JPS62239490A - Magnetic memory device - Google Patents

Magnetic memory device

Info

Publication number
JPS62239490A
JPS62239490A JP61082038A JP8203886A JPS62239490A JP S62239490 A JPS62239490 A JP S62239490A JP 61082038 A JP61082038 A JP 61082038A JP 8203886 A JP8203886 A JP 8203886A JP S62239490 A JPS62239490 A JP S62239490A
Authority
JP
Japan
Prior art keywords
thin film
vbl
magnetic thin
magnetic
tunnel current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61082038A
Other languages
Japanese (ja)
Inventor
Hitoshi Ikeda
池田 整
Toshiyuki Aida
会田 敏之
Makoto Suzuki
良 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61082038A priority Critical patent/JPS62239490A/en
Publication of JPS62239490A publication Critical patent/JPS62239490A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect independently a VBL one by one by discriminating the presence and absence of an information carrier with a tunnel current or a discharging current to occur by impressing the voltage between the device close to a prescribed information reading part in a magnetic thin film and the magnetic thin film and reading information. CONSTITUTION:A needle-shaped electrode 8 sharpened sharply from the external part of a magnetic thin film 10 to an information reading part 3 of one edge of a major line 2 is made close to the magnetic thin film 10 without limit, the voltage of about several volts and several tens of the volt is impressed between both, and then, a 'tunnel current' occurs. The size of the tunnel current, when an impressed voltage is constant, is changed by depending upon the work function of an inter-electrode distance, an electrode material and a magnetic thin film material. Thus, the difference in the work function due to the presence and absence of a vertical Bloch line (VBL) pair 6 and the lattice distortion through magnetostriction is sensitively reflected at the difference of the tunnel current and the presence and absence of the VBL pair 6 can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性メモリに係わり、特に極めて高密度、大容
量な磁性メモリ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic memory, and particularly to an extremely high-density, large-capacity magnetic memory device.

〔従来の技術〕[Conventional technology]

最近、磁気バブル用材料を用いた大容量メモリ装置の候
補として、磁壁の内部に存在する垂直プロッホラインの
対(VBL対)を情報担体としたプロッホラインメモリ
装置が注目されている。詳細は1例えばアイ・イー・イ
ー・イー、トランザクション オン マグネチックス、
エムエージ−19、(5)(1983年)第1838頁
から第1840頁(I E E E 、 Trans、
 Magnetics+MAG19.(1983)pp
、1838〜1840において、論じられている。すな
わち、該プロッホラインメモリでは書込みは、縞状磁区
端部にパルス状磁界を印加して短時間に磁区端部を収縮
させることによって行なわれる。一方、読出しは磁区端
部を引き伸ばし、VBL対を含む部分を切断して磁気バ
ブルとした。このとき、VBL対はバブルに残ると同時
に、もとの縞状磁置端部に複製される。その後分断した
バブルを従来のバブル技術に従って磁界または電流駆動
方式で検出器まで導き、情報の有無をバブルの有無で判
別していた。通常、バブルの有無で磁気抵抗効果が変わ
るため、検出線に一定電流を通電しておき、その両端の
電圧をモニターすることによってバブルの有無を知る方
法がとられていた。
Recently, as a candidate for a large-capacity memory device using a magnetic bubble material, a Ploch line memory device in which a pair of vertical Ploch lines (VBL pair) existing inside a domain wall is used as an information carrier has been attracting attention. For details, see 1. For example, I.E.E., Transaction on Magnetics,
MAGE-19, (5) (1983) pp. 1838-1840 (IEE, Trans.
Magnetics+MAG19. (1983) pp.
, 1838-1840. That is, in the Ploch line memory, writing is performed by applying a pulsed magnetic field to the ends of striped magnetic domains to cause the ends of the magnetic domains to contract in a short period of time. On the other hand, for reading, the end of the magnetic domain was stretched and the portion containing the VBL pair was cut to form a magnetic bubble. At this time, the VBL pair remains in the bubble and at the same time is replicated to the original striped magnetic field edge. The separated bubbles are then guided to a detector using a magnetic field or current drive method according to conventional bubble technology, and the presence or absence of information is determined by the presence or absence of bubbles. Normally, since the magnetoresistive effect changes depending on the presence or absence of bubbles, the presence or absence of bubbles has been determined by passing a constant current through the detection wire and monitoring the voltage across the wire.

情報記憶部であるマイナループを複数の縞状磁区の列で
構成しても読出し部はバブル列でメジャーライン(また
はメージャループ)を構成することになる。また、チッ
プ構成上、メージャループとして縞状磁区を配置し、マ
イナループのVBL対をメージャループに転写して読出
す構成も提案されているが、VBL対を直接読出す方法
については配慮されていなかった。
Even if the minor loop, which is the information storage section, is composed of a plurality of rows of striped magnetic domains, the reading section will consist of a major line (or major loop) using bubble rows. Furthermore, due to the chip configuration, a configuration has been proposed in which a striped magnetic domain is arranged as a major loop and the VBL pair of the minor loop is transferred to the major loop and read out, but no consideration has been given to a method for directly reading out the VBL pair. Ta.

〔発明が解決しようとした問題点〕[Problem that the invention sought to solve]

上記従来技術は、(1)バブルにして読出す場合、バブ
ルとVBL対を共存させるため膜厚を薄くする(例えば
ストライプ磁区幅w=5μmに対して膜厚h=2μm)
必要があり、検出出力を低下しやすい、データ転送速度
がバブル磁区の移動速度もしくは移動度で律速される、
読出し領域のビット密度はVBL対のビット密度に比べ
て約100倍小さく、高密度・大容量比に不利であるな
どの問題があった。一方(2)メジャーループに縞状磁
区を用いる場合には、VBL対を個別に検出する手法が
未開発であるという問題があった。
In the above conventional technology, (1) when reading out bubbles, the film thickness is made thin in order to coexist bubbles and VBL pairs (for example, film thickness h = 2 μm for stripe domain width w = 5 μm);
The data transfer rate is limited by the movement speed or mobility of the bubble magnetic domain, which tends to reduce the detection output.
The bit density of the read area is about 100 times smaller than that of the VBL pair, which is disadvantageous in terms of high density/large capacity ratio. On the other hand, (2) when using striped magnetic domains in the major loop, there is a problem in that a method for individually detecting VBL pairs has not been developed.

本発明の主なる目的は、特に(2)の構成において有効
なVBL対検出法を提供することにある。
The main object of the present invention is to provide a VBL pair detection method that is particularly effective in the configuration (2).

この手法は(1)もしくは通常の磁気バブルメモリの検
出に用いうることはいうまでもない。
It goes without saying that this method can be used to detect (1) or a normal magnetic bubble memory.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、近年、薄膜表面を一原子レベルの分解能で
amが可能な手法として注目を集めている走査型トンネ
ル電子顕微鏡(S canningTanneling
 Micloscpe ; S T M )法の基本と
もなっている二物質問のトンネル電流を応用することに
よって達成される。STMに関する解説は、例えば「サ
イエンス」第15巻、第10号。
The above purpose was achieved using scanning tunneling electron microscopy (ScanningTunneling), which has recently been attracting attention as a method that enables scanning of thin film surfaces with single-atomic resolution.
This is achieved by applying the tunneling current of the two-object question, which is the basis of the Microscpe (STM) method. For an explanation of STM, see, for example, "Science" Volume 15, No. 10.

1985年10月1日第10頁から第17頁かある。October 1, 1985, pages 10 to 17.

すなわち、メジャループの一端の情報読出し部に磁性薄
膜外部から鋭くとがらせた針状電極を磁性薄膜に限りな
く近づけ1両者間に数ボルトないし数十ボルト程度の電
圧を印加すると量子力学の現象である″トンネル電流″
が生ずる。このトンネル電流の大きさJ工は、印加電圧
が一定の場合、電極間距離S及び電極材料と磁性薄膜材
料との仕事関数に依なし J r”exp (A’l”
12・S)のように変化する。ここでA=(4π/h)
(2m)12(mは電子質量、hはブランク定数)。
In other words, when a sharply pointed needle-shaped electrode from outside the magnetic thin film is brought as close as possible to the information readout section at one end of the measuring loop, and a voltage of several volts to several tens of volts is applied between the two, a quantum mechanical phenomenon occurs. ``Tunnel current''
occurs. When the applied voltage is constant, the magnitude of this tunneling current J does not depend on the distance S between the electrodes and the work function of the electrode material and the magnetic thin film material J r"exp (A'l"
12・S). Here A=(4π/h)
(2m)12 (m is electron mass, h is blank constant).

Sは針状電極と薄膜との距離、ψはポテンシャル■ 壁の高さで、平均値としてψ=−(φ8+φt)(φ8
;薄膜の仕事関数、φゎ;電極の仕事関数)で与えられ
る。したがって、VBL対の有無による仕事関数の差や
磁歪を通じた格子歪みが敏感にトンネル電流の差に反映
され、VBL対の有無の検出が可能となる。ここで、本
発明がSTMと大きく異なる点は、トンネル電流が生じ
るほど磁性薄膜に近づけた針状電極を必要以上に走査す
る機能が不要なことである。すなわち、VBL対はメー
ジャループに沿って高速で転送するので、上記針状電極
はその一部に配置し、VBL対の転送路からはずれない
程度に動き得れば十分である。
S is the distance between the needle electrode and the thin film, ψ is the potential ■ wall height, and the average value is ψ = - (φ8 + φt) (φ8
; work function of the thin film; φゎ; work function of the electrode). Therefore, the difference in work function due to the presence or absence of the VBL pair and the lattice strain caused by magnetostriction are sensitively reflected in the difference in tunneling current, making it possible to detect the presence or absence of the VBL pair. Here, a major difference between the present invention and STM is that there is no need for a function of scanning the needle-like electrode close enough to the magnetic thin film to generate a tunneling current more than necessary. That is, since the VBL pair transfers at high speed along the major loop, it is sufficient that the needle electrode is placed in a part of the major loop and can move to the extent that it does not deviate from the transfer path of the VBL pair.

〔作用〕[Effect]

針状電極は読出し位置にほぼ固定するように設置する。 The needle electrode is installed so as to be substantially fixed at the readout position.

被測定物であるVBL対の方が針状電極下に移動してく
るので針状電極を走査することが不要になり、該動作す
ることがない。
Since the VBL pair, which is the object to be measured, moves below the needle-like electrode, it becomes unnecessary to scan the needle-like electrode, and this operation does not occur.

またトンネル電流は、必ずしも真空中でのみ生ずるもの
でない。大気中でも発生可能のほか、液体、固体を電極
、試料間に挿入し、外部の振動などを吸収して信号対雑
音比を増大することも可能である。
Furthermore, tunnel current does not necessarily occur only in vacuum. In addition to being generated in the atmosphere, it is also possible to insert a liquid or solid between the electrode and sample to absorb external vibrations and increase the signal-to-noise ratio.

〔実施例〕〔Example〕

以下1本発明を実施例により説明する。 The present invention will be explained below with reference to examples.

[実施例1] 第1図にプロッホラインメモリの読出し例を示す。同図
の(a)は該メモリの構成を模式的に示したものであり
、図の(b)は本発明であるトンネル電流読出し部の説
明図である。メージャループ2を構成する縞状磁区右端
部にはVBL発生器があり、磁区端部を短時間で収縮し
てVBL対を発生させる。VBL対はゲート4によりマ
イナループ5に格納される。読出しの際、再びゲート4
を通じてメージャループに転送され、VBL対は読出し
部3に達する。読出し部は針状電極8(曲率半径50人
)がVBLの径路上方20λの空間に設置されている。
[Embodiment 1] FIG. 1 shows an example of reading from the Ploch line memory. (a) of the figure schematically shows the configuration of the memory, and (b) of the figure is an explanatory diagram of the tunnel current reading section according to the present invention. A VBL generator is provided at the right end of the striped magnetic domain constituting the major loop 2, and the end of the magnetic domain is contracted in a short time to generate a VBL pair. The VBL pair is stored in the minor loop 5 by the gate 4. When reading, gate 4 is activated again.
The VBL pair is transferred to the major loop through the readout section 3. In the readout section, a needle electrode 8 (curvature radius of 50) is installed in a space 20λ above the path of VBL.

8はX、y、z方向に微動可能なピエゾ素子11,12
.13に固定されている。プロッホラインが存在する磁
性薄膜10はガーネット単結晶(SmLuGd)a(F
eAQ)sot□であり、膜厚0.4μm、縞状磁区幅
0.5μm。
8 is a piezo element 11, 12 that can be moved slightly in the X, y, and z directions.
.. It is fixed at 13. The magnetic thin film 10 in which Ploch lines exist is made of garnet single crystal (SmLuGd) a(F
eAQ) sot □, film thickness 0.4 μm, and striped magnetic domain width 0.5 μm.

飽和磁束密度1600Gaussである。ガーネット1
0の上にはトンネル電圧を低下するために厚さ50人の
Au薄膜9を被着している。8と9との間のトンネル電
極を5vとした場合、VBL対がないとき5nAのトン
ネル電層流が観測された。
The saturation magnetic flux density is 1600 Gauss. garnet 1
An Au thin film 9 with a thickness of 50 mm is deposited on the 0 layer to reduce the tunnel voltage. When the tunnel electrode between 8 and 9 was set to 5V, a tunnel current of 5nA was observed when there was no VBL pair.

きにVBL対が針状電極下に近づくと、トンネル電流が
±3nA変化することが認められた。実際には、トンネ
ルノミ流Jrが常に一定になるようにピエゾ素子11,
12,13を制御ユニット14で操作し、その制御電圧
をモニタした結果。
It was observed that when the VBL pair approached below the needle electrode, the tunnel current changed by ±3 nA. In reality, the piezo element 11,
12 and 13 are operated by the control unit 14 and the control voltages thereof are monitored.

VBL対の有無に対応するフィードバック信号がピエゾ
素子に与えられており、これによってVBL対の検出が
できた。本実施例の縞状磁区幅は0,5μmであり、V
BL対による記録密度は行IGb/cm2である。
A feedback signal corresponding to the presence or absence of the VBL pair was given to the piezo element, which enabled the detection of the VBL pair. The striped magnetic domain width in this example is 0.5 μm, and V
The recording density by the BL pair is row IGb/cm2.

[実施例2] 第2図は、プロッホライン媒体に非晶質金属膜を用いた
例であり、ここでは媒体上に針状電極8′をモノリシッ
クに形成した。8′は移動させる必要がないため、VB
L検出部に固定して形成した。
[Example 2] FIG. 2 shows an example in which an amorphous metal film is used as a Plochline medium, and here a needle-like electrode 8' is monolithically formed on the medium. 8' does not need to be moved, so VB
It was fixed to the L detection part.

層間にはPIQレジンを用い、電極間Sを10人として
針状電極(Tic製曲率半径20人)を埋め込んで検出
器を構成している。トンネル電圧4Vのとき、トンネル
電流10nAを得た。VBLが近づくと最大15nAま
で電流が変化し、VBLの検出を確認した。
A detector is constructed by using PIQ resin between the layers and embedding a needle-like electrode (made by Tic with a radius of curvature of 20) with a distance S between the electrodes of 10. When the tunnel voltage was 4V, a tunnel current of 10 nA was obtained. As VBL approached, the current changed to a maximum of 15 nA, confirming the detection of VBL.

[実施例3] 第3図は、絶縁性のプロッホラインメモリ媒体上に高透
磁率のNi−Fe合金薄膜80人を被着したものであり
、同図の(a)、(c)が極性の異なるVBLが針状電
極下に到達したときの磁化の様子を表わしたものである
。VBL直上では交換相互作用によって薄膜18中にV
BLが磁気転写されていることを示す。この18により
、トンネル電流が生じるための二種間トンネル電圧を低
減することができた。すなわち、18が無い場合。
[Example 3] Fig. 3 shows 80 high permeability Ni-Fe alloy thin films deposited on an insulating Plochline memory medium, and (a) and (c) in the figure show polarity. This figure shows the state of magnetization when VBL with different values reach the bottom of the needle electrode. Immediately above VBL, V is formed in the thin film 18 due to exchange interaction.
Indicates that BL has been magnetically transferred. This 18 made it possible to reduce the tunneling voltage between the two species for generating tunneling current. That is, when there is no 18.

80Vの電圧が必要であったが、I8を被着したことに
よってトンネル電圧を3vまで下げることができた。
A voltage of 80V was required, but by depositing I8, the tunnel voltage could be lowered to 3V.

[実施例4] 第4図は、プロッホラインメモリ媒体上に、高磁歪材料
T b F e 2多結晶合金薄膜22を500人被着
した。実施例3と類似の転写VBLが22に生じるが、
このとき、磁歪効果によって磁化が反発・吸引する部分
にわずかに弾性的な凹凸が生じた。この例では、膜に垂
直方向に0.5〜1人の凹凸が生じることがわかった。
[Example 4] In FIG. 4, 500 people deposited a high magnetostrictive material T b Fe 2 polycrystalline alloy thin film 22 on a Ploch line memory medium. Transcription VBL similar to Example 3 occurs in 22, but
At this time, due to the magnetostrictive effect, slight elastic irregularities were created in the areas where magnetization is repelled and attracted. In this example, it was found that unevenness of 0.5 to 1 person was generated in the vertical direction on the film.

針状電極を凹凸が生じるVBL端部上方15λに設置し
、両電極間に4vを印加した結果、トンネル電流が生じ
、凹凸に対応したトンネル電流の変化によってVBLを
検出することができた。次に電極8を薄膜22から20
0人引き離した。もはやトンネル電流は生じないが、電
極間に60V印加した結果放電電流が生じた。この放電
電流が一定になるようにピエゾ素子でフィードバックを
かけて、フィードバック電流をモニターした結果、トン
ネル電流の変化と同様に、VBLに対応するフィードバ
ック電流が観察された。VBLの大きさと同程度の距離
をおいた。
A needle-like electrode was placed 15λ above the VBL end where the unevenness occurs, and 4V was applied between both electrodes, resulting in a tunnel current, and VBL could be detected by the change in tunnel current corresponding to the unevenness. Next, the electrode 8 is attached to the thin film 22 to 20
0 people were separated. A tunnel current no longer occurred, but a discharge current occurred as a result of applying 60 V between the electrodes. Feedback was applied using a piezo element to keep this discharge current constant, and as a result of monitoring the feedback current, a feedback current corresponding to VBL was observed, similar to the change in tunnel current. The distance was about the same as the size of VBL.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、VBLの1本1本を独立に検出するこ
とができるので、マイナループ、メージャループともに
縞状磁区とした理想的なプロッホラインメモリを実現す
ることができる。この検出方法によって従来のバブル検
出も極めて容易にできることは言うまでもない。
According to the present invention, since each VBL can be detected independently, it is possible to realize an ideal Ploch line memory in which both the minor loop and the major loop have striped magnetic domains. It goes without saying that conventional bubble detection can be performed extremely easily using this detection method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1のチップ構成及び、トンネル電流読出
しの説明図、第2図は実施例2の検出部断面模式図、第
3図は実施例3の検出部断面模式図、第4図は、実施例
4の検出部断面模式図である。 1・・・VBL発生器、2・・・メージャループ(縞状
磁区)、3・・・検出部、4・・・ゲート、5・・・マ
イナループ(縞状磁区)、6・・・プロッホライン対(
VBL対)、7・・・トンネル電流JT、8・・・針状
電極、9・・・Au薄膜(試料電極)、10・・・磁性
薄膜(ガーネット単結晶)、 11.12.13・・・ピエゾ素子OC+’/+Z方向
用)、14・・・制御ユニット、15・・・磁性薄膜(
非晶質G d Co M o合金)、16−PIQレジ
ン、17・・・試料電極用パッド、18・・・高透磁率
金属膜。 19 a、c−VBL”、VBL−の転写磁化。 19b・・・ブロッホ壁の転写磁化、20・・・VBL
進行方向、21・・・ブロッホ壁、22・・・高磁歪材
料。 23・・・VBLによる格子歪。
FIG. 1 is an explanatory diagram of the chip configuration and tunnel current readout of Example 1, FIG. 2 is a schematic cross-sectional view of the detection section of Example 2, FIG. 3 is a schematic cross-section of the detection section of Example 3, and FIG. 2 is a schematic cross-sectional view of a detection section of Example 4. FIG. DESCRIPTION OF SYMBOLS 1... VBL generator, 2... Major loop (striped magnetic domain), 3... Detection section, 4... Gate, 5... Minor loop (striped magnetic domain), 6... Proch line pair (
VBL pair), 7... Tunnel current JT, 8... Acicular electrode, 9... Au thin film (sample electrode), 10... Magnetic thin film (garnet single crystal), 11.12.13...・Piezo element OC+'/+Z direction), 14... Control unit, 15... Magnetic thin film (
amorphous GdCoMo alloy), 16-PIQ resin, 17... pad for sample electrode, 18... high magnetic permeability metal film. 19 a, c-VBL", transferred magnetization of VBL-. 19b... Transfer magnetization of Bloch wall, 20... VBL
Traveling direction, 21... Bloch wall, 22... High magnetostrictive material. 23... Lattice distortion due to VBL.

Claims (1)

【特許請求の範囲】 1、情報を記憶するための磁性薄膜と、少なくとも該磁
性薄膜へ情報を書込むための手段と読出すための手段を
有する磁性メモリ装置において、該磁性薄膜中の情報担
体が磁区または磁壁であり、外部から印加する電磁界に
よって該情報担体が磁性薄膜中を転送する構造において
、該磁性薄膜中の所定の情報読出し部に近接した装置と
該磁性薄膜との間に電圧を印加して生ずるトンネル電流
もしくは放電電流によって情報担体の有無を判別し情報
読出しを行なう磁性メモリ装置。 2、該磁性薄膜表面の少なくとも一部に金属膜、軟磁性
膜、高磁歪膜の少なくともいずれか一種類を被着して成
ることを特徴とした特許請求の範囲第1項記載の磁性メ
モリ装置。
[Claims] 1. A magnetic memory device comprising a magnetic thin film for storing information and at least means for writing and reading information into the magnetic thin film, wherein an information carrier in the magnetic thin film is provided. is a magnetic domain or domain wall, and in a structure in which the information carrier is transferred in the magnetic thin film by an electromagnetic field applied from the outside, there is a voltage between the magnetic thin film and a device close to a predetermined information reading section in the magnetic thin film. A magnetic memory device that reads information by determining the presence or absence of an information carrier based on a tunnel current or discharge current generated by applying a current. 2. The magnetic memory device according to claim 1, wherein at least one of a metal film, a soft magnetic film, and a high magnetostrictive film is deposited on at least a portion of the surface of the magnetic thin film. .
JP61082038A 1986-04-11 1986-04-11 Magnetic memory device Pending JPS62239490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61082038A JPS62239490A (en) 1986-04-11 1986-04-11 Magnetic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082038A JPS62239490A (en) 1986-04-11 1986-04-11 Magnetic memory device

Publications (1)

Publication Number Publication Date
JPS62239490A true JPS62239490A (en) 1987-10-20

Family

ID=13763349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082038A Pending JPS62239490A (en) 1986-04-11 1986-04-11 Magnetic memory device

Country Status (1)

Country Link
JP (1) JPS62239490A (en)

Similar Documents

Publication Publication Date Title
JP3073616B2 (en) Information processing device with multiple probes
DE69216284D1 (en) Cantilever arm probe, scanning tunneling microscope and information processing device using the same
JP2002100006A (en) Perpendicular recording head and perpendicular magnetic recorder
US20050128616A1 (en) Transducers for ferroelectric storage medium
US7864473B2 (en) Electric field applying magnetic recording method and magnetic recording system
US6504665B1 (en) Method and apparatus for magnetic recording
Yamamoto et al. Scanning magnetoresistance microscopy (SMRM): Imaging with a MR head
JP4113041B2 (en) Magnetization control method and information recording apparatus
KR0145034B1 (en) Peak enhanced magnetoresistive read transducer
JPS62239490A (en) Magnetic memory device
JP2001093273A (en) Magnetic fixing memory writing method and magnetic fixing memory
CN100367349C (en) Storage system using electromagnetic array
KR100499136B1 (en) Magnetic medium using electron spin-dependent scattering and apparatus of reading data from the same and method thereof
JP2965121B2 (en) High density recording and reproducing device
Barbic et al. Recording processes in perpendicular patterned media using longitudinal magnetic recording heads
JPH1196505A (en) Magnetic recording/reproducing method and device
JPH03154240A (en) Magnetic recording and reproducing device
Watanuki et al. Small magnetic patterns written with a scanning tunneling microscope
US7440302B2 (en) Ferroelectric information storage device and method of writing/reading information
Hong et al. Ferroelectric probe storage devices
Kawana et al. Magnetic Nanowire Memory Utilizing Motion of Magnetic Domains for Developing a High-speed Recording Device
Hiranaga et al. Novel HDD-type SNDM ferroelectric data storage system aimed at high-speed data transfer with single probe operation
KR100905716B1 (en) Electric field effect read/write apparatus, and driving method thereof
US4050012A (en) Dual biased static sensing magnetic transducer
JPH11213354A (en) Magneto-resistance effect head, magnetic recording and reproducing method, and magnetic recording and reproducing device