたは窒玠原子、R′は氎玠
原子たたは炭玠数が〜15のアルキル基、炭玠数
〜15のアリヌルaryl基、R″はハロゲン原
子たたは炭玠数が〜10のアルキル基、炭玠数が
〜15のアリヌルaryl基、はが酞玠原子
のずきであり、が窒玠原子のずきである。
はたたは〜である。 たたは次匏もしくはで衚わされる
カルボニりム・カチオン および 〔䞊匏䞭、R3、R4、R5は氎玠原子䜆しR3、R4及
びR5は同時に氎玠原子であるこずはない、炭玠
数〜15のアルキル基、アリルallyl基、炭玠
数〜15のアリヌルaryl基たたは−OR7基、
䜆しR7は炭玠数が〜10のアルキル基たたは炭
玠数〜15のアリヌルaryl基を瀺し、R6は氎
玠原子、炭玠数が〜15のアルキル基、炭玠数
〜15のアリヌル基である。〕である。 甚いられるHF− アニオンは通垞、䞋蚘の䞀般匏
、たたは ′・HF2  ・HR2  〔䜆し、䞊匏䞭R′及びR″は氎玠原子たたは炭玠数
が〜15のアルキル基、炭玠数〜15のアリヌル
aryl基、は炭玠数が〜10のアルキル
基、炭玠数〜15のアリヌルaryl基、は酞
玠原子たたは窒玠原子、はたたは以䞋の正
の敎数である。はアルカリ金属である〕で衚わ
される化合物フツ化氎玠塩を支持電解ずしお
甚いお適圓な有機溶媒に溶解するこずによ぀お埗
られる。䞊匏、およびで衚わさ
れる化合物の具䜓䟋ずしおはH4N・HF2、Bu4・
HF2、Na・HF2、・HF2、Li・HF2および
Technical Field The present invention relates to a new electrochromic display device (hereinafter abbreviated as an ECD device), and more specifically to an ECD device using a novel polymer electrochromic material capable of developing a color tone close to colorless. It is. BACKGROUND OF THE INVENTION It is well known that in recent years, liquid crystal display devices have been put into practical use as display devices with low energy consumption and are being used for various purposes. However, liquid crystal display devices have the problem of viewing angle dependence, and further have drawbacks such as poor display clarity, lack of memory performance, and inability to display large areas. As a low-energy display device that compensates for these drawbacks, in recent years, ECD devices that utilize so-called electrochromism, in which light absorption characteristics change depending on voltage application or current, have been actively researched. Electrochromic materials used in ECD devices are broadly classified into inorganic materials and organic materials. For the former, transition metal oxides such as tungsten oxide have been mainly considered, but the colors are limited, or when protons are used as coloring ions, the response speed is fast, but the electrochemical problems of the membrane There are drawbacks such as elution and electrode deterioration. On the other hand, as the latter, viologens, phthalocyanine complexes, etc. are known, but viologens have drawbacks such as precipitation of insoluble substances when used repeatedly. Furthermore, phthalocyanine complexes still have problems in adhesion between the deposited film and the substrate. More recently, polyaniline [A.F. Deias et al., Journal of Electroanalytical Chemistry, Vol. 111, p. 111 (1980) or Yoneyama et al., Vol. 161, p. 419 (1984
)], polypyrrole [A.F. Deias et al.
Vol. 149, p. 101 (1983)], and polythiophene [M.A. Drouy et al., Journal.
Electrochromic, Vol. 44, June issue, pp. C3-595 (1983) or Kindo et al., Japan Journal of Applied Physics, Vol. 22, No. 7, p. L412 (1983), etc. Although it is being considered as a material, it has not yet reached the stage of practical use. In particular, electrochromic materials are desired to have a fast response speed, clear contrast, low power consumption, and excellent color tone. In particular, the ability to produce colorless tones is said to greatly contribute to the expansion of applications, but all of these heteroconjugated polymer materials are colored during the color change process from the oxidized state to the reduced state, and in order to increase contrast, Methods such as using a white background board are being considered, but they have not yet reached the stage of completion. Purpose of the Invention In the process of various studies on the electrochemical behavior of polymers having an isothianaphthene structure, the present inventors discovered that the above polymer has a fast response speed and a novel color tone that is almost colorless in an oxidized state. The present invention was achieved by discovering that it is an electrochromic material. It is truly surprising that this has been achieved, especially since electrochromic materials that provide an almost colorless tone are hitherto unknown. Structure of the Invention The ECD device of the present invention uses a conductive polymer thin film formed on a conductive transparent substrate as a display substrate,
A counter electrode is placed on this via a liquid electrolyte.
The ECD device is characterized in that the conductive polymer thin film is a reversibly oxidizable or reducible polymer having an isothianaphthene structure. The term "liquid electrolyte" as used herein means a supporting electrolyte dispersed or dissolved in a solvent. Detailed Description of the Invention The conductive polymer thin film to be the electrochromic layer according to the present invention has the general formula () (In the formula, R 1 and R 2 represent hydrogen or a hydrocarbon having 1 to 5 carbon atoms, X represents an anion, and y represents the ratio of anion per unit of the isothianaphthene structure. It is a reversibly oxidizable or reducible polymer having an isothianaphthene structure represented by the following general formula (), where n represents the degree of polymerization and is preferably a number from 5 to 500. It can be obtained by electrochemically polymerizing isothianaphthene compounds. (In the formula, R 1 and R 2 represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms.) Specific examples of the isothianaphthene compound represented by the general formula () include 1,3-isothianaphthene, 5-methyl-1,3-isothianaphthene,
5,6-dimethylisothianaphthene, 5-ethyl-1,3-isothianaphthene, 5-methyl-6-
Examples include ethyl-1,3-isothianaphthene. As a method for electrochemically polymerizing the above-mentioned isothianaphthene compound, a method for electrochemically polymerizing ordinary thiophene, pyrrole, etc. [for example, Solid State Communication Vol. 46, 5
No. 389 (1983)], and both the constant potential method and the constant current method can be used, but by using a conductive transparent substrate as the sample electrode, it is possible to It is desirable to form a coalesced thin film. The conductive transparent substrate used in the present invention can be easily obtained as a commercially available product made by depositing indium tin oxide, tin oxide, platinum, etc. on a transparent insulator such as glass, polyester, or film by a method such as sputtering. I can use things. The film thickness of the polymer obtained by electrochemical polymerization is 0.03 to 30 ÎŒm, preferably 0.05 to 22 ÎŒm.
m, more preferably 0.1 to 10 ÎŒm, and the film thickness can be controlled by the amount of current applied during electrochemical polymerization. If the film thickness is less than 0.03 ÎŒm, the contrast will not be clear and the value as a display material will be substantially lost. On the other hand, if it exceeds 30 ÎŒm, the contrast becomes clearer, but it is not preferable from the viewpoint of film strength or response speed. An ECD device is made by assembling the polymer thus obtained via a counter electrode and a liquid electrolyte, and the liquid electrolyte used is one in which a supporting electrolyte is dispersed or dissolved in a solvent. Supporting electrolytes used in the present invention include (i) aqueous electrolytes such as PF - 6 , SbF - 6 , AsF - 6 , and SbCl - 6 ;
halide anions of group elements, halide anions of group a elements such as BF - 4 , I - (I - 3 ),
Halogen anions such as Br - , Cl - , anions such as perchlorate anions such as ClO - 4 (general formula ()
X) and (ii) alkali metal ions such as Li + , Na + , K + , quaternary ammonium ions such as R 4 N + (R is a hydrocarbon group having 1 to 20 carbon atoms), (C 6 H 5 ) 4P +
It is possible to use combinations with phosphonium ions such as the following, but it goes without saying that the present invention is not necessarily limited to these. Specific examples of supporting electrolytes obtained by combining the above-mentioned anions (X) and cations include LiPF 6 , LiSbF 6 , LiAsF 6 , LiClO 4 , NaI,
NaPF6 , NaSbF6 , NaAsF6 , NaClO4 , KI,
KPF 6 , KSbF 6 , KAsF 6 , KClO 4 , [(n-
Bu) 4 N] +・(AsF 6 ) - , [(n-Bu) 4 N] +・(PF 6 ) -
,
[(n-Bu) 4N +・ClO − 4 , LiAlCl4 , LiBF4 ,
(C 6 H 5 ) 4 P・BF 4 , (C 6 H 5 ) 4 P・AsF 6 , (C 6 H 5 ) 4 P・
Examples include, but are not limited to, ClO 4 . These supporting electrolytes may be used alone or in combination of two or more types as required. Anion (X) other than the above is an HF - 2 anion, and cation other than the above is a pyrylium or pyridinium cation represented by the following formula (): (In the formula, Z is an oxygen atom or a nitrogen atom, R' is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, and R'' is a halogen atom or a carbon number 1 -10 alkyl group, aryl group having 6 to 15 carbon atoms, m is 0 when X is an oxygen atom, and 1 when X is a nitrogen atom.
p is 0 or 1-5. ) or a carbonium cation represented by the following formula () or (): and [In the above formula, R 3 , R 4 and R 5 are hydrogen atoms (however, R 3 , R 4 and R 5 are never hydrogen atoms at the same time), an alkyl group having 1 to 15 carbon atoms, allyl group, an aryl group having 6 to 15 carbon atoms or -OR 7 group,
However, R 7 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 15 carbon atoms, and R 6 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
~15 aryl groups. ]. The HF - 2 anion used usually has the following general formula (), () or (): R' 4 N·HF 2 () M·HR 2 () [However, in the above formula, R' and R'' are a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, and R is an alkyl group having 1 to 10 carbon atoms, a carbon A compound (hydrofluoride salt) represented by a number 6 to 15 aryl group, Z is an oxygen atom or nitrogen atom, q is 0 or a positive integer of 5 or less, M is an alkali metal] It can be obtained by dissolving it in a suitable organic solvent using it as a supporting electrolyte.Specific examples of the compounds represented by the above formulas (), () and () include H 4 N・HF 2 , Bu 4・
HF 2 , Na・HF 2 , K・HF 2 , Li・HF 2 and

【匏】をあげるこずができる。 䞊蚘匏で衚わされるピリリりムもしくは
ピリゞニりムカチオンは、匏で衚わされる
カチオンずClO− 、BF− 、AlCl− 、FeCl− 、
SnCl− 、PF− 、PCl− 、SbF− 、AsF− 、CF3SO
− 、
HF− 等のアニオンずの塩を支持電解質ずし
お甚いお適圓な有機溶媒に溶解するこずによ぀お
埗られる。そのような塩の具䜓䟋ずしおは
[Formula] can be given. The pyrylium or pyridinium cation represented by the above formula () is a cation represented by the formula () and ClO - 4 , BF - 4 , AlCl - 4 , FeCl - 4 ,
SnCl - 5 , PF - 6 , PCl - 6 , SbF - 6 , AsF - 6 , CF3SO
-3 ,
It can be obtained by dissolving in a suitable organic solvent using a salt with anion (X) such as HF - 2 as a supporting electrolyte. Examples of such salts include

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 等をあげるこずができる。 䞊蚘匏たたはで衚わされるカルボ
ニりム・カチオンの具䜓䟋ずしおは
C6H53C+、CH33C+、
[Formula] etc. can be given. Specific examples of carbonium cations represented by the above formula () or () are (C 6 H 5 ) 3 C + , (CH 3 ) 3 C + ,

【匏】【formula】

【匏】をあげるこずができる。 これらのカルボニりムカチオンは、それらず陰
むオンの塩カルボニりム塩を支持電解
質ずしお適圓な有機機溶媒に溶解若しくは分散す
るこずによ぀お埗られる。ここで甚いられる陰む
オン〔〕の代衚䟋ずしおは、BF− 、AlCl− 、
AlBr3Cl-、FeCl− 、SnCl− 、PF− 、PCl− 、
SbCl− 、SbF− 、ClO− 、CF3SO− 等をあげるこ
ず
ができ、たた、カルボニりム塩の具䜓䟋ずしお
は、䟋えばC6H53C・BF4、CH33C・BF4、
HCO・AlCl4、HCO・BF4、C6H5CO・SnCl5等を
あげるこずができる。 本発明の溶媒ずしおは、氎溶液たたは非氎溶液
のいずれも甚いるこずができるが、奜たしくは非
氎の有機溶媒に前蚘の支持電解質を溶かしたもの
である。ここでいう有機溶媒ずしおは、非プロト
ン性でか぀高誘電率のものが奜たしい。䟋えば゚
ヌテル類、ケトン類、ニトリル類、アミン類、ア
ミド類、硫黄化合物、リン酞゚ステル系化合物、
亜リン酞゚ステル系化合物、ホり酞゚ステル系化
合物、塩玠化炭化氎玠類、゚ステル類、カヌボネ
ヌト類、ニトロ化合物等を甚いるこずができる
が、これらのうちでも゚ヌテル類、ケトン類、ニ
トリル類、リン酞゚ステル系化合物、亜リン酞゚
ステル系化合物、ホり酞゚ステル系化合物、塩玠
化炭化氎玠類、カヌボネヌト類が奜たしい。これ
らの代衚䟋ずしおは、テトラヒドロフラン、−
メチルテトラヒドロフラン、・−ゞオキサ
ン、モノグリム、アセトニトリル、プロピオニト
リル、−メチル−−ペンタノン、ブチロニト
リル、バレロニトリル、ベンゟニトリル、・
−ゞクロロ゚タン、γ−ブチロラクトン、バレロ
ラクトン、ゞメトキシ゚タン、メチルフオルメむ
ト、プロピレンカヌボネヌト、゚チレンカヌボネ
ヌト、ゞメチルホルムアミド、ゞメチルスルホキ
シド、ゞメチルチオホルムアミド、リン酞゚チ
ル、リン酞メチル、亜リン酞゚チル、亜リン酞メ
チル、スルホラン、−メチルスルホラン等をあ
げるこずができる。これらのうちでも応答速床を
増倧させるためには特にニトリル類あるいはカヌ
ボネヌト類が奜たしい。 これらの有機溶媒は䞀皮類たたは二皮類以䞊の
混合溶媒ずしお甚いおもよい。甚いるECD装眮
の型匏たたは甚いる電極の皮類によ぀おは、これ
らの溶媒䞭の酞玠や氎たたはプロトン性溶媒等が
ECD装眮の特性を䜎䞋させる堎合もあるので、
その堎合は、垞法に埓い粟補しおおくこずが奜た
しい。たた本発明のECD装眮においおは、前蚘
の電解質以倖にポリ゚チレンオキサむドずNaIや
NaSCN等から成る高むオン䌝導性有機固䜓電解
質又は支持電解質を有機溶媒を単に分散させたも
のも甚いるこずも出来る。 本発明のECD装眮においお甚いられる支持電
解質の濃床は䜿甚する有機溶媒の皮類、印加時の
電流倀、電圧倀、䜜動枩床及び支持電解質の皮類
等によ぀お異なるので䞀抂に芏定するこずは出来
ない。液状電解質は均䞀系であ぀おも䞍均䞀系で
あ぀おもよいが、通垞は0.001〜10モルの範
囲である。本発明における高分子導電性薄膜ず察
向電極ずの距離は䜿甚する溶媒の皮類、支持電解
質の皮類及び濃床、印加時の電流倀、電圧倀或い
はECD装眮ずしおの衚瀺面積等によ぀お異なる
ので䞀抂に芏定するこずは出来ないが、0.05〜
mmであるこずが奜たしい。たた本発明で甚いる察
向電極ずしおは甚途に応じお様々な材料のものが
甚いられる。即ち衚瀺装眮ずしお透過光を利甚す
る堎合には、察向電極ずしおは䟋えば前蚘の劂き
導電性透明材料を甚いるこずが奜たしい。䞀方反
射光を利甚する堎合には、察向電極ずしお䞍透明
な導電性材料を甚いるこずも可胜であるため、䟋
えばニツケル、癜金の劂き金属の箔あるいはガヌ
れ等も甚いるこずが出来る。たた殆んど無色の色
調を䞎えるため背景板ずしお皮々の色調のものを
遞ぶこずが出来る。この様に本発明で埗られる
ECD装眮は材料面の倚甚性から広い甚途に適甚
するこずが出来る。 実斜䟋 以䞋に実斜䟋により本発明を曎に詳しく説明す
るが、本発明の技術的範囲をこれらの実斜䟋によ
぀お限定するものでないこずはいうたでもない。
なお、以䞋の䟋においお、NMRスペクトルは
TMSを内郚暙準ずしおノアリアン瀟EM−360A
スペクトロメヌタヌを甚いお 1H−NMRを枬定
し、赀倖吞収スペクトルはパヌキン゚ルマヌ瀟補
モデル281型装眮を甚いお枬定した。 実斜䟋  ・−ゞヒドロむ゜チアナフテン−−オキ
シドを濃硫酞䞭で凊理するこずによるポリむ゜
チアナフテンの補造 (a) ・−ゞヒドロむ゜チアナフテン−−オ
キシドの合成 リチりムトリ゚チルボロンハむドラむドの
モル溶液200mlに宀枩でゞナレンフラスコ
に入れた粉末硫黄3.210.1モルを窒玠気
流䞋で加えた。反応が盎ちに起り、硫黄粉末が
溶解し、黄色の懞濁液が埗られた。この溶液は
埮量の空気に觊れるず淡黄色の透明な溶液ずな
぀た。 䞀方、別に滎䞋ロヌト、撹拌機、枩床蚈及び
窒玠導入口を付した四ツ口フラスコに窒玠
雰囲気䞋で−キシリレンゞブロミド26.4
0.1モルを無氎のテトラヒドロフランに
溶解しおおき、これに撹拌しながら䞊蚘硫化リ
チりムのテトラヒドロフラン溶液を宀枩で1.5
時間かけお滎䞋した。その埌、テトラヒドロフ
ランを枛圧で留去した埌、曎に残留物を蒞留し
お74〜76℃mmHgの無色の・−ゞヒド
ロむ゜チアナフテン10.9収率80を埗
た。このものの赀倖吞収スペクトルは3060、
3026、1582、1485cm-1にプニル基に基づく吞
収、2910、2840、1450cm-1にメチレン基に基づ
く吞収、1195cm-1に・−眮換プニルの面
内倉角吞収、760cm-1に−眮換プニルの吞
収、740cm-1にサルフアむドの吞収を瀺した。
たたTMSを内郚暙準ずした重氎玠化クロロホ
ルム䞭の栞磁気共鳎スペクトル 1H−NMR
分析結果は以䞋の通りであ぀た。 4.22、4H、7.20、4H この化合物は非垞に䞍安定であり、遮光・密
栓保存しおも黄色から黒色に倉化した。 次いで埗られた・−ゞヒドロむ゜チアナ
フテンを予め甚意したメタペり玠酞ナトリりム
18.60.086モルを溶解した450mlの50メ
タノヌル氎溶液に加え、宀枩で12時間撹拌し
た。生成した沈殿をろ別し、50mlのメタノヌル
で残枣を掗浄し母液に合した。ろ液を枛圧䞋濃
瞮し、生成した黄癜色固䜓を酢酞゚チルシク
ロヘキサンから再結晶しお僅かに黄色がか぀た
結晶を埗た。この結晶の融点は87〜89℃であ぀
た。 埗られた結晶を曎に酢酞゚チルシクロヘキ
サンから再結晶したずころ、90〜91℃の融点を
瀺した。この結晶の赀倖吞収スペクトルはむ゜
チアナフテンの吞収の他に1035cm-1にスルホキ
サむドの匷い吞収が認められ、740cm-1のサル
フアむドの吞収は消滅した。たたTMSを内郚
暙準ずした重氎玠化クロロホルム䞭での 1H−
NMRスペクトルは以䞋の通りであ぀た。 4.65、4H、7.20、4H 䞊蚘結晶の元玠分析結果は次の通りであ぀
た。 実枬倀
63.08 5.15 20.87 蚈算倀C8H8SOずしお 63.16 5.26 21.05 実斜䟋  む゜チアナフテンをカチオン重合ずしお埗られ
るポリゞヒドロむ゜チアナフテンを酞化剀を甚
いお酞化するこずによるポリむ゜チアナフテン
の補造 (a) む゜チアナフテン䞀般匏でR1R2
の合成 実斜䟋(a)に基づき合成した・−ゞヒド
ロむ゜チアナフテン−−オキシド300mg
1.97ミリモル、䞭性アルミナ450mg4.41ミ
リモルを乳鉢䞭でよく粉砕混合した埌、昇華
噚に入れ、油济䞊で枛圧で加熱した。110℃
20mmHgで昇華噚冷华郚底郚にむ゜チアナフテ
ンの癜色針状結晶250mg1.87ミリモルが埗
られた。このモノマヌを盎ちに粟補脱気した
mlの塩化メチレンに溶解し、宀枩におトリフル
オロ酢酞10mgを加え、倜攟眮した。反応液を
50mlのメタノヌル䞭に泚ぐず、癜色沈殿が埗ら
れた。この重合䜓はクロロホルム、クロルベン
れン、テトラヒドロフラン、・−ゞメチル
ホルムアミドに可溶であ぀た。重合䜓の赀倖吞
収スペクトルは第図に、そしお 1H−NMRス
ペクトルは第図に瀺した通りであ぀た。 時にこの重合䜓のテトラヒドロフラン溶液の
ゲルパヌミ゚ヌシペンクロマトグラフ
Varian5000から分子量はポリスチレン換算
で2000であるこずが確かめられた。 この重合䜓の宀枩における電導床σRTを
端子匏の電導床枬定噚を甚いお枬定したずこ
ろσRT10-8scm以䞋であ぀た。たた元玠分
析結果は次の通りであ぀た。 実枬倀
71.27 4.54 23.96 蚈算倀C8H6Sずしお 71.64 4.48 23.88 䞊蚘方法においお、トリフルオロ酢酞の代わ
りにメタワンスルホン酞を重合開始剀ずしお甚
いた堎合も同様に重合䜓が埗られ、その赀倖吞
収スペクトルは第図のものず完党に䞀臎し
た。 これらの重合䜓をmlのクロルベンれンに溶
解し、倍モルのクロラニルで凊理したずころ
黒色沈殿が生成した。この重合䜓の宀枩におけ
る電導床σRTは×10-2scmであり、ペり玠
をドヌプしたものの電導床はσRT×
10-1scmであ぀た。このものの赀倖吞収スペ
クトルは第図に瀺した通りであ぀た。ドヌプ
埌の重合䜓は宀枩䞋空気䞭に週間攟眮しお
も、その電導床に倉化はなか぀た。 クロラニルの代わりに1.1倍量の−クロル
コハク酞むミドを甚い、mlのクロロホルムを
甚いた堎合に埗られた重合䜓も第図ず党く同
じ赀倖吞収スペクトルを瀺す黒色沈殿が埗られ
た。この重合䜓の電導床σRTは2.6×10-1scm
であ぀た。 実斜䟋  0.08モルのC6H54PClを溶解したアセト
ニトリル溶液に0.0788モルの・−む゜チ
アナフテンモノマヌ前蚘般匏でR1R2
の化合物を溶解させた液を電解液ずし、酞化
むンゞりム錫を蒞着させたガラス板を詊料極、
Al板を察向電極、LiLi+を参照極ずし、
cm2の電流密床で20分間宀枩で電気化孊的に重
合させたずころ、正極の酞化むンゞりム錫蒞着ガ
ラス板䞊に電気化孊的に䞭性の深青色の重合䜓が
埗られた。アセトニトリルで掗浄し、也燥した埌
の膜厚は10Όであ぀た。 このものを0.53モルLiClO4のTHF溶液䞭
に浞挬し、察向電極ずしおLiを甚いお光孊吞収の
印加電圧䟝存性をみた。その結果を第図に瀺
す。即ち、この図にもみられるように、重合䜓は
2.50V察Li極で青色を瀺し、3.50Vでは透明
な淡緑色に倉化した。この倉化は可逆的であるこ
ずが認められた。 次いで、アセトニトリル䞭C4H94NClO4を電
解質ずしお、1.0V〜−0.7V察暙準カロメル電
極でサむクリツクポルタノグラムを枬定した。
その結果を第図に瀺す。0.6V〜−0.7Vの範囲
では重合䜓フむルムは濃青色であり、0.6〜
1.0Vの範囲では透明性の高い淡緑色に倉化し
た。 この結果を甚い第図に瀺すようなECD装眮
を䜜補し、LiBF40.53モルの電解質のプロピ
レンカヌボネヌト溶液を液状電解質ずしお封入し
た。これにHzの呚期で0.8V〜−0.4Vの方圢
波を印加しお、寿呜詊隓を詊みたずころ、×
104回の着消色詊隓でも゚レクトロクロミツク材
料の劣化は認められなか぀た。
[Formula] can be given. These carbonium cations can be obtained by dissolving or dispersing a salt (carbonium salt) of them and anion (X) in a suitable organic solvent as a supporting electrolyte. Representative examples of the anion [X] used here include BF - 4 , AlCl - 4 ,
AlBr 3 Cl - , FeCl - 4 , SnCl - 3 , PF - 6 , PCl - 6 ,
SbCl - 6 , SbF - 6 , ClO - 4 , CF 3 SO - 3, etc. can be mentioned, and specific examples of carbonium salts include (C 6 H 5 ) 3 C・BF 4 , (CH 3 ) 3 C・BF 4 ,
Examples include HCO・AlCl 4 , HCO・BF 4 , C 6 H 5 CO・SnCl 5 and the like. As the solvent of the present invention, either an aqueous solution or a non-aqueous solution can be used, but preferably the supporting electrolyte is dissolved in a non-aqueous organic solvent. The organic solvent mentioned here is preferably one that is aprotic and has a high dielectric constant. For example, ethers, ketones, nitriles, amines, amides, sulfur compounds, phosphate ester compounds,
Phosphite compounds, borate compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, etc. can be used, but among these, ethers, ketones, nitriles, phosphoric acid Preferred are ester compounds, phosphite compounds, boric acid ester compounds, chlorinated hydrocarbons, and carbonates. Representative examples of these include tetrahydrofuran, 2-
Methyltetrahydrofuran, 1,4-dioxane, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2
-dichloroethane, γ-butyrolactone, valerolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, ethyl phosphate, methyl phosphate, ethyl phosphite, phosphorous acid Methyl, sulfolane, 3-methylsulfolane, etc. can be mentioned. Among these, nitriles or carbonates are particularly preferred in order to increase response speed. These organic solvents may be used alone or as a mixed solvent of two or more. Depending on the type of ECD device used or the type of electrode used, oxygen, water, protic solvents, etc. in these solvents may
Because it may deteriorate the characteristics of the ECD device,
In that case, it is preferable to purify according to a conventional method. In addition, in the ECD device of the present invention, polyethylene oxide and NaI are used in addition to the above-mentioned electrolyte.
It is also possible to use a highly ionic conductive organic solid electrolyte or supporting electrolyte made of NaSCN or the like simply dispersed in an organic solvent. The concentration of the supporting electrolyte used in the ECD device of the present invention cannot be unconditionally defined because it varies depending on the type of organic solvent used, the current value at the time of application, the voltage value, the operating temperature, the type of supporting electrolyte, etc. . The liquid electrolyte may be homogeneous or heterogeneous, but it is usually in the range of 0.001 to 10 mol/. The distance between the polymer conductive thin film and the counter electrode in the present invention varies depending on the type of solvent used, the type and concentration of the supporting electrolyte, the current value and voltage value at the time of application, the display area of the ECD device, etc. It is not possible to specify 0.05 to 5.
Preferably, it is mm. Further, the counter electrode used in the present invention may be made of various materials depending on the purpose. That is, when using transmitted light as a display device, it is preferable to use, for example, a conductive transparent material as described above as the counter electrode. On the other hand, when reflected light is used, it is also possible to use an opaque conductive material as the counter electrode, so for example, metal foil such as nickel or platinum or gauze can also be used. Also, to provide an almost colorless tone, a variety of tones can be selected as the background plate. In this way, the present invention can obtain
ECD devices can be applied to a wide range of applications due to their versatility in terms of materials. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the technical scope of the present invention is not limited by these Examples.
In addition, in the following example, the NMR spectrum is
Varian EM-360A with TMS as internal standard
1 H-NMR was measured using a spectrometer, and infrared absorption spectra were measured using a model 281 device manufactured by PerkinElmer. Example 1 Production of polyisothianaphthene by treating 1,3-dihydroisothianaphthene-2-oxide in concentrated sulfuric acid (a) Synthesis of 1,3-dihydroisothianaphthene-2-oxide Lithium triethylboron Hydride 1
3.21 g (0.1 mol) of powdered sulfur in a Diurene flask at room temperature was added to 200 ml of the mol/solution under a nitrogen stream. A reaction occurred immediately, the sulfur powder dissolved and a yellow suspension was obtained. When this solution was exposed to a small amount of air, it turned into a pale yellow transparent solution. Separately, 26.4 g of o-xylylene dibromide was placed in a 2-four-necked flask equipped with a dropping funnel, stirrer, thermometer, and nitrogen inlet under a nitrogen atmosphere.
(0.1 mol) was dissolved in 1 mol of anhydrous tetrahydrofuran, and while stirring, 1.5 mol of the above tetrahydrofuran solution of lithium sulfide was added at room temperature.
It dripped over time. Thereafter, tetrahydrofuran was distilled off under reduced pressure, and the residue was further distilled to obtain 10.9 g (yield: 80%) of colorless 1,3-dihydroisothianaphthene, having a temperature of 74 to 76°C/3 mmHg. The infrared absorption spectrum of this product is 3060,
Absorption based on phenyl groups at 3026, 1582, and 1485 cm -1 , absorption based on methylene groups at 2910, 2840, and 1450 cm -1 , in-plane bending absorption of 1,2-substituted phenyl at 1195 cm -1 , and o at 760 cm -1 -Substituted phenyl absorption and sulfide absorption at 740 cm -1 .
Also, nuclear magnetic resonance spectra ( 1 H-NMR) in deuterated chloroform using TMS as an internal standard.
The analysis results were as follows. 4.22 (S, 4H), 7.20 (S, 4H) This compound was extremely unstable and changed from yellow to black even when stored in a tightly sealed container protected from light. Next, the obtained 1,3-dihydroisothianaphthene was added to sodium metaiodate prepared in advance.
It was added to 450 ml of 50% methanol aqueous solution in which 18.6 g (0.086 mol) was dissolved, and stirred at room temperature for 12 hours. The generated precipitate was filtered off, and the residue was washed with 50 ml of methanol and combined with the mother liquor. The filtrate was concentrated under reduced pressure, and the resulting yellow-white solid was recrystallized from ethyl acetate/cyclohexane to obtain slightly yellowish crystals. The melting point of this crystal was 87-89°C. When the obtained crystals were further recrystallized from ethyl acetate/cyclohexane, they showed a melting point of 90-91°C. In the infrared absorption spectrum of this crystal, in addition to the absorption of isothianaphthene, strong absorption of sulfoxide was observed at 1035 cm -1 , and the absorption of sulfoxide at 740 cm -1 disappeared. In addition, 1 H− in deuterated chloroform with TMS as an internal standard.
The NMR spectrum was as follows. 4.65 (S, 4H), 7.20 (S, 4H) The results of elemental analysis of the above crystals were as follows. Actual value
C: 63.08% H: 5.15% S: 20.87% Calculated values (as C 8 H 8 SO) C: 63.16% H: 5.26% S: 21.05% Example 2 Polydihydroisothia obtained by cationic polymerization of isothianaphthene Production of polyisothianaphthene by oxidizing naphthene using an oxidizing agent (a) Isothianaphthene (in the general formula R 1 = R 2 =
Synthesis of H) 300 mg of 1,3-dihydroisothianaphthene-2-oxide synthesized based on Example 1(a)
(1.97 mmol) and 450 mg (4.41 mmol) of neutral alumina were thoroughly ground and mixed in a mortar, placed in a sublimator, and heated under reduced pressure on an oil bath. 110℃/
At 20 mmHg, 250 mg (1.87 mmol) of white needle-like crystals of isothianaphthene were obtained at the bottom of the sublimator cooling section. This monomer was immediately purified and degassed.
The mixture was dissolved in 1 ml of methylene chloride, 10 mg of trifluoroacetic acid was added at room temperature, and the mixture was left overnight. reaction solution
Pouring into 50 ml of methanol gave a white precipitate. This polymer was soluble in chloroform, chlorobenzene, tetrahydrofuran, and N.N-dimethylformamide. The infrared absorption spectrum of the polymer is shown in FIG. 1, and the 1 H-NMR spectrum is shown in FIG. 2. A gel permeation chromatograph (Varian 5000) of a solution of this polymer in tetrahydrofuran confirmed that the molecular weight was 2000 in terms of polystyrene. The electrical conductivity (σ RT ) of this polymer at room temperature was measured using a 4-terminal conductivity meter, and it was found to be less than σ RT =10 −8 s/cm. The results of elemental analysis were as follows. Actual value
C: 71.27% H: 4.54% S: 23.96% Calculated values (as (C 8 H 6 S) n) C: 71.64% H: 4.48% S: 23.88% In the above method, methanesulfone is used instead of trifluoroacetic acid. When an acid was used as a polymerization initiator, a polymer was obtained in the same manner, and its infrared absorption spectrum completely matched that shown in FIG. When these polymers were dissolved in 5 ml of chlorobenzene and treated with twice the molar amount of chloranil, a black precipitate was formed. The electrical conductivity σ RT of this polymer at room temperature is 9×10 -2 s/cm, and the electrical conductivity of the iodine-doped product is σ RT =9×
It was 10 -1 s/cm. The infrared absorption spectrum of this product was as shown in FIG. Even when the doped polymer was left in the air at room temperature for one week, there was no change in its electrical conductivity. When 1.1 times the amount of N-chlorosuccinimide was used instead of chloranil and 5 ml of chloroform was used, a black precipitate was obtained that showed exactly the same infrared absorption spectrum as shown in FIG. 3. The conductivity σ RT of this polymer is 2.6×10 -1 s/cm
It was hot. Example 3 0.0788 mol/ 1,3 - isothianaphthene monomer (R 1 = R 2 =
A solution containing H compound) was used as the electrolyte, and a glass plate on which indium tin oxide was deposited was used as the sample electrode
2m with Al plate as counter electrode and Li/Li + as reference electrode.
After electrochemical polymerization at room temperature for 20 minutes at a current density of A/cm 2 , an electrochemically neutral deep blue polymer was obtained on the indium tin oxide deposited glass plate of the positive electrode. The film thickness after washing with acetonitrile and drying was 10 ÎŒm. This material was immersed in a THF solution containing 0.53 mol/LiClO 4 and the dependence of optical absorption on applied voltage was observed using Li as a counter electrode. The results are shown in FIG. In other words, as seen in this figure, the polymer
It showed a blue color at 2.50V (versus Li), and changed to a transparent light green color at 3.50V. This change was found to be reversible. Cyclic portanograms were then measured at +1.0 V to -0.7 V (vs. standard calomel electrode) using (C 4 H 9 ) 4 NClO 4 in acetonitrile as the electrolyte.
The results are shown in FIG. In the range of +0.6V to -0.7V, the polymer film is dark blue;
In the 1.0V range, the color changed to a highly transparent light green color. Using this result, an ECD device as shown in FIG. 6 was fabricated, and a propylene carbonate solution of an electrolyte containing 0.53 mol/LiBF 4 was sealed as a liquid electrolyte. When we tried a life test by applying a square wave of +0.8V to -0.4V with a cycle of 1Hz, we found that 2×
10 No deterioration of the electrochromic material was observed even after four coloring/decoloring tests.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は実斜䟋で補造した重合䜓の赀倖吞収
スペクトル図であり、第図は実斜䟋で補造し
た重合䜓のNMRスペクトル図である。第図は
実斜䟋で補造した第䞀の重合䜓をクロラニルで
凊理した埌の重合䜓の赀倖吞収スペクトル図であ
る。第図は実斜䟋の高分子導電性膜を0.53モ
ルLiClO4のTHF溶液䞭に浞挬し、Liを察向
電極ずした堎合の光孊吞収の印加電圧䟝存性を瀺
す図面であり、第図は実斜䟋の高分子導電性
膜のアセトニトリルC4H94NClO2を電解質ずし
た堎合の1.0V〜−0.7V察暙準カロメル電
極で枬定したサむクリツクポルタノグラムであ
る。第図は本発明に埓぀たECD装眮の実斜䟋
を瀺す抂略断面図であり、図においおは透明ガ
ラス基板、は衚瀺電極、ぱレクトロクロミ
ツク材料、は液状電解質、は察向電極、は
保護局、はリヌド線を瀺す。
FIG. 1 is an infrared absorption spectrum diagram of the polymer produced in Example 2, and FIG. 2 is an NMR spectrum diagram of the polymer produced in Example 2. FIG. 3 is an infrared absorption spectrum diagram of the first polymer produced in Example 2 after being treated with chloranil. FIG. 4 is a diagram showing the dependence of optical absorption on applied voltage when the conductive polymer film of Example 3 is immersed in a THF solution of 0.53 mol/LiClO 4 and Li is used as a counter electrode. The figure is a cyclic portanogram of the polymer conductive membrane of Example 3 measured at +1.0V to -0.7V (vs. standard calomel electrode) when acetonitrile (C 4 H 9 ) 4 NClO 2 was used as the electrolyte. be. FIG. 6 is a schematic cross-sectional view showing an embodiment of the ECD device according to the present invention, in which 1 is a transparent glass substrate, 2 is a display electrode, 3 is an electrochromic material, 4 is a liquid electrolyte, and 5 is an opposing An electrode, 6 a protective layer, and 7 a lead wire.

Claims (1)

【特蚱請求の範囲】  導電性透明基板䞊に圢成した高分子導電性薄
膜を衚瀺基板ずしお甚い、これに液状電解質を介
しお察向電極を配しおなる゚レクトロクロミツク
衚瀺装眮においお、前蚘高分子導電性薄膜が䞋蚘
の䞀般匏 匏䞭、R1及びR2は氎玠又は炭玠数〜の炭化
氎玠を衚わし、は陰むオンを衚わし、はむ゜
チアナフテン構造の単䜍圓りの陰むオンの割合を
衚わす〜0.40の数であり、は重合床を衚わ
し、奜たしくは〜500の数である で衚わされるむ゜チアナフテン構造を有する可逆
的に酞化たたは還元しうる重合䜓であるこずを特
城ずする゚レクトロクロミツク衚瀺装眮。
[Scope of Claims] 1. An electrochromic display device in which a conductive polymer thin film formed on a conductive transparent substrate is used as a display substrate, and a counter electrode is disposed thereon via a liquid electrolyte. The conductive thin film has the following general formula (): (In the formula, R 1 and R 2 represent hydrogen or a hydrocarbon having 1 to 5 carbon atoms, X represents an anion, and y represents the proportion of anion per unit of the isothianaphthene structure of 0 to 0.40. (where n represents the degree of polymerization, preferably a number from 5 to 500). Display device.
JP59121956A 1984-05-31 1984-06-15 Electrochromic display device Granted JPS6112784A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59121956A JPS6112784A (en) 1984-06-15 1984-06-15 Electrochromic display device
US06/736,984 US4640748A (en) 1984-05-31 1985-05-22 Polyisothianaphtene, a new conducting polymer
CA000482753A CA1248690A (en) 1984-05-31 1985-05-30 Polyisothianaphthene, a new conducting polymer
AT85303864T ATE53046T1 (en) 1984-05-31 1985-05-31 POLYMERS WITH ISOTHIANAPTHENE STRUCTURE AND ELECTROCHROMIC INDICATOR.
EP85303864A EP0164974B1 (en) 1984-05-31 1985-05-31 Polymer having isothianaphthene structure and electrochromic display
DE8585303864T DE3577860D1 (en) 1984-05-31 1985-05-31 POLYMERS WITH ISOTHIANAPHTHE STRUCTURE AND ELECTROCHROMIC DISPLAY DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121956A JPS6112784A (en) 1984-06-15 1984-06-15 Electrochromic display device

Publications (2)

Publication Number Publication Date
JPS6112784A JPS6112784A (en) 1986-01-21
JPS6224034B2 true JPS6224034B2 (en) 1987-05-26

Family

ID=14824065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121956A Granted JPS6112784A (en) 1984-05-31 1984-06-15 Electrochromic display device

Country Status (1)

Country Link
JP (1) JPS6112784A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803527B2 (en) * 2011-09-30 2015-11-04 株匏䌚瀟ニデック Organic functional element
EP3564229A4 (en) * 2016-12-28 2020-07-08 Showa Denko K.K. Fused heteropolycyclic compound, and method for producing conductive polymer in which said compound is used

Also Published As

Publication number Publication date
JPS6112784A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
US4795242A (en) Conducting substituted polyisothianaphthenes
US4640748A (en) Polyisothianaphtene, a new conducting polymer
KR960009685B1 (en) Self-doped polymers
US8154787B2 (en) Electrochromic materials
US5589565A (en) Water-soluble conducting polyphenylene vinylene polymers
EP2338925A1 (en) -electron conjugated compound, manufacturing method therefor, and -electron conjugated polymer obtained using same
JPH05214080A (en) Fluorinated thiophenes, polymers derived therefrom and conductive polymers containing them
EP1784686A2 (en) Green electrochromic (ec) material and device
US4772940A (en) Polymer having isothianaphthene structure and electrochromic display
US5569708A (en) Self-doped polymers
JP3464513B2 (en) All-solid-state electrochromic device and method of manufacturing the same
CN110628413A (en) Preparation and application of novel viologen electrochromic material
US7298541B2 (en) Green electrochromic (EC) material and device
EP0164974B1 (en) Polymer having isothianaphthene structure and electrochromic display
US5891968A (en) Method of making self-doped zwitterionic heterocyclic polymers
JPH075716B2 (en) Process for producing N, N'-diphenylbenzidine polymer
JPS6224034B2 (en)
US5310781A (en) Self-doped polymers from polyaniline with bronsted acid groups
US5863981A (en) Electrically conducting water-soluble self-doping polyaniline polymers and the aqueous solutions thereof
US5760169A (en) Self-doped polymers
JP2942710B2 (en) Water-soluble self-doping type conductive polymer composite and method for producing the same
JPS6337119A (en) Novel electrolytic polymer and electrochromic display element obtained by using said polymer
JPH02252727A (en) Polyisothianaphthene polymer and conductive material
JPS6117581A (en) Polymer containing isothianaphthene structure
JPS63161024A (en) Novel thiophene polymer, its production and organic display material made therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term