JPS62239854A - Electromagnetic launching appartatus - Google Patents

Electromagnetic launching appartatus

Info

Publication number
JPS62239854A
JPS62239854A JP8369086A JP8369086A JPS62239854A JP S62239854 A JPS62239854 A JP S62239854A JP 8369086 A JP8369086 A JP 8369086A JP 8369086 A JP8369086 A JP 8369086A JP S62239854 A JPS62239854 A JP S62239854A
Authority
JP
Japan
Prior art keywords
power supply
projectile
electromagnetic
coil
rails
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8369086A
Other languages
Japanese (ja)
Other versions
JPH0423509B2 (en
Inventor
Hiroe Yamamoto
山本 広衛
Naoki Maki
牧 直樹
Hiroshi Tomeoku
留奥 寛
Kiyoshi Yamaguchi
潔 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8369086A priority Critical patent/JPS62239854A/en
Publication of JPS62239854A publication Critical patent/JPS62239854A/en
Publication of JPH0423509B2 publication Critical patent/JPH0423509B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve continuous launching function, by arranging excitation coils generating a magnetic field orthogonal to a current flowing from a first feeding rails to a second feeding rails. CONSTITUTION:A cyindrical launching 13 fitting a launching projectile 10 is formed by providing an insulation unit 14, with a first feeding rails 15a and a second feeding rails 15b in parallel with the rails 15a. On the periphery of a cylindrical frame 16, a pair of saddle-formed excitation coils 17 are arranged. On the outer periphery of its assembly unit, the peripheral surface is fixed with an insulation bind 20, and on its outer periphery, an external cylinder 21 is fitted, and the whole unit is formed to be the launching cylinder 22 of double cylinder structure. The promotion and the acceleration of the launching projectile 10 is executed by a great current power source 3 and an excitation power circuit 9 different from the power source 3. Then, by an electromagnetic force due to a relative action between current flowing to the projectile 10 and a magnetic field, the projectile 10 is driven and accelerated, and so an extremely high launching acceleration can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電磁発射装置に係り、特に発射体の加速発射に
好適な給電レールと磁場発生励磁コイルとを具備した電
磁発射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electromagnetic launcher, and more particularly to an electromagnetic launcher equipped with a power supply rail and a magnetic field generating excitation coil suitable for accelerated launch of a projectile.

(従来の技術) 電磁発射装置は、高圧力発生手段あるいは飛翔体発射手
段として知られている。
(Prior Art) Electromagnetic launch devices are known as high pressure generation means or projectile launch means.

従来、この桟の電磁発射装置には、磁気浮上車両に用い
られていろような、1司期リニアモータ式の同軸形7I
O速器と,2本の平行な銅製レールの間に発射体を配電
し、この2本のレールおよび発射体を電気的に結合して
電流を流すことにより、発射体をレールに沿って推進さ
せろ、即ち、発射体に直接給電し、電磁力によって発射
するレール通電式の電磁発射ifl($1!I昭60ー
129832号、特頭昭60ー74273号など)とが
ある。
Conventionally, the electromagnetic firing device of this crosspiece was a coaxial type 7I with a single stage linear motor, such as those used in magnetically levitated vehicles.
The projectile is propelled along the rails by distributing power between the O-speed device and two parallel copper rails, electrically coupling these two rails and the projectile, and passing a current. In other words, there is a rail-energized type electromagnetic launch ifl ($1! I No. 1986-129832, Tokuto No. 74273 Sho 60-60, etc.) that directly supplies power to the projectile and fires it using electromagnetic force.

レール通電式電磁発射装置の加速発射方法としては、大
電流を流す電源回路の切換操作によるもの、および複数
個の給電レールを電気的に接続して強磁場を得る、給電
レールの配列構造による方法等が考えられるが、これら
の1合的な加速発射方法の構成として関連するものには
、例えば米国特許第4347463号が挙げられる。
Accelerated firing methods for rail-energized electromagnetic launchers include switching operations of power supply circuits that flow large currents, and methods using a power supply rail arrangement structure that electrically connects multiple power supply rails to obtain a strong magnetic field. For example, U.S. Pat. No. 4,347,463 can be cited as a related configuration of a combined accelerated firing method.

さらに、発射の加速度を増強する手法として、第11図
に示したように、発射体lOと直列接続された一対の給
電レールla,lbにより、または前記一対の給電レー
ルla,lbの背後に、磁界を増大させる補助レールl
m’,lb’を前記給電レールに平行して備え、かつこ
れを給電レールと直列接続し、図中に矢印で示したよう
に、給電レールの電流と同方向に電流を流すことによっ
て、発射体の加速発射を行っていた。
Furthermore, as a method of increasing the acceleration of launch, as shown in FIG. Auxiliary rail to increase magnetic field
m' and lb' are provided in parallel to the power supply rail, and are connected in series with the power supply rail, and as shown by the arrow in the figure, by flowing a current in the same direction as the current in the power supply rail, the firing can be carried out. His body was firing at an accelerated rate.

(発明が解決しようとする問題点) 前述のような、給電レールと補助レールを備えた二段レ
ール配列構造のものを、円筒形構造の発射装置として構
成すると、給電レールと補助レール間の絶縁確保と こ
れらのレールの固定強化の面から大型化することは避け
られず、小型軽量を維持しながら機能向上8図ることが
非常に困難である。
(Problems to be Solved by the Invention) When a two-tiered rail arrangement structure including a power supply rail and an auxiliary rail as described above is constructed as a cylindrical structure launcher, the insulation between the power supply rail and the auxiliary rail becomes In terms of securing and strengthening the fixation of these rails, it is unavoidable to increase the size, and it is extremely difficult to improve functionality8 while maintaining a compact size and light weight.

また、これ以外の手段で加速Ifを増大させるには・直
接給電用の電源容量の増加が必要となるが、これには電
源を含む装置全体が大型化する問題、また給電レールの
滑走面損傷が著しく、連続発射機能を低下させろ問題が
あり、装置全体の改善対策が必要であった。
In addition, to increase the acceleration If by other means, it is necessary to increase the power supply capacity for direct power supply, but this has the problem of increasing the size of the entire device including the power supply, and damage to the running surface of the power supply rail. There was a problem that the continuous firing function deteriorated significantly, and measures were needed to improve the entire device.

本発明は以上の点VC鑑みてなされたもので、その目的
とするところは、給電レールからの直接給電発射体を、
給電レールから発射体に流れろ電流方向κ対して、直角
方向の磁場と前記電流との電磁誘導作用で連続して加速
発射させることのできる電磁発II4i&ltを提供す
ることにある。
The present invention has been made in view of the above-mentioned VC points, and its purpose is to provide a direct power feeding projectile from a power feeding rail.
The object of the present invention is to provide an electromagnetic generator II4i&lt which can be continuously accelerated and launched by the electromagnetic induction effect of the current and a magnetic field perpendicular to the current direction κ flowing from the power supply rail to the projectile.

(問題点を解決するための手段) 上記目的は、前記第1給電レールから発射体を介して第
2給電レールに流れる電流に対して、直角方向の磁場を
発生する励磁コイルを設け、前記発射体に流れる電流と
磁場との相互作用(フレミングの左手の法則)によるm
s力で、前記発射体を駆動・加速することによって達成
される。
(Means for solving the problem) The above object is to provide an excitation coil that generates a magnetic field in a direction perpendicular to the current flowing from the first power supply rail through the projectile to the second power supply rail, and m due to the interaction between the current flowing through the body and the magnetic field (Fleming's left hand rule)
This is achieved by driving and accelerating the projectile with an s force.

なお、前記励磁コイルは直接給電回路に直列に挿入され
るインダクターで兼用することもでき、また超電導材料
で構成することもできる。
Note that the excitation coil can also be used as an inductor that is directly inserted in series with the power supply circuit, or can be made of a superconducting material.

(作 用) 以上のように、第1給電レールから発射体を介して第2
給電レールに流れる電流方向に対して、直角磁場を発生
する励磁コイルを、前記発射体を挾むように平行配設し
、前記発射体に流れる電流と磁場との相互作用による電
磁力で、前記発射体を駆動、加速するので、給電レール
の電流による磁界と発射体に流れろ電流との相互作用の
みによって加速発射する場合に比較して格段に大きい発
射加速度を得ることができる。
(Function) As described above, the power is transferred from the first power supply rail to the second power supply via the projectile.
An excitation coil that generates a magnetic field perpendicular to the direction of the current flowing through the power supply rail is arranged in parallel to sandwich the projectile, and the electromagnetic force generated by the interaction between the current flowing through the projectile and the magnetic field causes the projectile to be Since the projectile is driven and accelerated, it is possible to obtain a much larger launch acceleration compared to the case where the projectile is accelerated and launched only by the interaction between the magnetic field caused by the current in the power supply rail and the current flowing through the projectile.

一方、給電レールに流れる電流を減少することができる
ので、レールの滑走面を損傷させて連続発射機能を低下
させることなく、発射体を低電流給電で、初期起動発射
以上に加速発射でき、また、装置の小型化と機能向上を
図ることができろ。
On the other hand, since the current flowing through the power supply rail can be reduced, the projectile can be launched at a higher rate than the initial launch launch with a low current supply without damaging the running surface of the rail and reducing the continuous launch function. , it is possible to miniaturize the device and improve its functionality.

(実 施例) 以下、本発明の実施例を図に沿って詳細に説明する。ま
ず本発明の動作原理を第1図に示す。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. First, the principle of operation of the present invention is shown in FIG.

第1図において、本発明の電磁発射装置は、2本の平行
な銅製レールla、lbと励磁コイル2a、2bを備え
ている。
In FIG. 1, the electromagnetic emitting device of the present invention comprises two parallel copper rails la, lb and excitation coils 2a, 2b.

銅製レールla、lbには大型流電#3、電気エネルギ
ーを一時貯蔵するインダクター4、電源の開閉動作をす
るスイッチ5等が直列に接続された主電源回路6が接続
されている。
A main power circuit 6 is connected to the copper rails la and lb, in which a large current #3, an inductor 4 for temporarily storing electrical energy, a switch 5 for opening and closing the power supply, etc. are connected in series.

励磁コイル2a、2bには、主電源回路60大電流電源
3とは別の電@7を有し、開閉スイッチ8を持った励磁
電源回路9が接続されている。また発射体10を発射さ
せろ発射孔11は、前記銅製レールla、lbと励磁コ
イル2a、2bを配設している絶縁体12で筒状(1%
に円筒状)Ic形成される。
An excitation power supply circuit 9 having an electric power source 7 separate from the main power supply circuit 60 and the large current power supply 3 and having an on/off switch 8 is connected to the excitation coils 2a and 2b. Further, the firing hole 11 for firing the projectile 10 is formed into a cylindrical shape (1%
cylindrical) Ic is formed.

以上のように構成した電磁発射装置の動作時には、まず
主電源回路6のスイッチ5を投入し、銅製レールla、
lbを介して発射体10に電流11を通電する。電流1
1 によって発射体10の位置にできる磁界と、電流■
l の相互作用により発射体10に推力(フレミングの
左手の法則に基づく電磁力)Fが働き1発射体10が発
射される。
When operating the electromagnetic emitting device configured as described above, first turn on the switch 5 of the main power circuit 6, and then connect the copper rails la,
A current 11 is applied to the projectile 10 via lb. current 1
The magnetic field created at the position of the projectile 10 by 1 and the current ■
Due to the interaction of 1, a thrust (electromagnetic force based on Fleming's left-hand rule) F acts on the projectile 10, and one projectile 10 is launched.

これと同時に、さらに励磁電源回路9の開閉スイッチ8
8投入して励磁コイル2m 、2bを励磁すると、前記
銅製レールla、lbから発射体10に流れる電流Il
 によって生ずる磁界と同方向の磁界Bが発生する。
At the same time, the on/off switch 8 of the excitation power supply circuit 9
8 and excite the excitation coils 2m and 2b, a current Il flows from the copper rails la and lb to the projectile 10.
A magnetic field B is generated in the same direction as the magnetic field generated by .

これによって発射体10には、銅製レール1 & rl
bからの直接給電と同一方向に、推力Fが重畳されて働
くので、発射体100発射時の加速が増強される。
This allows the projectile 10 to have copper rails 1 & rl
Since the thrust force F acts in a superimposed manner in the same direction as the direct power supply from b, the acceleration when the projectile 100 is launched is enhanced.

以上のように、直接給電の鋼製レールla+1bと間接
給電の励磁コイル2a、2bとを備えた電磁発射装置で
は、主電源回路6の直接給電による推力と励磁電源回路
9の間接給電による推力を加算した総合作用で発射でき
る。
As described above, in the electromagnetic launch device equipped with the steel rail la+1b for direct power supply and the excitation coils 2a and 2b for indirect power supply, the thrust due to the direct power supply from the main power supply circuit 6 and the thrust due to the indirect power supply from the excitation power supply circuit 9 are combined. It can be fired by adding the total effect.

すなわち、本発明によれば、主電源回路6の電#、38
大型化することなく、比較的低電流による初期起動発射
体を、間接給電による磁界の強化で、より以上に加速発
射できるので、滑走面損傷もなく、効果的な電磁発射装
置を提供することができる。
That is, according to the present invention, the power supply number, 38, of the main power supply circuit 6 is
It is possible to provide an effective electromagnetic launch device without increasing the size of the projectile, since it is possible to launch an initially launched projectile with a relatively low current at higher speeds by strengthening the magnetic field through indirect power supply, without causing damage to the runway surface. can.

上記では、鋼製レールla、lbに直接給電する主1!
源回路6と、間接給電となる励磁電源回路による励磁コ
イル2a、2bとを配設してなる電磁発射装置の動作原
理について説明してきたが、このような励磁コイル2a
+2bは任意の手法で構成されることができる。
In the above, the main 1! which directly supplies power to the steel rails la, lb!
The operating principle of an electromagnetic emitting device including a source circuit 6 and excitation coils 2a and 2b provided by an excitation power supply circuit that provides indirect power supply has been described.
+2b can be configured in any manner.

すなわち、前記励磁コイルは、鞍形状や平形コイル、又
は大コイル、中コイル、小コイルで形成した集中巻コイ
ル等に成形され、各々の鞍形コイルや平形コイル、集中
巻コイルを、銅製レール1m、1bを収納した(円)簡
型枠、もしくは太鼓状型枠に配役、固定することによっ
て構成される。
That is, the excitation coil is formed into a saddle-shaped coil, a flat coil, or a concentrated winding coil formed of large, medium, and small coils, and each saddle-shaped coil, flat coil, and concentrated winding coil is connected to a copper rail of 1 m. , 1b are placed in a (circular) simple frame or a drum-shaped frame.

以下具体的な実施例を図に沿って説明する。第2図、第
3図に本発明の第1実施例を示す。
Specific examples will be described below with reference to the drawings. A first embodiment of the present invention is shown in FIGS. 2 and 3.

第2図、第3図において、発射体10を装着する円筒発
射孔13は、絶縁体14に第1給電レール 15aおよ
びこれと平行な第2給電レール15bを配設して形成し
ている。そして、この第1給電レール 15a、12給
電レール15bと絶縁体14を非磁性金属、例えばステ
ンレス製の円筒型枠16に収納固定している。
In FIGS. 2 and 3, the cylindrical firing hole 13 into which the projectile 10 is mounted is formed by disposing a first power supply rail 15a and a second power supply rail 15b parallel to the first power supply rail 15a in the insulator 14. The first power supply rail 15a, the second power supply rail 15b and the insulator 14 are housed and fixed in a cylindrical frame 16 made of non-magnetic metal, for example stainless steel.

この円筒を枠16の周囲に、第1給電レール15a、第
2給電レール15b のレール幅中心方向O−Oから周
方向に9Of移動したO−θの位置に、コイル幅Hのコ
イル幅中心位置がくるように、1対の鞍形励磁コイル1
7を配設している。
This cylinder is moved around the frame 16 by 9Of in the circumferential direction from the rail width center direction O-O of the first power supply rail 15a and the second power supply rail 15b, and is moved to the coil width center position of the coil width H. A pair of saddle-shaped excitation coils 1
7 are installed.

円筒型枠16に配設された鞍形励磁コイル17は、ボー
ルスペーサ18と極間スペーサ19によって強固に固定
される。これらの組立体の外周には、さらにセラミック
絶縁した絶縁バインド20で局面固定を施し、その外周
に外筒218装着して全体を二重円筒構造の発射筒22
に構成している。
A saddle-shaped excitation coil 17 disposed in the cylindrical formwork 16 is firmly fixed by a ball spacer 18 and an interpolar spacer 19. The outer periphery of these assemblies is further fixed with a ceramic insulated insulating binder 20, and an outer cylinder 218 is attached to the outer periphery of the assembly to form a launch cylinder 22 with a double cylindrical structure.
It is composed of

発射体lOの推進は、大電流電源3、インダクター4等
を有する主電源回#86のスイッチ5の閉操作と、前記
大電流電源3とは別の励磁電源回路9のスイッチ8の閉
操作によって行なわれ、所望の加速発射が実現されるよ
うになっている。
The projectile IO is propelled by closing the switch 5 of the main power supply circuit #86, which includes the large current power supply 3, the inductor 4, etc., and by closing the switch 8 of the excitation power supply circuit 9, which is separate from the large current power supply 3. The desired accelerated firing is achieved.

以上の第1実施例では、前記第1給電レール15a1 
第2給電レール15b、および第1.第2給電レール 
15a 、 15b %l!iil定している絶縁体1
4等を収納している内筒16の周部に、鞍形励磁コイル
17を配置していた。
In the above first embodiment, the first power supply rail 15a1
the second power supply rail 15b, and the first power supply rail 15b; 2nd power supply rail
15a, 15b%l! iil constant insulator 1
A saddle-shaped excitation coil 17 was disposed around the inner cylinder 16 that accommodated the fourth and other components.

ところが、円筒状の型枠に鞍形励磁コイル17を配設す
ると、円筒発射孔13と鞍形励磁コイル17の間の間隙
が大きくなり、有効磁場が低下する心配がある。また円
筒状の面に鞍形励磁コイル17を配設することは、製作
作業の面からみても、初期固定が固型で能率が悪いとい
う問題がある。
However, when the saddle-shaped excitation coil 17 is arranged in a cylindrical formwork, the gap between the cylindrical firing hole 13 and the saddle-shaped excitation coil 17 becomes large, and there is a concern that the effective magnetic field will decrease. Further, when the saddle-shaped excitation coil 17 is disposed on a cylindrical surface, there is a problem in terms of manufacturing work that the initial fixation is solid, which is inefficient.

このような問題を解決し、前記実施例と同等の効果が得
られ、さらに製作作業能率向上の図れる配設構造として
、前記第1袷電レール15a 、第2給電レール 15
bと一体化した絶縁体14等を、太鼓状の型枠に収納し
、その平坦部に励磁コイルを配設することが考えられる
As an arrangement structure that can solve such problems, obtain the same effect as the above embodiment, and further improve production work efficiency, the first power supply rail 15a and the second power supply rail 15 are provided.
It is conceivable to house the insulator 14 etc. integrated with b in a drum-shaped mold, and arrange the excitation coil in the flat part of the mold.

第4図、第5図に本発明の第2実mfllを示す。FIGS. 4 and 5 show a second actual mflll of the present invention.

この第2実施例は、第1給電レール15a、第2給電レ
ール15bと、これ8固定している絶縁体14を、平坦
部23と円弧部24を持った太鼓状型枠25に収納し、
この太鼓状型枠25の平坦部23に平形状に巻回した平
形励磁コイル26を配設したものである。
In this second embodiment, a first power supply rail 15a, a second power supply rail 15b, and an insulator 14 to which they are fixed are housed in a drum-shaped formwork 25 having a flat part 23 and an arc part 24,
A flat excitation coil 26 wound in a flat shape is disposed on the flat portion 23 of the drum-shaped frame 25.

以上のように構成した第2実施例によれば、加速磁界を
発生させる励磁コイルを平形励磁コイル26にしたので
、円筒発射孔13と平形励磁コイル26間の絶縁間隙が
狭くなり、円筒発射孔13に与える磁界発生が強化され
、発射体10は一段と高速に加速発射される。
According to the second embodiment configured as described above, since the excitation coil that generates the accelerating magnetic field is the flat excitation coil 26, the insulation gap between the cylindrical firing hole 13 and the flat excitation coil 26 is narrowed, and the cylindrical firing hole The magnetic field generation applied to the projectile 13 is strengthened, and the projectile 10 is accelerated and launched at a higher speed.

また、平形励磁コイル26が太鼓状型枠25の平坦部2
3に配設されるので、装置としての組立作業や励磁コイ
ル製作が容易になり、効果的な電磁発射装置tを得るこ
とができろ。この曲、前記太鼓状型枠25に大小コイル
で成形した集中巻励磁コイルを配設しても同様な効果が
得られろことは明らかであろう。
Further, the flat excitation coil 26 is connected to the flat part 2 of the drum-shaped formwork 25.
3, it becomes easy to assemble the device and manufacture the excitation coil, making it possible to obtain an effective electromagnetic emitting device. In this song, it is clear that the same effect can be obtained even if a concentrated winding excitation coil formed of large and small coils is arranged in the drum-shaped frame 25.

第6図、第7図に本発明の第3実施例を示す。A third embodiment of the present invention is shown in FIGS. 6 and 7.

この第3実施例は、前記′@1給電レール15a、第2
給電レール15b、およびこれを埋設固定している絶縁
体14等を収納する型枠25を、前記第2実施例と同じ
太鼓状とし、太鼓状型枠25の平坦部23に、小コイル
27、中コイル28、大コイル29等で形成された集中
巻励磁コイル30を配設し、その集中巻励磁コイル30
を非磁性金属製の固定ガイド31で固定し、その集中巻
励磁コイル300周辺中間部をセラミック絶縁体32で
完全に絶縁し、外筒21に一体収納したものである。
In this third embodiment, the '@1 power supply rail 15a, the second
The formwork 25 that accommodates the power supply rail 15b and the insulator 14 etc. that embeds and fixes it is made into the same drum shape as in the second embodiment, and a small coil 27, A concentrated winding excitation coil 30 formed of a medium coil 28, a large coil 29, etc. is arranged, and the concentrated winding excitation coil 30
is fixed with a fixed guide 31 made of non-magnetic metal, and the intermediate part around the concentrated winding excitation coil 300 is completely insulated with a ceramic insulator 32, and is housed integrally in the outer cylinder 21.

以上のように構成した第3実施例によれば、前記第2実
施例と口様な電気的効果が得られる他、集中巻励磁コイ
ル30が、a作加工性のよい小コイル27、中コイル2
8、大コイル29等の、コイルの大きさく合わせた分割
コイルとして形成されているため、励磁コイルとしての
成形加工性が向上する。
According to the third embodiment configured as described above, in addition to obtaining the same electrical effect as the second embodiment, the concentrated winding excitation coil 30 has a small coil 27 and a medium coil with good workability. 2
8. Since the large coil 29 is formed as a divided coil whose size matches the size of the coil, the moldability as an excitation coil is improved.

すなわち、第2実施例では、励磁コイル26が一体に巻
回されており、かつ前記コイルの給電レール15m 、
15b 方向に沿った寸法が長いために、この部分で巻
線の膨らみを生じ易く、製造上のばらつきに基づく磁界
のばらつきを生じ易いという問題があるが、第3実施例
ではコイルが分割されている上に1各分割コイルが型枠
で固定的に整形されているので、前述のような巻線の膨
らみを生ずることはなく、特性のばらつきを最小に抑え
ることができる。
That is, in the second embodiment, the excitation coil 26 is integrally wound, and the power supply rail 15m of the coil,
Since the dimension along the 15b direction is long, there is a problem that the winding tends to bulge in this part, and the magnetic field tends to vary due to manufacturing variations.However, in the third embodiment, the coil is divided. Furthermore, since each divided coil is fixedly shaped using a mold, the winding does not bulge as described above, and variations in characteristics can be suppressed to a minimum.

この他にもζ励磁コイルが分割形成されているので、コ
イルが断線損傷した時にも、その交換が迅速に、かつ容
易にできるなどの効果がある。
In addition, since the ζ excitation coil is formed in sections, even if the coil is broken or damaged, it can be replaced quickly and easily.

以上に記述した第1〜第3の実施例は、発射体10が滑
走給電される第1給電レール15m 、第2給電レール
15bに大電流を流す主電源回路6と、励磁コイル圧電
流を流す励磁電源回路9とを別個に設けたものであるが
、主電源回路6のインダクター4を励磁コイルに置き換
えても・上記各実施例と同様な効果が得られる。
The first to third embodiments described above have a main power supply circuit 6 that flows a large current to the first power supply rail 15m to which the projectile 10 is glidingly fed, a second power supply rail 15b, and an exciting coil that flows a piezoelectric current. Although the excitation power supply circuit 9 is provided separately, even if the inductor 4 of the main power supply circuit 6 is replaced with an excitation coil, the same effects as in each of the above embodiments can be obtained.

第8図に、インダクタを励磁コイルとして利用した、本
発明の第4実施例を示す。
FIG. 8 shows a fourth embodiment of the present invention in which an inductor is used as an excitation coil.

第4実施例では、第1給電レール15m  と第2給電
レール15bの間に発射体10を装着し、この発射体1
0を挾むようにインダクターコイル35a  、35b
を配設し、インダクターコイル35a  、35bによ
って発生される磁界が、発射体10を流れる電流Isと
さ交するようにしている。
In the fourth embodiment, the projectile 10 is mounted between the first power supply rail 15m and the second power supply rail 15b, and this projectile 1
Inductor coils 35a and 35b sandwich 0.
are arranged so that the magnetic field generated by the inductor coils 35a and 35b intersects the current Is flowing through the projectile 10.

そして、第1給電レール15mおよび第2給電レール1
5bとインダクターフィル35m、35bとの直列回路
には、さらに、大電流電源3と開閉スイッチ5を有する
電源回路38が、電気的に直列に接続されている。
Then, the first power supply rail 15m and the second power supply rail 1
5b and the inductor fills 35m, 35b, a power supply circuit 38 having a large current power supply 3 and an on/off switch 5 is electrically connected in series.

以上のように構成された第4実施例では、発射体10を
加速発射させるための磁界発生用励磁コイルを、主電源
回路のエネルギーを一時貯蔵するインダクターで兼用し
たので、第1〜第3実施例における励磁コイル配役に比
較して、励磁電源となる別電源と励磁コイルが不要とな
り、構造が開路化される。
In the fourth embodiment configured as described above, the excitation coil for generating a magnetic field for accelerating the projectile 10 is also used as an inductor that temporarily stores the energy of the main power supply circuit. Compared to the excitation coil arrangement in the example, a separate power source serving as an excitation power source and an excitation coil are not required, and the structure is open-circuited.

のみならず、また、−電源直列接続となるなど、電気的
接続方法も大きく改善される。一方、加速発射に必l!
な磁界発生の効果は前記実施例と同等に維持できる。
In addition, the electrical connection method is also greatly improved, such as by connecting the power source in series. On the other hand, it is a must for accelerated firing!
The effect of magnetic field generation can be maintained at the same level as in the previous embodiment.

電磁発射装置は、前述のように、数万アンペアから数十
万アンペアの大電流を瞬時に通電して発射体を発射させ
る装置であるが、発射体の飛距離を伸ばし、また発射体
の質量増加をはかるためには、より一層の大電流が必要
である。
As mentioned above, an electromagnetic launcher is a device that fires a projectile by instantaneously applying a large current of tens of thousands of amperes to hundreds of thousands of amperes. In order to increase the current, an even larger current is required.

しかし、これにも限界があり、数十万アンペアから数百
万アンペアの大電流を連続して通電すると、給電レール
滑走面の摩耗損傷や給電衝撃によるスパッタ付着によっ
て、装置の発射機能を大幅に低下させる問題が心配され
る。
However, there are limits to this, and if a large current of hundreds of thousands of amperes to millions of amperes is applied continuously, the firing function of the device will be significantly impaired due to wear and tear on the feeding rail sliding surface and adhesion of spatter due to the feeding impact. There are concerns about the problem of deterioration.

以上のような問題を解消し、小電流による直接給電を行
ないながら、発射体の初期起動をより高加速化するため
には、第9図、第10図に示すように、励磁コイルを超
電導線材で巻回した超電導コイルを用いればよい。
In order to solve the above problems and accelerate the initial startup of the projectile while directly supplying power with a small current, as shown in Figures 9 and 10, the excitation coil is made of superconducting wire. A superconducting coil wound with

第9図、第10図は、本発明の第5実施例であり、第6
図および第7図に示した第3実施例の励磁コイルを、超
電導コイルで置換したものに相当する。
9 and 10 show the fifth embodiment of the present invention, and the sixth embodiment
This corresponds to the case where the excitation coil of the third embodiment shown in FIG. 7 and FIG. 7 is replaced with a superconducting coil.

太鼓状型枠25の平坦部23に、超電導励磁コイル37
を内設したヘリウム冷媒タンク38と、真空断熱層39
とを有するコイル容器Zoo j)配設し、太鼓状型枠
25とコイル容器 100を絶縁体32で一体化して外
筒21に収納成形したものである。
A superconducting excitation coil 37 is placed on the flat part 23 of the drum-shaped formwork 25.
Helium refrigerant tank 38 and vacuum insulation layer 39
The drum-shaped formwork 25 and the coil container 100 are integrated with an insulator 32 and housed and molded in the outer cylinder 21.

以上のように構成した第5実施例の電磁発射装置は、第
1給電レールおよび第2給電レールの間に加速磁界を発
生する励磁コイルを、超電導励磁コイルとしているため
、小型軽量の小コイルで大電流通電が可能であり、高磁
界発生が期待できる。
In the electromagnetic launch device of the fifth embodiment configured as described above, the excitation coil that generates the accelerating magnetic field between the first power supply rail and the second power supply rail is a superconducting excitation coil, so a small and lightweight coil can be used. It is possible to carry a large current and can be expected to generate a high magnetic field.

七の結果、小電流直接給電発射体を一段と高磁界で連続
加速発射できるため1発射体のより一層の質量増加と飛
距離の伸長を期待できる。
As a result of 7, it is possible to fire a small current directly-fed projectile with continuous acceleration in an even higher magnetic field, so it is expected that the mass of a single projectile will further increase and the flight distance will be extended.

(発明の効果) 本発明によれば、発射体に大電流を給電する直接給電の
給電レールと、給電レールから発射体に流れる電流に対
して直角方向の8場発生用励磁コイルを備え、直接給電
の電流と間接給電による磁場との総合作用で、発射体を
加速発射するようにしたので、直接給電発射の初期起動
発射体をより高速(加速発射することができる。
(Effects of the Invention) According to the present invention, a power supply rail for direct power supply that supplies a large current to the projectile, and an excitation coil for generating eight fields in a direction perpendicular to the current flowing from the power supply rail to the projectile, Since the projectile is accelerated and launched by the combined effect of the power supply current and the magnetic field generated by indirect power supply, the initial startup projectile of direct power supply launch can be launched at higher speeds (accelerated launch).

また、給電レールを収納する円筒型枠と励磁コイル収納
の外筒を設けた二重円筒構造の発射筒としているので、
電磁力や熱温度上昇による熱膨張による変形防止の強化
を図ることも出来る。
In addition, the launch tube has a double cylindrical structure, with a cylindrical frame that houses the power supply rail and an outer tube that houses the excitation coil.
It is also possible to strengthen the prevention of deformation due to electromagnetic force or thermal expansion due to thermal temperature rise.

この他、磁場発生の励磁コイルをエネルギー貯蔵用のイ
ンダクターと共用することができるので、装置の簡略化
が図れ、価格低減に効果がある。
In addition, since the excitation coil for generating the magnetic field can be used in common with the inductor for energy storage, the device can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電磁発射装置の原理図、第2図は本発
明の第1実施例の一部破断斜視図、第3図は第2図の断
面図、第4図は本発明の第2実施例を示す破断斜視図、
第5図は第4図の断面図、第6図は本発明の第3実施例
を示す破断斜視図、第7図は第6図の断面図、第8図は
本発明の第4実施例を示す電磁発射装置の概略システム
構成図、第9図は本発明の第5実施例を示す破断斜視図
。 第10は第9図の断面図、第11図は従来の電磁発射装
置の1例を示す概略図である。
Fig. 1 is a principle diagram of the electromagnetic emitting device of the present invention, Fig. 2 is a partially cutaway perspective view of the first embodiment of the invention, Fig. 3 is a sectional view of Fig. 2, and Fig. 4 is a diagram of the electromagnetic emitting device of the present invention. A broken perspective view showing a second embodiment,
5 is a sectional view of FIG. 4, FIG. 6 is a broken perspective view showing a third embodiment of the present invention, FIG. 7 is a sectional view of FIG. 6, and FIG. 8 is a fourth embodiment of the present invention. FIG. 9 is a schematic system configuration diagram of an electromagnetic emitting device, and FIG. 9 is a cutaway perspective view showing a fifth embodiment of the present invention. 10 is a sectional view of FIG. 9, and FIG. 11 is a schematic diagram showing an example of a conventional electromagnetic emitting device.

Claims (8)

【特許請求の範囲】[Claims] (1)互いに平行に隔離して配置された第1および第2
給電レールと、前記第1および第2給電レールの間に、
これらとの電気的接触を保って摺動可能なように配置さ
れる発射体と、前記第1および第2給電レールの間に接
続され、これらの給電レールを介して発射体に電流を流
す直接給電用電源と、前記第1および第2給電レールの
間の空間に、前記発射体に流れる電流とほぼ直角方向の
磁場を発生する励磁コイルとを具備したことを特徴とす
る電磁発射装置。
(1) A first and a second space arranged parallel to each other and separated from each other.
between a power supply rail and the first and second power supply rails;
a projectile that is slidably disposed in electrical contact with the projectile; and a direct conductor connected between the first and second power supply rails for passing current through the power supply rails to the projectile; An electromagnetic launcher comprising: a power supply; and an excitation coil that generates a magnetic field in a direction substantially perpendicular to the current flowing through the projectile in a space between the first and second power supply rails.
(2)第1および第2給電レールは、インダクターを介
して直接給電用電源と直列に接続されることを特徴とす
る前記特許請求の範囲第1項記載の電磁発射装置。
(2) The electromagnetic emitting device according to claim 1, wherein the first and second power supply rails are directly connected in series with a power supply for power supply via an inductor.
(3)第1および第2給電レールは、電磁コイルを介し
て直接給電用電源と直列に接続されることを特徴とする
前記特許請求の範囲第1項記載の電磁発射装置。
(3) The electromagnetic emitting device according to claim 1, wherein the first and second power supply rails are directly connected in series with a power supply for power supply via an electromagnetic coil.
(4)電磁コイルは超電導コイルであることを特徴とす
る前記特許請求の範囲第1項ないし第3項のいずれかに
記載の電磁発射装置。
(4) The electromagnetic firing device according to any one of claims 1 to 3, wherein the electromagnetic coil is a superconducting coil.
(5)第1および第2給電レールは絶縁体を介して筒状
型枠内に装填され、励磁コイルは前記筒状型枠の外側に
配置されたことを特徴とする前記特許請求の範囲第1項
ないし第4項のいずれかに記載の電磁発射装置。
(5) The first and second power supply rails are loaded into a cylindrical form via an insulator, and the excitation coil is disposed outside the cylindrical form. The electromagnetic firing device according to any one of Items 1 to 4.
(6)筒状型枠は外筒によってさらに包囲されたことを
特徴とする前記特許請求の範囲第1項ないし第5項のい
ずれかに記載の電磁発射装置。
(6) The electromagnetic emitting device according to any one of claims 1 to 5, wherein the cylindrical form is further surrounded by an outer cylinder.
(7)筒状型枠は、第1および第2給電レールの各中心
線を含む面にほぼ平行な面を有する太鼓状に形成され、
前記平行面上に励磁コイルが配置されたことを特徴とす
る前記特許請求の範囲第5項または第6項記載の電磁発
射装置。
(7) The cylindrical formwork is formed in a drum shape having a surface substantially parallel to a surface including each center line of the first and second power supply rails,
The electromagnetic emitting device according to claim 5 or 6, characterized in that an excitation coil is arranged on the parallel plane.
(8)励磁コイルは、形状がほぼ相似である大、小コイ
ルを組合せて構成されたことを特徴とする前記特許請求
の範囲第1項ないし第7項のいずれかに記載の電磁発射
装置。
(8) The electromagnetic emitting device according to any one of claims 1 to 7, wherein the excitation coil is constructed by combining large and small coils that are substantially similar in shape.
JP8369086A 1986-04-11 1986-04-11 Electromagnetic launching appartatus Granted JPS62239854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8369086A JPS62239854A (en) 1986-04-11 1986-04-11 Electromagnetic launching appartatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8369086A JPS62239854A (en) 1986-04-11 1986-04-11 Electromagnetic launching appartatus

Publications (2)

Publication Number Publication Date
JPS62239854A true JPS62239854A (en) 1987-10-20
JPH0423509B2 JPH0423509B2 (en) 1992-04-22

Family

ID=13809486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8369086A Granted JPS62239854A (en) 1986-04-11 1986-04-11 Electromagnetic launching appartatus

Country Status (1)

Country Link
JP (1) JPS62239854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117880A (en) * 2020-09-28 2020-12-22 中国科学院电工研究所 Secondary saddle winding and primary solenoid coil series excitation linear electromagnetic propulsion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148398A (en) * 1980-04-03 1983-09-03 ウエスチングハウス エレクトリック コ−ポレ−ション Electromagnetic projectile firing machine
US4449441A (en) * 1982-03-09 1984-05-22 Westinghouse Electric Corp. Electromagnetic projectile launcher with magnetic spin stabilization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148398A (en) * 1980-04-03 1983-09-03 ウエスチングハウス エレクトリック コ−ポレ−ション Electromagnetic projectile firing machine
US4449441A (en) * 1982-03-09 1984-05-22 Westinghouse Electric Corp. Electromagnetic projectile launcher with magnetic spin stabilization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117880A (en) * 2020-09-28 2020-12-22 中国科学院电工研究所 Secondary saddle winding and primary solenoid coil series excitation linear electromagnetic propulsion device

Also Published As

Publication number Publication date
JPH0423509B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US4796511A (en) Electromagnetic projectile launching system
US5483863A (en) Electromagnetic launcher with advanced rail and barrel design
US4347463A (en) Electromagnetic projectile launcher with self-augmenting rails
US2870675A (en) Acceleration amplifier
KR101075218B1 (en) Spacecraft thruster
US8302584B1 (en) Rail gun launcher
US7164227B2 (en) Hall effect thruster with anode having magnetic field barrier
US5294850A (en) Electromagnetic accelerator in flat coil arrangement
US10173791B2 (en) System and method for magnetically launching projectiles or spacecraft
US4503349A (en) Self-excited high current DC electrical pulse generator
Kaye et al. Applications of coilgun electromagnetic propulsion technology
US7077047B2 (en) Electromagnetic propulsion devices
US7808353B1 (en) Coil system for plasmoid thruster
US6548809B2 (en) Electromagnetic device for production of cold neutral atoms
GB2206677A (en) Electromagnetic gun
CN108387138A (en) Combined type asynchronous induction electromagnetic coil transmitter and its ignition method
JPS62239854A (en) Electromagnetic launching appartatus
Mohamed et al. Overlapped electromagnetic coilgun for low speed projectiles
US3308621A (en) Oscillating-electron ion engine
EP0331446B1 (en) Electromagnetic launching apparatus for reducing the chances of parasitic voltage breakdown between the rails during a projectile launch
McNab The STAR railgun concept
US4944212A (en) Magnetic advanced hybrid rail gun
US5610482A (en) Gyrotron and method of improving its efficiency
Musolino et al. 3-D field analysis in tubular induction launchers with armature transverse motion
Pratap et al. Future trends for compulsators driving railguns