JPS6224009B2 - - Google Patents

Info

Publication number
JPS6224009B2
JPS6224009B2 JP23176583A JP23176583A JPS6224009B2 JP S6224009 B2 JPS6224009 B2 JP S6224009B2 JP 23176583 A JP23176583 A JP 23176583A JP 23176583 A JP23176583 A JP 23176583A JP S6224009 B2 JPS6224009 B2 JP S6224009B2
Authority
JP
Japan
Prior art keywords
mol
glycidyl
copolymer
ethylenic
epoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23176583A
Other languages
Japanese (ja)
Other versions
JPS60123531A (en
Inventor
Yasumi Shimizu
Tetsuya Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP23176583A priority Critical patent/JPS60123531A/en
Priority to CA000457513A priority patent/CA1210187A/en
Priority to GB08416621A priority patent/GB2144134B/en
Priority to DE19843424062 priority patent/DE3424062A1/en
Priority to US06/626,027 priority patent/US4530994A/en
Priority to FR8410443A priority patent/FR2548195B1/fr
Publication of JPS60123531A publication Critical patent/JPS60123531A/en
Publication of JPS6224009B2 publication Critical patent/JPS6224009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はグリシジルエステル−アリルグリシジ
ルエーテル−エチレン性エポキシド共重合体に関
する。なおこの明細書中エチレン性エポキシドと
はエチレンオキシド、プロピレンオキシドの意味
で使用する。 三員環エポキシドの開環重合に関しては数多く
の技術が開示されているがエポキシド以外の他種
の官能基を有するモノマーを高重合させる例は少
ない。その中で特に有機アルミニウム系触媒、有
機錫−リン酸エステル系触媒は広範囲のエポキシ
ドの高重合が可能であることが知られている。し
かしながら、エステル基を有するエポキシドであ
るグリシジルカルボキシレートについては、その
重合体の構造から、種々の有用な化学的特性ある
いは物理的特性が期待されるにもかかわらずこれ
まで高重合体は得られていない。 一般にグリシジルエステルはそのエステル基の
反応性のために有機アルミニウム系触媒では高重
合物を得ることは困難である。グリシジルエステ
ルが共重合のコモノマーとして使用されている例
としては、有機アルミニウム系触媒によるエピク
ロルヒドリンとメタクリル酸グリシジルとの共重
合の例がある(米国特許第3285870号)が、これ
らのグリシジルエステルの組成比は極めて小さ
く、かつ得られている共重合物の分子量も低いも
のである。またグリシジルエステルの比率が大き
くなるとさらに分子量が著しく低下する。またフ
ツ化ホウ素エーテレートによるグリシジルアセテ
ートの開環重合に触れた報告がなされている
(Makromol Chem71.150(1964))が、油状程
度の低分子量ポリマー(還元粘度0.1未満のも
の)が得られているにすぎない。 本出願人の出願にかかわる米国特許第3773694
号の一部には有機錫−リン酸エステル系触媒によ
りグリシジルエステルの重合が可能という一般的
記載はされているが、重合反応の詳細およびこれ
によつて得られる高重合体についての開示は全く
なされていない。 本発明者らはこの有機錫−リン酸エステル系触
媒によるカルボン酸グリシジルエステルの単独高
重合体、カルボン酸グリシジルエステル−アリル
グリシジルエーテル共高重合体およびカルボン酸
グリシジルエステル−エピハロヒドリン共高重合
体について特許出願を行つたが(特願昭58−
119921号、同119922号、同119923号)、さらに同
触媒によつてカルボン酸グリシジル、アリルグリ
シジルエーテルおよびエチレン性エポキシドの高
分子量共重合体の合成に成功し、かつ得られる共
重合体がきわめて有用なゴム的特性を有しまた各
種の用途が期待できるとの知見を得て本発明を完
成したものである。 すなわち本発明はモノマー換算の組成比が炭素
数2〜5の飽和脂肪族のカルボン酸グリシジルエ
ステル35〜90モル%、アリルグリシジルエーテル
1〜20モル%エチレン性エポキシド5モル%以上
であり、主鎖構造が実質的に下記()〜()
式で表わされる単位からなつているポリエーテル
であつて、80℃において0.1%のモノクロロベン
ゼン溶液で測定した還元粘度が0.5〜3.5であるゴ
ム質固体状のグリシジルエステル−アリルグリシ
ジルエーテル−エチレン性エポキシド共重合体で
ある。なお()〜()式は (式中RはC1〜C4のアルキル基を表わす) (式中R1は水素あるいはメチル基を表わす) である。 本発明共重合体は次式() (但し式中Rは式()におけるRと同一であ
る) で表わされる飽和脂肪族カルボン酸のグリシジル
エステル、すなわちグリシジルアセテート、グリ
シジルプロピオネート、グリシジルブチレート等
の1種または2種以上と、アリルグリシジルエー
テルと、エチレン性エポキシドすなわちエチレン
オキシドおよび/またはプロピレンオキシドとを
(A)有機錫化合物および(B)正リン酸あるいはポリリ
ン酸類のアルキルエステルの熱縮合生成物を触媒
として開環共重合することによつて製造される。 この触媒(A)(B)成分の詳細については上記米国特
許第3773694号明細書に説明されている。(A)成分
と(B)成分は、通常含まれる錫原子とリン原子との
比で1:10〜10:1の範囲になるように調整し約
100〜300℃で(A)成分と(B)成分、あるいは(A)成分と
(B)成分を形成しうる成分化合物の組合わせとを混
合加熱することによつて生成される。溶媒は必要
があれば使用してもよい。この触媒生成反応によ
つて得られる触媒反応生成物は、成分の種類に従
つて種々の比較的簡単な物質が縮合反応で生成脱
離する。得られた縮合物は縮合度の種々の段階で
目的とする活性を示す。 これらの触媒を使用した重合反応は溶媒の存在
下あるいは非存在下において通常0〜80℃の温度
範囲で行われる。触媒はモノマー100gに対して
0.01〜5.0gの範囲が適当である。重合反応系中
の水分は可能な限り低くすることが望ましい。均
一な重合体を得るためには、通常行われるように
攪拌または振盪などの手段が施される。 このようにして製造される本発明高分子共重合
体はゴム質固体状のランダム共重合体である。 上記組成比においてカルボン酸グリシジルエス
テルが35モル%未満になれば耐油性ゴムとしての
特性が低下すると共に耐熱性の低下を伴う。90モ
ル%をこえると実用上耐寒性が不足する。またア
リルグリシジルエーテルが1モル%未満では架橋
機能が低下し、また20モル%をこえると耐油性の
低下、耐熱性の低下が著しい。またエチレン性エ
ポキシドが5モル%未満では耐寒性が低下する。 本発明高分子共重合体は側鎖にアリル基を有す
るので、硫黄、各種の硫黄化合物、過酸化物など
の不飽和ゴムに対する通常の加硫系で容易に加硫
され、各種のオイルに対してきわめて高度の耐油
性を示すとともに従来の耐油性ゴムがかかえてい
る種々の問題点、たとえば耐寒性、耐オゾン性、
ハロゲン含有ポリマーにおける耐腐食性の改善等
に優れた効果を発揮する。また本発明共重合体は
水溶性高分子中間体あるいは各種高分子反応の中
間体として、さらに塗膜形成材料として有用性が
期待されるものである。 実施例 1 ジブチル錫オキサイド10.0g、トリブチルホス
フエート23.4gを、温度計、蒸留塔を有するフラ
スコ内に入れ、攪拌しながら260℃で15分間加熱
後、冷却して固体状の重合用触媒を得た。重合反
応は攪拌機、温度計、試料導入部および窒素導入
部を備えた20容量のステンレス反応器中で行つ
た。反応器内を窒素置換後、グリシジルアセテー
ト500g(4.31モル)、アリルグリシジルエーテル
31.4g(0.275モル)、ヘキサン6300g、エチレン
オキシド70g(1.60モル)を順に加えた後、上記
の触媒6.0gを入れて攪拌下、24℃で6時間反応
させた。反応混合物に水100gを加えて反応を停
止させた後、溶液部を傾斜除去し、重合物をくり
返し水で洗滌した後、さらにエーテルで洗滌し、
最後に2・2′−メチレンビス(4−メチル−6−
第三ブチルフエノール)0.5gを含むエーテル500
ml中に一夜含浸した後、エーテルを除去し減圧下
60℃にて24時間乾燥しゴム重合体87gを得た。 実施例 2〜4 実施例1と同様の方法でグリシジルアセテー
ト、グリシジルプロピオネートまたはグリシジル
ブチレートを第1成分とし、プロピレンオキサイ
ドとアリルグリシジルエーテルを第2、第3成分
とする共重合体を得た。以下第1表に実施例1〜
4の重合反応条件と単離共重合体の特性を示す。
The present invention relates to glycidyl ester-allyl glycidyl ether-ethylenic epoxide copolymers. In this specification, ethylenic epoxide is used to mean ethylene oxide and propylene oxide. Although many techniques have been disclosed regarding ring-opening polymerization of three-membered epoxides, there are few examples of highly polymerizing monomers having functional groups other than epoxides. Among them, it is known that organoaluminum catalysts and organotin-phosphate ester catalysts are particularly capable of high polymerization of a wide range of epoxides. However, although glycidyl carboxylate, which is an epoxide with an ester group, is expected to have various useful chemical and physical properties due to its polymer structure, no high polymer has been obtained to date. do not have. Generally, it is difficult to obtain a high polymer of glycidyl ester using an organoaluminium-based catalyst due to the reactivity of its ester group. An example of glycidyl ester being used as a comonomer in copolymerization is the copolymerization of epichlorohydrin and glycidyl methacrylate using an organoaluminum catalyst (US Pat. No. 3,285,870), but the composition ratio of these glycidyl esters is extremely small, and the molecular weight of the obtained copolymer is also low. Furthermore, when the ratio of glycidyl ester increases, the molecular weight further decreases significantly. There has also been a report on the ring-opening polymerization of glycidyl acetate using boron fluoride etherate (Makromol Chem 71.150 (1964)), but it was not possible to obtain an oily low molecular weight polymer (with a reduced viscosity of less than 0.1). It's just that. U.S. Patent No. 3773694 filed by the applicant
Although there is a general statement in part of the issue that glycidyl esters can be polymerized using organotin-phosphate ester catalysts, there is no disclosure of the details of the polymerization reaction or the high polymers obtained by this process. Not done. The present inventors have patented a homopolymer of carboxylic acid glycidyl ester, a carboxylic acid glycidyl ester-allyl glycidyl ether copolymer, and a carboxylic acid glycidyl ester-epihalohydrin copolymer using this organotin-phosphate ester catalyst. I filed an application (patent application 1982-
119921, 119922, 119923), and also succeeded in synthesizing a high molecular weight copolymer of glycidyl carboxylate, allyl glycidyl ether, and ethylenic epoxide using the same catalyst, and the resulting copolymer is extremely useful. The present invention was completed based on the knowledge that it has rubber-like properties and can be expected to have various uses. That is, in the present invention, the composition ratio in terms of monomers is 35 to 90 mol% of saturated aliphatic carboxylic acid glycidyl ester having 2 to 5 carbon atoms, 1 to 20 mol% of allyl glycidyl ether, 5 mol% or more of ethylenic epoxide, and the main chain The structure is substantially as follows () ~ ()
A rubbery solid glycidyl ester-allyl glycidyl ether-ethylenic epoxide, which is a polyether consisting of units represented by the formula and has a reduced viscosity of 0.5 to 3.5 as measured in a 0.1% monochlorobenzene solution at 80°C. It is a copolymer. Note that formulas () to () are (In the formula, R represents a C 1 to C 4 alkyl group) (In the formula, R 1 represents hydrogen or methyl group) It is. The copolymer of the present invention has the following formula () (However, R in the formula is the same as R in the formula ()) One or more glycidyl esters of saturated aliphatic carboxylic acids, i.e., glycidyl acetate, glycidyl propionate, glycidyl butyrate, etc.; allyl glycidyl ether and an ethylenic epoxide, i.e. ethylene oxide and/or propylene oxide.
It is produced by ring-opening copolymerization using a thermal condensation product of (A) an organotin compound and (B) an alkyl ester of orthophosphoric acid or polyphosphoric acids as a catalyst. Details of the catalyst (A) and (B) components are explained in the above-mentioned US Pat. No. 3,773,694. Component (A) and component (B) are adjusted so that the ratio of tin atoms to phosphorus atoms that are normally included is in the range of 1:10 to 10:1.
At 100 to 300℃, component (A) and component (B), or component (A) and
It is produced by mixing and heating a combination of component compounds that can form component (B). A solvent may be used if necessary. In the catalyst reaction product obtained by this catalyst production reaction, various relatively simple substances are generated and eliminated by a condensation reaction depending on the type of components. The resulting condensate exhibits the desired activity at various stages of the degree of condensation. Polymerization reactions using these catalysts are usually carried out in the temperature range of 0 to 80°C in the presence or absence of a solvent. Catalyst per 100g of monomer
A range of 0.01 to 5.0 g is suitable. It is desirable to keep the water content in the polymerization reaction system as low as possible. In order to obtain a homogeneous polymer, conventional means such as stirring or shaking are applied. The polymer copolymer of the present invention produced in this manner is a rubbery solid random copolymer. If the carboxylic acid glycidyl ester is less than 35 mol % in the above composition ratio, the properties as an oil-resistant rubber will deteriorate and the heat resistance will also decrease. If it exceeds 90 mol%, cold resistance is insufficient for practical purposes. Furthermore, if the content of allyl glycidyl ether is less than 1 mol %, the crosslinking function will be reduced, and if it exceeds 20 mol %, the oil resistance and heat resistance will be significantly reduced. Moreover, if the ethylenic epoxide content is less than 5 mol %, cold resistance will decrease. Since the polymer copolymer of the present invention has an allyl group in the side chain, it is easily vulcanized using a normal vulcanization system for unsaturated rubbers such as sulfur, various sulfur compounds, and peroxides, and is vulcanized for various oils. It exhibits an extremely high degree of oil resistance, and also overcomes various problems that conventional oil-resistant rubbers have, such as cold resistance, ozone resistance,
It exhibits excellent effects in improving the corrosion resistance of halogen-containing polymers. The copolymer of the present invention is also expected to be useful as a water-soluble polymer intermediate or an intermediate for various polymer reactions, and as a coating film forming material. Example 1 10.0 g of dibutyltin oxide and 23.4 g of tributyl phosphate were placed in a flask equipped with a thermometer and a distillation column, heated at 260°C for 15 minutes with stirring, and then cooled to obtain a solid polymerization catalyst. Ta. The polymerization reaction was carried out in a 20-capacity stainless steel reactor equipped with a stirrer, a thermometer, a sample introduction section, and a nitrogen introduction section. After replacing the inside of the reactor with nitrogen, 500 g (4.31 mol) of glycidyl acetate and allyl glycidyl ether were added.
After sequentially adding 31.4 g (0.275 mol), 6300 g of hexane, and 70 g (1.60 mol) of ethylene oxide, 6.0 g of the above catalyst was added and reacted at 24° C. for 6 hours with stirring. After adding 100 g of water to the reaction mixture to stop the reaction, the solution part was decanted, the polymer was repeatedly washed with water, and then further washed with ether.
Finally, 2,2'-methylenebis(4-methyl-6-
Ether 500 containing 0.5g (tert-butylphenol)
After overnight soaking in ml, remove the ether and evaporate under reduced pressure.
It was dried at 60°C for 24 hours to obtain 87g of rubber polymer. Examples 2 to 4 Copolymers containing glycidyl acetate, glycidyl propionate, or glycidyl butyrate as the first component and propylene oxide and allyl glycidyl ether as the second and third components were obtained in the same manner as in Example 1. Ta. Table 1 below shows Examples 1-
4 shows the polymerization reaction conditions and characteristics of the isolated copolymer.

【表】【table】

【表】 実施例 5 実施例1および2によつて得られた共重合体そ
れぞれ100部(重量部、以下同じ)に対しステア
リン酸1部、ジベンゾチアジルジスルフイド1.5
部、硫黄1部を配合しロール混練りを行い、160
℃で20分間加硫し簡単な物性を測定した。 結果を第2表に示す。
[Table] Example 5 1 part of stearic acid and 1.5 parts of dibenzothiazyl disulfide were added to 100 parts (parts by weight, same hereinafter) of each of the copolymers obtained in Examples 1 and 2.
1 part of sulfur and roll kneading, 160
After vulcanization at ℃ for 20 minutes, simple physical properties were measured. The results are shown in Table 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明によるグリシ
ジルアセテート−エチレンオキシド−アリルグリ
シジルエーテル共重合体、グリシジルアセテート
−プロピレンオキシド−アリルグリシジルエーテ
ル共重合体の赤外線吸収スペクトルである。
1 and 2 are infrared absorption spectra of glycidyl acetate-ethylene oxide-allyl glycidyl ether copolymer and glycidyl acetate-propylene oxide-allyl glycidyl ether copolymer according to the present invention, respectively.

Claims (1)

【特許請求の範囲】 1 モノマー換算の組成比が、炭素数2〜5の飽
和脂肪族のカルボン酸のグリシジルエステル35〜
90モル%、アリルグリシジルエーテル1〜20モル
%、エチレン性エポキシド5モル%以上であり、
主鎖構造が実質的に下記()〜()式で表わ
される単位からなつているポリエーテルであつ
て、80℃において0.1%のモノクロロベンゼン溶
液で測定した還元粘度が0.5〜3.5であるゴム質固
体状のグリシジルエステル−アリルグリシジルエ
ーテル−エチレン性エポキシド共重合体。 (式中RはC1〜C4のアルキル基を表わす) (式中R1は水素あるいはメチル基を表わす)
[Scope of Claims] 1 Glycidyl ester of a saturated aliphatic carboxylic acid having 2 to 5 carbon atoms having a composition ratio of 35 to 35 carbon atoms;
90 mol%, allyl glycidyl ether 1 to 20 mol%, ethylenic epoxide 5 mol% or more,
A polyether whose main chain structure is substantially composed of units represented by the following formulas () to (), and whose reduced viscosity is 0.5 to 3.5 when measured with a 0.1% monochlorobenzene solution at 80°C. Solid glycidyl ester-allyl glycidyl ether-ethylenic epoxide copolymer. (In the formula, R represents a C 1 to C 4 alkyl group) (In the formula, R 1 represents hydrogen or methyl group)
JP23176583A 1983-06-30 1983-12-07 Glycidyl ester-allyl glycidyl ether-ethylenic epoxide copolymer Granted JPS60123531A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23176583A JPS60123531A (en) 1983-12-07 1983-12-07 Glycidyl ester-allyl glycidyl ether-ethylenic epoxide copolymer
CA000457513A CA1210187A (en) 1983-06-30 1984-06-27 Rubbery solid polymer or copolymer of glycidyl carboxylate and composition thereof
GB08416621A GB2144134B (en) 1983-06-30 1984-06-29 Rubbery solid polymer or copolymer of glycidyl carboxylate and composition thereof
DE19843424062 DE3424062A1 (en) 1983-06-30 1984-06-29 RUBBER-LIKE SOLID POLYMER OR COPOLYMER MADE OF GLYCIDYL CARBOXYLATE AND CONTAINABLE DIMENSIONS CONTAINING IT
US06/626,027 US4530994A (en) 1983-06-30 1984-06-29 Rubbery solid polymer or copolymer of glycidyl carboxylate and composition thereof
FR8410443A FR2548195B1 (en) 1983-06-30 1984-07-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23176583A JPS60123531A (en) 1983-12-07 1983-12-07 Glycidyl ester-allyl glycidyl ether-ethylenic epoxide copolymer

Publications (2)

Publication Number Publication Date
JPS60123531A JPS60123531A (en) 1985-07-02
JPS6224009B2 true JPS6224009B2 (en) 1987-05-26

Family

ID=16928675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23176583A Granted JPS60123531A (en) 1983-06-30 1983-12-07 Glycidyl ester-allyl glycidyl ether-ethylenic epoxide copolymer

Country Status (1)

Country Link
JP (1) JPS60123531A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317527A (en) * 1987-06-19 1988-12-26 Osaka Soda Co Ltd Epoxide copolymer
JP5608956B2 (en) * 2007-09-06 2014-10-22 ダイソー株式会社 Polyether based multi-component copolymer and cross-linked product thereof
JP7081104B2 (en) * 2017-09-22 2022-06-07 株式会社大阪ソーダ A polyether polymer, a composition containing the polyether polymer, and a molded product.

Also Published As

Publication number Publication date
JPS60123531A (en) 1985-07-02

Similar Documents

Publication Publication Date Title
US6268451B1 (en) Silyl-functional pseudo-telechelic polyisobutylene terpolymers
US4814418A (en) Fluorosilicone polymer, processes for the production thereof and composition containing it
Tasić et al. Synthesis, structure and thermogravimetric analysis of alpha, omega-telechelic polydimethylsiloxanes of low molecular weight
JPS625173B2 (en)
Hammond et al. Cationic copolymerization of tetrahydrofuran with epoxides. I. Polymerization mechanism in the presence of a glycol
US3803087A (en) Process for preparing modified polymers
JPS63154736A (en) Polyether copolymer having oligooxyethylene side chain
JPS6224009B2 (en)
JPH0149374B2 (en)
Bednarek et al. Cationic copolymerization of tetrahydrofuran with ethylene oxide in the presence of diols: Composition, microstructure, and properties of copolymers
JPS62169823A (en) Polyether copolymer having epoxy group in side chain and its production
US4847332A (en) Terminally unsaturated macromolecular monomers of polyformals and copolymers thereof
US3016361A (en) Condensation elastomers from fluorine containing dicarboxylic compounds
US3259590A (en) Polymers of oxacycloalkanes prepared with organic aluminum co-catalyst
JPS6224008B2 (en)
JPS6257654B2 (en)
JPS6257655B2 (en)
JPH0275644A (en) Curable resin composition
US3435015A (en) Tetrahydrofuran polymers
Vairon et al. Industrial cationic polymerizations: an overview
US3354133A (en) Vulcanizable copolymers of tetrahydrofuran with unsaturated epoxy compouns prepared i the presence of organoantimony hexachloride
Bansleben et al. Poly (alkylene oxide) ionomers. XI. Polymerization and copolymerization of methyl ω‐epoxyundecanoate and characterization of the polymers
US3799895A (en) Halocyanoalkyl epoxy ethers and polymers thereof
US3975336A (en) Polymers of nonconjugated 1,4-dienes
US3012010A (en) Polymers of vinyl chloride and allyl ureas