JPS6223993B2 - - Google Patents

Info

Publication number
JPS6223993B2
JPS6223993B2 JP18619680A JP18619680A JPS6223993B2 JP S6223993 B2 JPS6223993 B2 JP S6223993B2 JP 18619680 A JP18619680 A JP 18619680A JP 18619680 A JP18619680 A JP 18619680A JP S6223993 B2 JPS6223993 B2 JP S6223993B2
Authority
JP
Japan
Prior art keywords
water retention
acid
cement
water
polyethyleneimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18619680A
Other languages
Japanese (ja)
Other versions
JPS57109885A (en
Inventor
Hiroshi Segawa
Satoshi Sato
Juji Kawamura
Shizuo Kimata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP18619680A priority Critical patent/JPS57109885A/en
Publication of JPS57109885A publication Critical patent/JPS57109885A/en
Publication of JPS6223993B2 publication Critical patent/JPS6223993B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は坑井用セメンチング工法例えば掘削工
法におけるケーシングセメンチング、スクイズセ
メンチング、ライナーセメンチングまたは埋立セ
メンチング等の工法に関するものである。 掘削工法におけるこれらセメンチング工法にお
いて充分満足すべき結果を得るために、従来から
セメンチング用のセメントスラリー組成物に各種
の添加剤を使用し、セメンチングを行つている。
これらの添加剤にはセメント速硬剤、セメント遅
硬剤、低比重添加剤、高比重添加剤、セメント分
散剤、分散兼遅硬剤および保水剤(脱水減少剤)
があり、目的に応じて使い分けられている。そし
て、坑井条件によつてこれら添加剤を適当に組み
合せて坑井条件に最も適合したセメントスラリー
組成物としてセメンチングに供している。 本発明は、ポリエチレンイミンまたはその中和
水性塩もしくは、これと金属イオン封鎖剤とから
なる保水剤を含有するセメントスラリー組成物を
用いる坑井用セメンチング工法を提供しようとす
るものである。 近年の坑井用セメンチング工法は坑井内の所定
の深度までケーシングパイプを降下せしめ、地上
からケーシングパイプ内を通して、ケーシングパ
イプと地層との環状空隙部分にセメントスラリー
(セメントと水に種々の添加剤を適当な割合に加
えた組成物)をポンプで送入し、この環状空隙部
分を坑底から順にセメントスラリーで充填し、硬
化したセメントスラリーによりケーシングパイプ
を坑井内に固定することにより坑井内の内壁を保
護するものである。 従来、セメントスラリーの配合に使用されてい
る既知の保水剤としては例えば、ベントナイト、
HEC(ヒドロキシエチルセルローズ)等があ
り、かゝる保水剤は一般的に耐熱性が悪く、温度
が高い坑井に使用した場合に保水効果が下り、工
事施行中脱水量が増大し、経時的にセメントスラ
リーの変質即ち流動性等が損われるため満足すべ
き完全なセメンチングができない。またセメント
を水に溶解してセメントスラリーを作るさいにセ
メントスラリーの粘性がこれら保水剤の添加によ
り必要以上に上昇し、目的とする流動特性をもつ
たスラリー性状を得ることができ難いなどの欠点
がある。 従つて、これら従来の保水剤ではセメントスラ
リー性状において目的とする性能が得られず、特
に温度の高い坑井で使用する場合のセメンチング
は失敗に終り、以後のボーリングを不可能にす
る。即ちセメンチング時に使用する保水剤の品質
は坑井の成功・不成功に重大な影響力を持つた
め、セメントスラリーの性状をいかなる坑井内条
件によつても大きく変化しない安定なスラリー性
状を得るべく保水剤の品質改善が切望されてい
る。 本発明者らは上記の如くセメンチング工法に用
いられるセメントスラリー組成物に特に重大な影
響力を持つ保水剤について改良研究を行つた結
果、新規な保水剤を見出し、これを使用した坑井
内セメンチング工法を発明するに至つたものであ
る。すなわち本発明に用いられる保水剤とはポリ
エチレンイミンまたはその中和水性塩、またはこ
れと金属イオン封鎖剤とからなるものである。ま
たこの保水剤はこれと相溶性のあるポリアミン・
ポリアミド、第三級アミン塩ポリマー、第四級ア
ンモニウム塩ポリマー等を混合しても使用でき
る。 ポリエチレンイミンは、エチレンイミンを二酸
化炭素、塩酸、臭化水素酸、p−トルエンスルホ
ン酸、塩化アルミニウム、四弗化ホウ素などの酸
触媒で重合させて得られる。本発明においてはか
かる方法により工業的に製造されているものも特
に支障なく使用できる。 使用するポリエチレンイミンの特性を固形分30
%の水溶液粘度(ブルツクフイールド型粘度計25
℃、60rpm)で見た場合、本発明の工法に用いら
れる保水剤に向いている粘度範囲は400乃至
3000cps程度であり、さらに好ましい範囲として
は800乃至2000cps程度である。ポリエチレンイ
ミンの粘度が400cps以下の場合は、セメント配
合物の流動性は良好であるが、保水性が劣る傾向
があり、また3000cpsを越える場合、良好な保水
性が得られるが反面セメントスラリー配合物の流
動性が損なわれ、セメンチング工法としては取扱
いが繁雑になる。 ポリエチレンイミンの中和水性塩はポリエチレ
ンイミンと相溶性を有する中和剤で中和処理せし
めたものである。ポリエチレンイミン自体の水溶
液のPHは通常10〜11であり、この場合に使用され
る中和剤としての一般的な例としては硫酸、塩
酸、リン酸等の既知の無機酸および酢酸、蓚酸、
酒石酸、安息香酸等の一般の既知の有機酸等から
選ばれた一種または二種以上の酸の適量でポリエ
チレンイミンを中和せしめた水性塩である。その
他の中和剤としては前記無機酸および有機酸に限
らず、ポリエチレンイミンと相溶性を有する水可
溶性の中和剤ならばいかなるものでも適用でき
る。ポリエチレンイミン中和水性塩のPHは4以
上、好ましくは5以上としたものがよい。 本発明の坑井内セメンチング工法に用いられる
保水剤としては、前記した通り、ポリエチレンイ
ミンまたはその中和水性塩、またはこれと金属イ
オン封鎖剤とからなるものであるが、こゝで述べ
る金属イオン封鎖剤としては、一般的に既知の金
属イオンと結合する能力を持ち、イオンの不活性
化に効力のあるもの、水溶性の金属錯塩形成能を
有するものがある。その代表例としては、エチレ
ンジアミンテトラ酢酸(EDTA)、N−ヒドロキ
シエチルエチレンジアミンN・N′・N″−トリ酢
酸(HEDTA)、ジエチレントリアミンペンタ酢
酸(DTPA)、トリエチレンテトラミンヘキサ酢
酸(TIHA)、およびこれらの塩やその他これら
の類似化合物をあげることができる。またニトリ
ロトリ酢酸、クエン酸、グルコン酸、コハク酸、
酒石酸、リンゴ酸、ジピコリン酸、イミノジ酸、
グルタミン酸およびこれらの塩のごときその他一
般に既知の金属イオン封鎖剤である。 上記した各種金属イオン封鎖剤の内、例えばク
エン酸、酒石酸等のごときオキシカルボン酸類
は、既にセメントスラリー組成物の保水効果等を
目的とした添加物として知られているが、これら
オキシカルボン酸を含めた金属イオン封鎖剤の単
独使用においては、本発明の目的に対し末だ種々
の欠点を有し、充分な効果を挙げ得ないのに対
し、ポリエチレンイミン等と併用する事によつて
極めて優れた特長を発揮し保水効果の向上が著し
い。 これら金属イオン封鎖剤の使用割合、即ちポリ
エチレンイミン:金属イオン封鎖剤の比は好まし
くは100:0.5乃至20重量部(固形分重量比)、さ
らに好ましくは100:2乃至15重量部の範囲が望
ましい。金属イオン封鎖剤の配合比が0.5以下で
あると併用による保水効果の向上が認めにくく、
20以上になるとセメント配合物の硬化後の強度に
悪影響を及ぼす。 また、これら金属イオン封鎖剤は、ポリエチレ
ンイミンと併用使用する場合、ポリエチレンイミ
ン(水溶液)と金属イオン封鎖剤の固形物もしく
はそれを水に溶解させたものを予め混合した混合
物の形態でセメントスラリーに配合するか、ある
いは、ポリエチレンイミンと金属イオン封鎖剤を
各々別個に添加配合することができ、どちらの方
法によつても本発明の効果を得ることができる。 以上の通り本発明の保水剤はポリエチレンイミ
ンまたはその中和水性塩またはこれと金属イオン
封鎖剤とからなるものであるが、これらと相溶性
のある水溶性ポリマーも併用することができる。 この相溶性のある水溶性ポリマーの一例として
は、ポリアクリルアミドのホモポリマーを始めと
し、アクリルアミドと共重合し且つ水溶化を損な
わぬ程度のアクリロニトリル、酢酸ビニル、アク
リル酸アルキルエステル、メタクリル酸アルキル
エステル等から選ばれた1種または2種以上を共
重合させた水溶性のアクリルアミドのコポリマ
ー、あるいはジメチルアミノエチル、ジエチルア
ミノエチル、ジエチルアミノプロピルのアクリル
酸またはメタクリル酸エステルの単独もしくは上
記単量体の1種または2種以上を共重合せしめた
中和水性塩、あるいは上記第三級アミノエステル
を塩化メチル、塩化ベンジルにより第四級化アン
モニウム塩にしたカチオン系水溶性重合体等があ
る。また、こゝで使用されるポリアミン・ポリア
ミドとはすべて水溶化せしめた誘導体であり、水
溶性ポリアミンとはアミンと塩化物の縮合反応に
よつて得られる、例えばエチレンジアミン又はポ
リアルキレンポリアミンとエチレンクロライド、
プロピレンクロライド、又はエピクロルヒドリン
との反応生成物でアミノ基にヒドロキシル基又は
アミド基を含むポリアミン誘導体である。 水溶性ポリアミドとはアジピン酸とジエチレン
トリアミンとの縮合により得た生成物にエピクロ
ルヒドリンを反応させ分子中に水酸基を導入する
かジメチルアミンの添加又はアミン基の中和によ
り第四級アンモニウム塩となした水溶性ポリアミ
ドが用いられる。これらの水溶性ポリマーは、特
に保水剤としての効果を期待されるものでない
が、保水剤の粘度その他取り扱い上の特性を改良
するために添加されるものであり保水剤としての
効果を削減しない程度の量を併用する。 本発明において、上記発明の坑井用セメンチン
グ工法に用いられる保水剤はセメントに対し固形
分換算好ましくは0.01乃至10重量%で、さらに好
ましくは0.1乃至5重量%で用いられる。ここで
添加量が0.01重量%に満たないものであると、保
水剤としての効果が充分に発揮できず、10重量%
を越えるとその量に応じて効果が出ず経済的にも
メリツトがないだけでなく添加量が余りにも多く
なるとセメントの固化した場合の圧縮強度等の特
性が悪くなり、もろいセメント固化物しか得られ
なくなる。 本発明で使用される保水剤は従来からセメント
スラリー組成物に使用されている速硬剤、遅硬
剤、低比重添加剤、高比重添加剤、分散剤などと
支障なく併用でき、従来のセメントスラリー組成
物のうち保水剤のみを変更することにより以下に
述べる様な優れた効果をセメントスラリー組成物
に与え坑井セメンチング工法の格段の向上をもた
らすのである。 本発明で用いられるセメントにはポルトランド
セメント、高炉セメント、シリカセメント、アル
ミナセメント、鉄ポルトランドセメント、ソリジ
ツト、あるいはケイ酸カルシウム等の他、その
他、坑井において使用されるすべてのセメントに
適用できる。 本発明に用いられる保水剤は従来の保水剤に比
べて次のような点で優れた利点を有している。 (1) 清水や海水に対し、溶解性が良好である。 (2) 少量の添加量で優れた脱水減少効果がある。 (3) 耐熱性に優れているとともに低温度から高温
度までの広範囲の温度領域に使用できる。 (4) 分散剤と併用することによりセメントスラリ
ーのコンシステンシー(粘度)が低下し、流体
が容易に乱流型となるセメントスラリーに調整
することができる。 (5) スラリー比重の調整が容易である。 (6) 取扱いが容易である。 次に実施例において本発明を詳細に説明する。 実施例 1 ポルトランド系油井用クラスGセメント100重
量部(以下部)、清水42部と分散剤ナフタレンス
ルホン酸系分散剤(日本乳化剤社;商品名エスコ
ール)0.5部をミキサーにて混合し、これに本発
明の保水剤Aとしてポリエチレンイミン(PEI)
(固形分30%で25℃粘度1480cps)92重量%に対
して、エチレンジアミンテトラ4酢酸ソーダ
(EDTA−4Na)8重量%より成る配合物(固形
分30%、PH11.3 25℃粘度1400cps)を有姿で
1.0、2.0、3.0、4.0部添加した場合、および保水
剤無添加の場合(比較例1)について、40℃、70
℃、101℃、133℃の温度下に於ける總脱水量を測
定した。結果を表−1に示す。なお、この試験に
おいてスラリーの硬化を防止するためにリグニン
スルホン酸系遅硬剤(米国;ハリバートン社商品
名、HR−12)を0.5部各試験スラリーに添加し
た。
The present invention relates to cementing methods for wells, such as casing cementing, squeeze cementing, liner cementing, and reclamation cementing in drilling methods. In order to obtain sufficiently satisfactory results in these cementing methods in excavation methods, various additives have been conventionally used in cement slurry compositions for cementing.
These additives include cement fast hardening agents, cement slow hardening agents, low specific gravity additives, high specific gravity additives, cement dispersants, dispersing and slow hardening agents, and water retention agents (dehydration reducing agents).
There are different ways to use them depending on the purpose. Then, depending on the wellbore conditions, these additives are appropriately combined to form a cement slurry composition that is most suitable for the wellbore conditions and used for cementing. The present invention provides a cementing method for wells using a cement slurry composition containing polyethyleneimine, a neutralized aqueous salt thereof, or a water retention agent consisting of polyethyleneimine and a sequestering agent. The recent cementing method for wells involves lowering a casing pipe to a predetermined depth within the well, passing it from the ground into the casing pipe, and applying cement slurry (with various additives to cement and water) into the annular gap between the casing pipe and the stratum. The annular cavity is filled with cement slurry starting from the bottom of the wellbore, and the hardened cement slurry fixes the casing pipe in the wellbore to form the inner wall of the wellbore. It protects the Known water retention agents conventionally used in the formulation of cement slurry include bentonite,
Hydroxyethyl cellulose (HEC), etc. Such water retention agents generally have poor heat resistance, and when used in wells with high temperatures, the water retention effect decreases, the amount of water removed during construction increases, and it deteriorates over time. In this case, the quality of the cement slurry changes, that is, its fluidity is impaired, so that satisfactory and complete cementing cannot be achieved. Furthermore, when making cement slurry by dissolving cement in water, the viscosity of the cement slurry increases more than necessary due to the addition of these water retention agents, making it difficult to obtain slurry properties with desired flow characteristics. There is. Therefore, these conventional water retention agents cannot achieve the desired performance in terms of cement slurry properties, and cementing, especially when used in wells with high temperatures, ends in failure, making subsequent boring impossible. In other words, the quality of the water retention agent used during cementing has a significant influence on the success or failure of the well, so water retention is necessary to obtain stable slurry properties that do not change significantly depending on the conditions in the well. There is a strong need to improve the quality of these agents. The present inventors conducted research to improve the water retention agent that has a particularly important influence on the cement slurry composition used in the cementing method as described above, and as a result, discovered a new water retention agent, and developed an in-well cementing method using the same. This led to the invention of That is, the water retention agent used in the present invention is composed of polyethyleneimine or a neutralized aqueous salt thereof, or this and a sequestering agent. This water retention agent is also compatible with polyamines.
A mixture of polyamide, tertiary amine salt polymer, quaternary ammonium salt polymer, etc. can also be used. Polyethyleneimine is obtained by polymerizing ethyleneimine with an acid catalyst such as carbon dioxide, hydrochloric acid, hydrobromic acid, p-toluenesulfonic acid, aluminum chloride, or boron tetrafluoride. In the present invention, those produced industrially by such a method can also be used without any particular problem. Characteristics of the polyethyleneimine used: solid content 30
% aqueous solution viscosity (Brutskfield viscometer 25
℃, 60 rpm), the viscosity range suitable for the water retention agent used in the method of the present invention is 400 to 60 rpm.
It is about 3000 cps, and the more preferable range is about 800 to 2000 cps. When the viscosity of polyethyleneimine is less than 400 cps, the fluidity of the cement mixture is good, but the water retention property tends to be poor, and when it exceeds 3000 cps, good water retention property is obtained, but on the other hand, cement slurry composition The fluidity of the cement is impaired and handling becomes complicated as a cementing method. The neutralized aqueous salt of polyethyleneimine is one that has been neutralized with a neutralizing agent that is compatible with polyethyleneimine. The pH of an aqueous solution of polyethyleneimine itself is usually 10 to 11, and common examples of neutralizing agents used in this case include known inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, as well as acetic acid, oxalic acid,
It is an aqueous salt obtained by neutralizing polyethyleneimine with an appropriate amount of one or more acids selected from commonly known organic acids such as tartaric acid and benzoic acid. Other neutralizing agents are not limited to the above-mentioned inorganic acids and organic acids, but any water-soluble neutralizing agent that is compatible with polyethyleneimine can be used. The pH of the neutralized aqueous salt of polyethyleneimine is preferably 4 or higher, preferably 5 or higher. As mentioned above, the water retention agent used in the in-well cementing method of the present invention is composed of polyethyleneimine or its neutralized aqueous salt, or this and a metal ion sequestering agent. As agents, there are generally known agents that have the ability to bind to metal ions and are effective in inactivating the ions, and agents that have the ability to form water-soluble metal complex salts. Representative examples include ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediamine N・N′・N″-triacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TIHA), and and other similar compounds thereof.Also, nitrilotriacetic acid, citric acid, gluconic acid, succinic acid,
tartaric acid, malic acid, dipicolinic acid, iminodiic acid,
and other commonly known sequestering agents such as glutamic acid and their salts. Among the various metal ion sequestering agents mentioned above, oxycarboxylic acids such as citric acid and tartaric acid are already known as additives for the purpose of water retention in cement slurry compositions. When these metal ion sequestering agents are used alone, they have various disadvantages and cannot achieve sufficient effects for the purpose of the present invention, but when used in combination with polyethyleneimine etc., they are extremely effective. The water retention effect is significantly improved. The usage ratio of these metal ion sequestering agents, that is, the ratio of polyethyleneimine to metal ion sequestering agent, is preferably in the range of 100:0.5 to 20 parts by weight (solid content weight ratio), and more preferably in the range of 100:2 to 15 parts by weight. . If the compounding ratio of the sequestering agent is less than 0.5, it is difficult to see an improvement in the water retention effect when used in combination.
If it exceeds 20, it will have a negative effect on the strength of the cement mixture after hardening. When these metal ion sequestering agents are used in combination with polyethyleneimine, they can be added to cement slurry in the form of a pre-mixed mixture of polyethyleneimine (aqueous solution) and solid metal ion sequestering agents or those dissolved in water. Alternatively, the polyethyleneimine and the sequestering agent can be added and blended separately, and the effects of the present invention can be obtained by either method. As mentioned above, the water retention agent of the present invention is composed of polyethyleneimine or a neutralized aqueous salt thereof, or a sequestering agent in combination with polyethyleneimine, but a water-soluble polymer compatible with these can also be used in combination. Examples of compatible water-soluble polymers include polyacrylamide homopolymers, acrylonitrile, vinyl acetate, acrylic acid alkyl esters, methacrylic acid alkyl esters, etc. that can be copolymerized with acrylamide and do not impair water solubility. A water-soluble acrylamide copolymer obtained by copolymerizing one or more selected from the following, or acrylic acid or methacrylic acid ester of dimethylaminoethyl, diethylaminoethyl, diethylaminopropyl alone or one of the above monomers, or There are neutralized aqueous salts obtained by copolymerizing two or more types, and cationic water-soluble polymers obtained by converting the above-mentioned tertiary amino esters into quaternized ammonium salts using methyl chloride or benzyl chloride. The polyamines and polyamides used here are all water-soluble derivatives, and water-soluble polyamines are obtained by the condensation reaction of amines and chlorides, such as ethylene diamine or polyalkylene polyamines and ethylene chloride,
It is a reaction product with propylene chloride or epichlorohydrin, and is a polyamine derivative containing a hydroxyl group or an amide group in the amino group. Water-soluble polyamide is a water-soluble polyamide obtained by reacting epichlorohydrin with the product obtained by condensation of adipic acid and diethylenetriamine to introduce a hydroxyl group into the molecule, or by adding dimethylamine or neutralizing amine groups to form a quaternary ammonium salt. polyamide is used. These water-soluble polymers are not expected to be particularly effective as water-retaining agents, but they are added to improve the viscosity and other handling characteristics of the water-retaining agent, and they are added to an extent that does not reduce the effectiveness of the water-retaining agent. Use in combination with the amount of In the present invention, the water retention agent used in the above-mentioned well cementing method is preferably used in an amount of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, in terms of solid content, based on the cement. If the amount added is less than 0.01% by weight, the effect as a water retention agent cannot be fully demonstrated, and 10% by weight
If it exceeds the amount, it will not be effective depending on the amount and there will be no economic merit.If the amount added is too large, the compressive strength and other properties of the cement will deteriorate, resulting in a brittle solidified cement product. I won't be able to do it. The water retention agent used in the present invention can be used in combination with fast hardening agents, slow hardening agents, low specific gravity additives, high specific gravity additives, dispersants, etc. conventionally used in cement slurry compositions, and can be used in combination with conventional cement slurry compositions. By changing only the water retention agent in the slurry composition, the excellent effects described below can be imparted to the cement slurry composition, resulting in a marked improvement in the well cementing method. The cement used in the present invention includes Portland cement, blast furnace cement, silica cement, alumina cement, iron Portland cement, solid, calcium silicate, and all other cements used in wells. The water retention agent used in the present invention has the following advantages over conventional water retention agents. (1) Good solubility in fresh water and seawater. (2) Excellent dehydration reduction effect even when added in small amounts. (3) It has excellent heat resistance and can be used in a wide temperature range from low to high temperatures. (4) By using it in combination with a dispersant, the consistency (viscosity) of the cement slurry is reduced, and the fluid can be easily adjusted to form a turbulent cement slurry. (5) Adjustment of slurry specific gravity is easy. (6) Easy to handle. Next, the present invention will be explained in detail in Examples. Example 1 100 parts by weight (hereinafter "parts") of class G cement for Portland oil wells, 42 parts of fresh water, and 0.5 part of a naphthalene sulfonic acid dispersant (Nippon Nyukazai Co., Ltd.; trade name: Escor) were mixed in a mixer. Polyethyleneimine (PEI) is used as the water retention agent A of the present invention.
(Solid content 30%, 25℃ viscosity 1480cps) 92% by weight, ethylenediaminetetratetratetraacetic acid soda (EDTA-4Na) 8% by weight (solids content 30%, PH11.3 25℃ viscosity 1400cps) in person
When 1.0, 2.0, 3.0, 4.0 parts were added, and when no water retention agent was added (Comparative Example 1), 40°C, 70
The amount of dehydration was measured at temperatures of 101°C, 133°C. The results are shown in Table-1. In this test, 0.5 parts of a lignin sulfonic acid retardant (trade name, HR-12, manufactured by Halliburton, Inc., USA) was added to each test slurry in order to prevent the slurry from curing.

【表】【table】

【表】 表−1に示すごとく40℃乃至133℃の温度範囲
において本保水剤Aは充分なる脱水減少効果が認
められた。 実施例 2 ポルトランド系油井用クラスGセメント100部
に対し水42部と分散剤エスコール0.5部をミキサ
ーにて混合し、これに保水剤として、保水剤成分
の異なる本発明の保水剤A、B、C、Dまたは従
来品E(ヒドロキシエチルセルローズ;2%水溶
液PH7.1 25℃粘度17cps)を有姿で2.0部添加し
て、60℃および86℃における脱水量を測定した。
その結果を表−2に示す。
[Table] As shown in Table 1, this water retention agent A was found to have a sufficient dehydration reducing effect in the temperature range of 40°C to 133°C. Example 2 100 parts of class G cement for Portland oil wells was mixed with 42 parts of water and 0.5 parts of dispersant Escor in a mixer, and water retention agents A and B of the present invention having different water retention agent components were added to this as a water retention agent. , C, D or conventional product E (hydroxyethyl cellulose; 2% aqueous solution PH7.1, 25°C viscosity 17 cps) was added in the form of 2.0 parts, and the amount of dehydration at 60°C and 86°C was measured.
The results are shown in Table-2.

【表】 実施例 3 保水剤添加によりセメントスラリーが固化した
場合のその圧縮強度について試験した。 ポルトランド系セメント100部に対し清水42部
と分散剤エスコール0.5部をミキサーにて混合
し、これに保水剤Aを有姿で1.0、2.0、3.0、4.0
部添加し、養生固化せしめて、その固体ユニツト
の圧縮強度を測定した。また保水剤無添加(比較
例3)について同様に測定し、その結果を表−3
に示す。
[Table] Example 3 The compressive strength of cement slurry solidified by the addition of a water retention agent was tested. Mix 100 parts of Portland cement with 42 parts of fresh water and 0.5 parts of dispersant Escor in a mixer, and add water retention agent A in the form of 1.0, 2.0, 3.0, 4.0.
After curing and solidifying, the compressive strength of the solid unit was measured. In addition, measurements were made in the same manner without water retention agent added (Comparative Example 3), and the results are shown in Table 3.
Shown below.

【表】 この圧縮強度はケーシングパイプの固定、坑井
の保護に重大な影響をもつため適度の強度が必要
であり、本発明方法はこの圧縮強度への悪影響は
ない。 実施例 4 ポルトランド系坑井用クラスGセメント100部
に対し清水44部と分散剤エスコール0.5部をミキ
サーに混合し、これに保水剤F(保水剤成分PEI
単独、固形分30%水溶液、PH=10.8 25℃粘度
1080cps)を有姿で1.0、2.0、3.0、4.0部添加し、
それぞれの場合についてこのスラリーの見掛粘度
を測定した。なお保水剤無添加(比較例4)につ
いて同様に測定し、その結果を表−4に示す。
[Table] This compressive strength has a significant effect on fixing the casing pipe and protecting the wellbore, so a moderate strength is required, and the method of the present invention has no adverse effect on this compressive strength. Example 4 100 parts of Portland well class G cement, 44 parts of fresh water and 0.5 parts of dispersant Escor were mixed in a mixer, and this was mixed with water retention agent F (water retention agent component PEI).
Single, 30% solids aqueous solution, PH=10.8, viscosity at 25℃
1080cps) was added in the form of 1.0, 2.0, 3.0, 4.0 parts,
The apparent viscosity of the slurry was measured in each case. In addition, measurements were made in the same manner with no water retention agent added (Comparative Example 4), and the results are shown in Table 4.

【表】 表−4のごとく保水剤の添加によつてセメント
スラリーの流動性への悪影響はなく良好な結果を
得た。
[Table] As shown in Table 4, the addition of the water retention agent had no adverse effect on the fluidity of the cement slurry and good results were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンイミンまたはその中和水性塩、
またはこれと金属イオン封鎖剤を保水剤として含
有するセメントスラリー組成物を用いることを特
徴とする坑井用セメンチング工法。
1 polyethyleneimine or its neutralized aqueous salt,
Alternatively, a cementing method for wells is characterized by using a cement slurry composition containing this and a metal ion sequestering agent as a water retention agent.
JP18619680A 1980-12-26 1980-12-26 Cementing method for winze Granted JPS57109885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18619680A JPS57109885A (en) 1980-12-26 1980-12-26 Cementing method for winze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18619680A JPS57109885A (en) 1980-12-26 1980-12-26 Cementing method for winze

Publications (2)

Publication Number Publication Date
JPS57109885A JPS57109885A (en) 1982-07-08
JPS6223993B2 true JPS6223993B2 (en) 1987-05-26

Family

ID=16184058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18619680A Granted JPS57109885A (en) 1980-12-26 1980-12-26 Cementing method for winze

Country Status (1)

Country Link
JP (1) JPS57109885A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569759B1 (en) * 1984-08-30 1987-09-11 Petroles Cie Francaise WATERPROOF CEMENTING PROCESS IN A WELLBORE
GB8423054D0 (en) * 1984-09-12 1984-10-17 Fujisawa Pharmaceutical Co Cement additives
JPH0769703A (en) * 1993-06-29 1995-03-14 Kyokado Eng Co Ltd Hardened cement product and protecting agent applied thereto and protection method
US6190451B1 (en) * 1997-12-08 2001-02-20 Showa Denko Kabushiki Kaisha Admixture of cement composition

Also Published As

Publication number Publication date
JPS57109885A (en) 1982-07-08

Similar Documents

Publication Publication Date Title
US7216707B2 (en) Cement compositions with improved fluid loss characteristics and methods of cementing using such cement compositions
US5536311A (en) Set retarded cement compositions, additives and methods
US7285165B2 (en) Cement compositions comprising set retarder compositions and associated methods
US7947127B2 (en) Cement retarder systems, and retarded cement compositions
EP1213270B1 (en) Well cement fluid loss control additive
EP1319798B1 (en) Sealing subterranean zones
US6715552B2 (en) Well cementing methods and compositions
CA1223014A (en) Matrix control cementing slurry
US4931489A (en) Fluid loss control additives for oil well cementing compositions
US20150007992A1 (en) Use of terpolymers as fluid loss additives in well cementing
US8551240B2 (en) Cement retarder systems, and retarded cement compositions
EP1394353A2 (en) Controlling gas migration during well cementing
BR112014020146B1 (en) use of a carboxylic diamine-diacid salt, drilling process and hydraulic fracture process
US7846876B2 (en) Surfactant composition
JPS61106450A (en) Slow setting hydraulic cement composition
US20040159431A1 (en) Methods and compositions for cementing wells
WO2015042026A1 (en) High temperature stable linear polymers
JPS6223993B2 (en)
CN109575260B (en) Quaternary ammonium salt type concrete anti-mud agent and preparation method thereof
AU614367B2 (en) Fluid loss control additives for oil well cementing compositions
EP0633390A1 (en) Set retarding cement additive
US4933378A (en) Fluid loss control additives for oil well cementing compositions
CA2523086C (en) Biodegradable cement retarder compositions and methods of cementing in a subterranean formation
JPS6090860A (en) Method of preventing quality degradation of low gravity cement for high temperature
EP1397577A2 (en) Low density well cement compositions