JPS62240048A - Artificial heart valve - Google Patents

Artificial heart valve

Info

Publication number
JPS62240048A
JPS62240048A JP61083173A JP8317386A JPS62240048A JP S62240048 A JPS62240048 A JP S62240048A JP 61083173 A JP61083173 A JP 61083173A JP 8317386 A JP8317386 A JP 8317386A JP S62240048 A JPS62240048 A JP S62240048A
Authority
JP
Japan
Prior art keywords
valve
blood
sac
artificial heart
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61083173A
Other languages
Japanese (ja)
Other versions
JPH0249105B2 (en
Inventor
高木 啓之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61083173A priority Critical patent/JPS62240048A/en
Publication of JPS62240048A publication Critical patent/JPS62240048A/en
Publication of JPH0249105B2 publication Critical patent/JPH0249105B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ゛  (産業上の利用分野) 本発明は血液に凝固反応を起こさせ難い人工材料よりな
る人工心臓用弁の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an artificial heart valve made of an artificial material that does not easily induce a coagulation reaction in blood.

(従来の技術) そもそも人工心臓は通常はサック型ポンプで、サックと
その流出入弁でできている。サック型ポンプの特徴は収
縮期と拡張期で1ポンプサイクルを作ることで、収量期
は例えば空気圧でサックを圧排して血液を駆出する時相
で、人為的にm節が可能である。一方、拡張期はサック
への流入時相であるが、心房の圧はせいぜい5〜10m
1gまでで、圧勾配は極端に少ない、しかも、圧勾配を
高めるために防圧をかけても血管壁が虚脱するだけで、
工業的ポンプの様に吸引流入せしめることは不可能であ
る。従って、人工心臓のポンプ性能をあげるには収量u
に問題はなく拡張期である流入時相で低い圧勾配のとこ
ろで、より多くより速かにポンプへ血液をとりこめるよ
うにすることが最も重要で、そのため広い弁口径と機敏
な開閉が必要である。ところで、本発明者は先に特公昭
54−42759号公報記載の人工心臓用弁を提案した
が、これは血液が流れる導管の管壁自体に弁座を組み込
んでこれに弁ボールを遊嵌したもので、この弁はその後
のテストで弁内に血栓形成がなく、しかも、開閉が速か
で弁機能がよく、400〜500回/分のパルスにも対
応できる優秀性が証明されており、この弁を人工心臓用
流入弁として用いることは非常に望ましいことである。
(Prior art) Artificial hearts are usually sac-type pumps, which are made up of a sac and its inflow and outflow valves. The characteristic of the sac-type pump is that one pump cycle is made during the systole and diastole, and the yield period is a phase in which the sac is pumped out using air pressure to eject blood, and it is possible to artificially create m nodes. On the other hand, during diastole, the flow phase into the sac, the atrial pressure is at most 5 to 10 m
Up to 1 g, the pressure gradient is extremely small, and even if pressure is applied to increase the pressure gradient, the blood vessel wall will simply collapse.
It is impossible to suction and inflow like an industrial pump. Therefore, in order to improve the pump performance of an artificial heart, the yield u
The most important thing is to be able to draw as much blood into the pump as quickly as possible at a low pressure gradient during the inflow phase (diastole), which is why a wide valve diameter and quick opening and closing are necessary. be. By the way, the present inventor previously proposed an artificial heart valve described in Japanese Patent Publication No. 54-42759, in which a valve seat was built into the wall of the conduit through which blood flows, and a valve ball was loosely fitted into the valve seat. Subsequent tests have shown that this valve has no thrombus formation within the valve, has good valve function in terms of quick opening and closing, and is capable of handling pulses of 400 to 500 times per minute. It is highly desirable to use this valve as an inflow valve for an artificial heart.

(発明が解決しようとする問題点) ところが、この種人工心臓用弁は形状に付随する特徴と
して弁口径を2倍にすれば、弁口面積は4倍になるけれ
ども弁自体も弁ボールも3乗に比例して増大するので弁
ボールの体積は8倍となる、(第4図参照)ところで、
弁ボールが巨大化すると、それを移動して閉鎖するため
のエネルギーも逆流血液量もそれに比例して増大し、弁
の開閉は容易でなくなり弁ボールの移動距離、移動時間
も増加して、結局、ポンプ能率は非常に低下する、従っ
て、弁ボールの大きさを増加させず弁ボールの移動時間
を延長しないで弁口面積を拡大しなければならない。
(Problem to be Solved by the Invention) However, this type of artificial heart valve has a characteristic associated with its shape that if the valve diameter is doubled, the valve orifice area will be quadrupled, but the valve itself and the valve ball will be 3 times larger. The volume of the valve ball increases by 8 times (see Figure 4).
As the valve ball becomes larger, the energy required to move and close it and the amount of blood flowing backward increase proportionally, making it difficult to open and close the valve, and the distance and time the valve ball travels also increases. , the pump efficiency will be greatly reduced, so the valve opening area must be expanded without increasing the size of the valve ball and prolonging the travel time of the valve ball.

(問題点を解決するための手段) 本発明は前記のような問題点を解決した人工心臓用弁に
関するもので、弁室を備えた連通路の複数個を並列状に
配設してなる弁体をサックと導管との間に設けて各弁室
にそれぞれ弁ボールを遊嵌したことを特徴とするもので
ある。
(Means for Solving the Problems) The present invention relates to an artificial heart valve that solves the above-mentioned problems. A valve body is provided between the sack and the conduit, and a valve ball is loosely fitted into each valve chamber.

(作用) このような人工心臓用弁は、サックを空気圧で駆動され
るようにして使用した場合、血液は一方の導管である血
液流入用の導管よりサック内に流入したうえ他方の導管
である血液駆出用の導管より駆出されてゆくこととなる
が、導管とサックとの間には複数の連通路が並列状に配
列された弁体が設けられており、各連通路の弁室にはそ
れぞれ前記連通路を開閉する弁ボールが遊嵌されている
から、圧勾配の小さい拡張期でも弁体の各連通路を通じ
て間歇的に多量の血液が流入する。しかも各連通路はそ
の長さや弁容積を大きくする必要はないので、弁ボール
の移動距離は小さく短時間で弁ボールは連通路を閉塞で
き、弁ボールを移動させるに必要とする逆流血液量も連
通路の数に比例する一次直線的増加にとどまることとな
るので、効率よく人工心臓用ポンプを駆動することがで
きるものである。
(Function) When such an artificial heart valve is used with the sac driven by pneumatic pressure, blood flows into the sac from one conduit for blood inflow, and then flows into the sac from the other conduit. The blood is ejected from the conduit for ejecting blood, but a valve body with a plurality of communication passages arranged in parallel is provided between the conduit and the sac, and the valve chamber of each communication passage is Since valve balls for opening and closing the communication passages are loosely fitted into the valve bodies, a large amount of blood intermittently flows through each communication passage of the valve body even during diastole when the pressure gradient is small. Moreover, since each communicating path does not need to have a large length or valve volume, the distance the valve ball moves is small and the valve ball can close the communicating path in a short time, reducing the amount of backflow blood required to move the valve ball. Since the increase remains linearly proportional to the number of communication passages, the artificial heart pump can be driven efficiently.

(実施例) 次に、本発明を図示の実施例について詳細に説明すれば
、(11はシリコンゴムや、ポリウレタンゴムなどの血
液に凝固反応を起させな難い材料よりなるサック(2)
付の脈動型人工心臓用ポンプであり、該サック(2)に
は同材よりなる血液流入用の導管(3)と血液駆出用の
導管(4)とが接続されている。(5)はサック(2)
と血液駆出用の導管(4)との間に設けた弁体であって
、咳弁体(5)は前記サック(2)や導管(3)、(4
)と同様の材料よりなる短柱体に複数個の連通路(6)
を相互間になるべく肉薄の壁部を介して並列状に均斉に
配設して各連通路(6)の中間には、流入側を弁座(η
に形成するとともに吐出側を弁ボール止め(8)に形成
した弁室(9)を形成したもので、該弁体(5)の各弁
室(9)にはそれぞれ前記連通路(6)の弁座(7)を
閉塞する弁ボールQlが遊嵌されている。
(Embodiment) Next, the present invention will be described in detail with reference to the illustrated embodiment.
The sac (2) is connected to a blood inflow conduit (3) and a blood ejection conduit (4) made of the same material. (5) is sack (2)
and the blood ejection conduit (4), and the cough valve body (5) is provided between the sac (2) and the conduit (3), (4).
) with multiple communication passages (6) in a short column made of the same material as
The valve seats (η
The valve chamber (9) is formed with a valve ball stopper (8) on the discharge side, and each valve chamber (9) of the valve body (5) is provided with the communication passage (6). A valve ball Ql that closes the valve seat (7) is loosely fitted.

このように構成されたものは、収縮期において図示しな
い駆動装置により脈動型人工心臓用ポンプ(1)のサッ
ク(2)が加圧されると、血液流入用の導管(31より
流入してサック(2)内に充満していた血液は、弁ボー
ル止め(8)に受けられていた各弁ボール(IIを弁座
(7)に当接させて弁体(5)に配設された複数の連通
路(6)を閉塞するから、サック(2)内の血液は血液
駆出用の導管(4)へ流出してゆくこととなり、また、
拡張期においては、血液流入用の導管(3)を経て心房
から圧勾配の小さい血液がサック(2)内に 。
With this configuration, when the sac (2) of the pulsating artificial heart pump (1) is pressurized by a drive device (not shown) during the systole, blood flows into the sac through the inflow conduit (31). (2) The blood that was filled in the valve ball stopper (8) is removed from each valve ball (II) placed in the valve body (5) with the valve ball (II) in contact with the valve seat (7). Since the communication path (6) is blocked, the blood in the sac (2) will flow out to the blood ejection conduit (4), and
During diastole, blood with a small pressure gradient flows from the atrium into the sac (2) via the blood inflow conduit (3).

流入することとなるが、弁体(5)には複数の連通路(
6)が配設されているため、第5図に示すように連通口
(6)の総断面積が大であれば圧勾配(静脈圧)が小さ
くにもかかわらず、多量の血液がサック(2)内に短時
間で流入することとなる。これに相当する流入量を1本
の連通路(6)の内径を拡大することによって連通路(
6)の断面積を増大して得ようとすれば、例えば内径を
2倍にすると弁体(5)内に遊嵌される弁ボール(II
の直径も2倍となり、弁体(5)の長さも2倍となる。
However, the valve body (5) has a plurality of communication passages (
6), as shown in Figure 5, if the total cross-sectional area of the communication port (6) is large, a large amount of blood will flow through the sac (venous pressure) even though the pressure gradient (venous pressure) is small. 2) It will flow into the area in a short period of time. By enlarging the inner diameter of one communication passage (6), the inflow amount equivalent to this can be increased by enlarging the inner diameter of one communication passage (6).
If you want to increase the cross-sectional area of 6), for example, by doubling the inner diameter, the valve ball (II
The diameter of the valve body (5) also doubles, and the length of the valve body (5) also doubles.

この結果弁体(5)内における弁ボールα〔のストロー
クも2倍となり弁の開閉時間が増加することとなる。し
かし、連通路(6)の断面積の増大を該連通路(6)の
内径を変えることなく数を増すことにより得ようとする
本発明では各連通路(6)が同じ内径であれば連通路(
6)の数の増加によって弁の開閉時間が増加することは
なく、従って、脈動数の減少を生じることはなくて人工
心臓用ポンプ(1)の効率は高いものとなる。なお、本
発明では弁閉鎖動作のために要する血液逆流量が先に提
案したものより若干増加することとなるが、基本釣にこ
の種弁の血液逆流量は極めて少ナイウエに1個の連通路
の径を拡大して弁口面積を大きくすることにより大きな
弁ボールを使用した場合に比べはるかに少ないので、実
用上何ら差支えない・また・実施例では弁ボール止め+
81は弁体(5)の下部に半円形のストフパを左右に形
成して中央部に一文字状の通路を透設しているが、通路
の形状は十文字状でもY文字状でもよく、弁ボールα傷
の移動を止めて、かつ血流を妨げないものならばいかな
るものでもよいことは勿論であり、また連通孔(6)の
数も実施例に示されるように7個に限定されることはな
く少なくとも2個以上で、実施できる数ならばいくつで
もよく、配列パターンも自由である。
As a result, the stroke of the valve ball α within the valve body (5) is also doubled, increasing the opening and closing time of the valve. However, in the present invention, which attempts to increase the cross-sectional area of the communication passages (6) by increasing the number of communication passages (6) without changing the inner diameter, if each communication passage (6) has the same inner diameter, aisle(
6) The increase in the number of valves does not increase the opening/closing time of the valves, and therefore, the pulsation rate does not decrease and the efficiency of the artificial heart pump (1) becomes high. In addition, in the present invention, the amount of blood backflow required for the valve closing operation is slightly increased compared to the previously proposed method, but in basic fishing, the amount of blood backflow in this type of valve is extremely small. By enlarging the diameter of the valve and increasing the valve opening area, there is no problem in practical use since the amount is much smaller than when using a large valve ball.In addition, in the example, the valve ball stop +
In 81, semicircular stoppers are formed on the left and right sides at the bottom of the valve body (5), and a single-character-shaped passage is provided in the center, but the shape of the passage may be cross-shaped or Y-shaped, and the valve ball Of course, any material may be used as long as it stops the movement of the alpha wound and does not impede blood flow, and the number of communicating holes (6) is also limited to seven as shown in the examples. There may be at least two or more, but any number may be used as long as it can be implemented, and the arrangement pattern is also free.

(発明の効果) 本発明は前記説明からも明らかなように、血液の駆出量
を増加させる手段として連通路の内径を増加させずに、
連通路の数を増加させるようにしたから、弁ボールの移
動量にあたる弁室の長さは大きくならず、従って、弁の
開閉時間は変わらす、しかも、弁ボールを移動させるに
必要とする速流血液量の増加は一次元的であり、連通路
の内径を増加させた場合のように、2次元あるいは3次
元的増加にはならず、弁機能の低下はほとんど見られな
いものであり、また、弁体に複数の弁室を形成している
から、弁室の外壁は各弁室と共有することとなって弁を
小型化でき、従来の人工心臓用弁の問題点を除いたもの
として医学にもたらす益極めて大なものである。
(Effects of the Invention) As is clear from the above description, the present invention provides a means for increasing the amount of blood ejected without increasing the inner diameter of the communication passage.
Since the number of communication passages is increased, the length of the valve chamber corresponding to the amount of movement of the valve ball does not increase, and therefore the opening and closing time of the valve changes.Moreover, the speed required to move the valve ball does not increase. The increase in blood flow volume is one-dimensional and does not increase two-dimensionally or three-dimensionally like when the inner diameter of the communication passage is increased, and there is almost no deterioration in valve function. In addition, since multiple valve chambers are formed in the valve body, the outer wall of the valve chamber is shared by each valve chamber, making the valve smaller and eliminating the problems of conventional artificial heart valves. The benefits it brings to medicine are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す一部切欠斜視図、第2図
は同じく一部切欠正面図、第3図は同じ(一部切欠平面
図、第4図は連通路の内径に対する弁ボール体積、連通
路の断面積、弁ボール直径の増加率を示すグラフ、第5
図は連通路の総断面積に対する静脈圧と血液量との関係
を示すグラフである。 (2):サック、(3):血液流入用の導管、(4):
血液駆出用の導管、(5):弁体、(6):連通路、α
l:弁ボール。 fa1図 第2図 2  ざ 第3図 第4図 8 10  12 14  16(醜)連通路のa8生
Fig. 1 is a partially cutaway perspective view showing an embodiment of the present invention, Fig. 2 is a partially cutaway front view, and Fig. 3 is the same (partially cutaway plan view). Graph showing increase rate of ball volume, cross-sectional area of communication path, and valve ball diameter, 5th
The figure is a graph showing the relationship between venous pressure and blood volume with respect to the total cross-sectional area of the communication passage. (2): Sac, (3): Conduit for blood inflow, (4):
Conduit for blood ejection, (5): Valve body, (6): Communication path, α
l: Valve ball. FA1 Figure 2 Figure 2 Figure 3 Figure 4 Figure 8 10 12 14 16 (Ugly) A8 raw of communication path

Claims (1)

【特許請求の範囲】[Claims] 弁室を備えた連通路の複数個を並列状に配設してなる弁
体をサックと導管との間に設けて各弁室にそれぞれ弁ボ
ールを遊嵌したことを特徴とする人工心臓用弁。
For an artificial heart, characterized in that a valve body comprising a plurality of communicating passages each having a valve chamber arranged in parallel is provided between a sac and a conduit, and a valve ball is loosely fitted into each valve chamber. valve.
JP61083173A 1986-04-10 1986-04-10 Artificial heart valve Granted JPS62240048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61083173A JPS62240048A (en) 1986-04-10 1986-04-10 Artificial heart valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61083173A JPS62240048A (en) 1986-04-10 1986-04-10 Artificial heart valve

Publications (2)

Publication Number Publication Date
JPS62240048A true JPS62240048A (en) 1987-10-20
JPH0249105B2 JPH0249105B2 (en) 1990-10-29

Family

ID=13794889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61083173A Granted JPS62240048A (en) 1986-04-10 1986-04-10 Artificial heart valve

Country Status (1)

Country Link
JP (1) JPS62240048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516206A (en) * 2008-04-08 2011-05-26 メドトロニック,インコーポレイテッド Multi-orifice implantable heart valve and implantation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516206A (en) * 2008-04-08 2011-05-26 メドトロニック,インコーポレイテッド Multi-orifice implantable heart valve and implantation method

Also Published As

Publication number Publication date
JPH0249105B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
US5378229A (en) Check valve manifold assembly for use in angioplasty
US3492996A (en) Ventriculo-atrial shunt
Pennock et al. Survival and complications following ventricular assist pumping for cardiogenic shock
US4995864A (en) Dual chamber pumping apparatus
WO2003072161A3 (en) Fluid pump
US4196075A (en) Membrane fluid transfer method and apparatus
Bachmann et al. Fluid dynamics of a pediatric ventricular assist device
US7367959B2 (en) Device for cardiocirculatory assistance
Elzinga et al. Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance
US5407424A (en) Angioplasty perfusion pump
US20160310651A1 (en) Artificial heart
JPH064092B2 (en) Blood pump
US3855995A (en) Ventricle assembly for pulsatile-type pump
Fung et al. A new theory of pulmonary blood flow in zone 2 condition
US7108652B2 (en) Multi-chamber self-regulating ventricular assist device
JPS62240048A (en) Artificial heart valve
CN109996572A (en) The method of the outer blood pump of external blood pump, heart-lung machine, operating body, and the method for operation heart-lung machine
JPH05296150A (en) Micro pump
Woodward et al. A fluid-amplifier artificial heart pump
CN1011476B (en) Blood pump
Sallam et al. Experience in the development of low haemolysis pumps
EP4162971A1 (en) Blood pump for causing blood to flow in one direction and blood oxidation system comprising same
RU210252U1 (en) Blood flow control device in extracorporeal circulatory assist systems
US20020137981A1 (en) Balloon pump system having a pressure reservoir muffler
Trocchio et al. Mechanical pumps for extracorporeal circulation