JPS62239338A - Optical information reproducer - Google Patents

Optical information reproducer

Info

Publication number
JPS62239338A
JPS62239338A JP61081399A JP8139986A JPS62239338A JP S62239338 A JPS62239338 A JP S62239338A JP 61081399 A JP61081399 A JP 61081399A JP 8139986 A JP8139986 A JP 8139986A JP S62239338 A JPS62239338 A JP S62239338A
Authority
JP
Japan
Prior art keywords
light
grid
information
optical
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61081399A
Other languages
Japanese (ja)
Inventor
Masayuki Usui
臼井 正幸
Hajime Sakata
肇 坂田
Hiroshi Matsuoka
宏 松岡
Kazuhiko Matsuoka
和彦 松岡
Masahiko Enari
正彦 江成
Akio Aoki
昭夫 青木
Hideki Hosoya
細谷 英樹
Kenichi Suzuki
健一 鈴木
Satoshi Shikichi
敷地 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61081399A priority Critical patent/JPS62239338A/en
Publication of JPS62239338A publication Critical patent/JPS62239338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To attain the satisfactory reproduction output by forming a grid within a unit information area and also specifying the form of the grid. CONSTITUTION:A phase grid of pitch (p) and piece number (m) is formed with a unit information area. Here the wavelength of the reproduced light is referred to as lambda and therefore lambda/mp<=NA<=lambda/p is satisfied for the numerical aperture NA of the optical system of an optical information reproducer. For instance, the recording pits 12 do not mean just the level differences of a recess/projection part but contain a grid of a cyclic structure. In such a constitution, the optical information reproducer can detect the satisfactory reproduction signal.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光ディスク、Xカード、光テープ等の光情報
記鍮媒体の情報を再生する清報再生装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a news playback device that plays back information on an optical information recording medium such as an optical disk, an X-card, or an optical tape.

〔従来技術〕[Prior art]

従来1元を用いて情報をnピ録、読出す媒体の形態とし
て光ディスク、元カード、元テープ等各種のものが知ら
れている。これらの媒体において情報の記録あるいは読
出しの原理は用いる媒体材料の種類、記録あるいは続出
しに用いる光学系、システムの種類によって異なシ、い
くつかの方法が実用化されている。代表的なものとして
は元磁気紀録媒体のり0く元を用いて媒体の磁化の方向
を変化させ、読出し元を照射した時に生じるカー回転角
の変化を光強+gに変化させて信号を検出する方法、あ
るいは情報に相当する部分のみ媒体の光透過率1反射率
、吸収スペクトルを変化させて記録、再生を行う方法、
また媒体の情報記録部の屈折率、形状を変化させて該記
録部に照射した再生光の(ロ)折・干渉等の現象を利用
して信号に対応する光強度の変化を検出する方法などが
ある。
Conventionally, various types of media such as optical disks, original cards, and original tapes are known as media for recording and reading information using a single source. The principles of recording or reading information on these media vary depending on the type of media material used, the optical system used for recording or continuous reading, and the type of system, and several methods have been put into practice. A typical example is to change the direction of magnetization of the medium using the original magnetic recording medium, and to detect the signal by changing the Kerr rotation angle that occurs when the reading source is irradiated to light intensity + g. method, or a method of recording and reproducing by changing the light transmittance, reflectance, and absorption spectrum of the medium only in the portion corresponding to information;
Also, a method of detecting a change in light intensity corresponding to a signal by changing the refractive index and shape of the information recording part of the medium and utilizing phenomena such as (B) refraction and interference of the reproduction light irradiated to the recording part. There is.

これら従来例においてはすべて情報を光強度の変化とし
て検出するものであるため、再生信号のS/Nを出来る
だけ良くすることが媒体あるいはシステムに要求される
重※な技術的R題となっている。
In all of these conventional methods, information is detected as changes in light intensity, so improving the S/N of the reproduced signal as much as possible is an important technical issue required for media or systems. There is.

こ°れ等、従来の光情報記録媒体の中で、比較的簡易な
溝成で、良好なる再生信号の8/N比を得られるものと
して、単位配録エリアをピットの形で記録するものがあ
る。
Among these conventional optical information recording media, the unit recording area is recorded in the form of pits, and it is possible to obtain a good 8/N ratio of the reproduced signal with a relatively simple groove formation. There is.

本件出願人は風位11#報エリアをピットの形より格子
にその形状を変化させることにより更に良好なる再生信
号のS/Nを得る事を特願昭59−250287号で提
案している。
The present applicant has proposed in Japanese Patent Application No. 59-250287 to obtain an even better S/N ratio of the reproduced signal by changing the shape of the wind level 11# signal area from a pit shape to a grid shape.

〔発明の概略〕[Summary of the invention]

本発明の目的は、単位情報エリアに記録する形態を格子
とした光情報記録媒体から、良好なる再生信44を検出
可1i?な光情報再生装置を提供することにある。
It is an object of the present invention to detect a good reproduced signal 44 from an optical information recording medium in which the format of recording in a unit information area is a lattice. The object of the present invention is to provide an optical information reproducing device.

〔実施例〕〔Example〕

本発明の詳細な説明に先だって、まず本件出願人による
既提案の、単位情報エリアが格子である光情報記録媒体
の構造と、情報検出の厚恩を第1図+AI (Blを用
いて説明する。第1図(Alに於いて、11は光情報記
録担体、12は情報を記録する最小の急使である態位情
報エリア(以後12を紀鍮ビットと呼ぶ)、13は透明
な保護1薪、14は光反射膜、15は基板をあられす。
Prior to a detailed explanation of the present invention, the structure of an optical information recording medium in which the unit information area is a lattice, which has already been proposed by the applicant, and the benefit of information detection will be explained using Figure 1 + AI (Bl). Figure 1 (In Al, 11 is an optical information recording carrier, 12 is a posture information area which is the smallest courier for recording information (hereinafter, 12 is called a bit), 13 is a transparent protection 1 Firewood, 14 is a light reflecting film, and 15 is a substrate.

本発明においては、!It′i録ピット12け単なる凹
凸の段差ではなく、ピット、12内に周期的な構造の格
子を有している。このような格子構造はエンボス加工の
他、各種の手段によって形成が可能である。f#報再再
生17はLEDの如く広がシを持つ次元源からの光であ
るとし、該再生光はレンズ16を通してピット12及び
その周辺部をほぼ均一に照明する。ピット部を照明し次
元はピット内の格子の回折作用により、格子のピッチと
照明光の波畏で定まる特定の方向に強められて反射する
。従って、例えば格子のピッチを少なくとも1次の回折
光18がレンズ16に入らないよう゛に選んでやれば回
折光はすべてレンズ外にそれる為、ピット12が存在し
ない部分による旧反射光がレンズ16を通してもどる場
合と明らかな元f#差が生じる。従ってS/Nの良い再
生信号が得られる。第1図(B)は8g1図(A)に示
す記録ピットに対応する光出力を表わす図である。、第
1図(B)より明らかな様!IC。
In the present invention,! The pits 12 are not simply uneven steps, but have a periodic lattice structure within the pits 12. Such a lattice structure can be formed by various means other than embossing. The f# information reproducing light 17 is assumed to be light from a dimensional source with a wide range such as an LED, and the reproduced light illuminates the pit 12 and its surrounding area almost uniformly through the lens 16. When the pit is illuminated, the light is reflected intensified in a specific direction determined by the pitch of the grating and the wave width of the illumination light due to the diffraction effect of the grating within the pit. Therefore, for example, if the pitch of the grating is selected so that at least the first-order diffracted light 18 does not enter the lens 16, all the diffracted light will be deflected outside the lens, and the old reflected light from the part where the pit 12 does not exist will be reflected from the lens 16. There is a clear difference in element f# from the case of returning through 16. Therefore, a reproduced signal with a good S/N ratio can be obtained. FIG. 1(B) is a diagram showing the optical output corresponding to the recording pit shown in FIG. 8g1(A). , as is clear from Figure 1 (B)! I.C.

ピット12が存在する部分からレンズ16に戻る5’e
情は、ピットが存在しない部分からレンズ16に戻る光
量に比して極端に少なく、ビット部とビット部でない境
界領域での光量差も顕著に表われる。この光情報riC
録媒体では、格子の。
5'e returning to the lens 16 from the part where the pit 12 is present
The amount of light that returns to the lens 16 from a portion where no pit exists is extremely small compared to the amount of light that returns to the lens 16 from a portion where no pit exists, and the difference in amount of light between the bit portion and the non-bit portion boundary area is also noticeable. This optical information riC
In recording media, it is a grid.

ピッチが一定であれば、ピットの長さ、大きさに工らず
尤の回折角度は常に一定であるから安定した(g号再生
が可能になる。
If the pitch is constant, the diffraction angle is always constant regardless of the length and size of the pit, so it is stable (g-number reproduction is possible).

第2図は、第1図に示した様な光情報記録媒体の再生装
置の一例を示す図である。”光情報記録担体11は、f
pJ1図に示す如く反射タイプのものでも良いが、ここ
では理解を容易にする為に記録担体を透過タイプのもの
を採用し装置を示している。半導体レーザP、から出射
した発赦尤束は、対物レンズ22によりコリメートされ
、平行光束23となって記録媒体11に入射する。この
入射した位置に記録ビット12が存在しないと、入射光
束は平行光束のまま記鍔媒体を通過し、集光レンズ25
により大部分の光束27が受光センサー26上に集光さ
れ検出される。記録媒体への入射位置に記録ピット12
が存在する場合は、入射光束23は記録ピット12で回
折され、大部分の光束24は集光レンズ25の開口外に
落ちる為に、受光センサー26に到達する光束は、極く
微少な苛である。この受光センサー26からの信号を検
出すれば記録ビットが存在するか否かが判る。尚、記@
謀体が反射タイプの場合は、対物レンズ22に集光レン
ズ25の働きを兼ねさせることが出来ることは1!t5
までもない。
FIG. 2 is a diagram showing an example of a reproducing apparatus for an optical information recording medium as shown in FIG. 1. ``The optical information recording carrier 11 is f
Although a reflective type record carrier as shown in Figure 1 may be used, here, for ease of understanding, a transmissive type record carrier is adopted and an apparatus is shown. The emission flux emitted from the semiconductor laser P is collimated by the objective lens 22, becomes a parallel light flux 23, and enters the recording medium 11. If the recording bit 12 does not exist at this incident position, the incident light beam passes through the recording medium as a parallel light beam, and the condenser lens 25
As a result, most of the light flux 27 is focused on the light receiving sensor 26 and detected. Recording pit 12 at the incident position on the recording medium
exists, the incident light beam 23 is diffracted by the recording pit 12, and most of the light beam 24 falls outside the aperture of the condenser lens 25, so that the light beam reaching the light receiving sensor 26 is caused by extremely small amounts of interference. be. By detecting the signal from the light receiving sensor 26, it can be determined whether or not a recording bit exists. Note: @
If the target is a reflective type, the objective lens 22 can also function as the condensing lens 25! t5
Not even.

この際出力信号のBINを良くし、読取装置の信頼性を
向上させる為には前記2種類の信号光(24,27)の
元量差即ちコントラストができるだけ大きいことが望ま
しい。
At this time, in order to improve the BIN of the output signal and improve the reliability of the reading device, it is desirable that the difference in the original amount of the two types of signal lights (24, 27), that is, the contrast, be as large as possible.

ところで前述の例のような情報読取り装置において、低
コスト化コンパクト化をはかる為、オートフォーカス機
構を用いずに続取りを行なおうとすれば、態位情報エリ
アの大きさは10μm前後が限jWとなる。ま九単位情
報エリア内に形成する格子は、通常のフォトリン技術等
で比較的容易に形成できるのは1μm幅程度である。本
願においては特にこのような条件下で最良のコントラス
トを得るに適し九九ta報再生装肯の構成を提供するも
のである。
By the way, in an information reading device such as the example mentioned above, if you try to carry out a succession without using an autofocus mechanism in order to reduce costs and make it more compact, the size of the posture information area is limited to around 10 μm. becomes. The grid formed within the nine unit information areas can be relatively easily formed with a width of about 1 μm using ordinary photorin technology. The present invention provides a multiplication table reproduction system configuration particularly suitable for obtaining the best contrast under such conditions.

第3図は第2図に示した配置において1次元センサー受
光面上に現われる格子を有する単位情報エリアの像強度
分布を説明する図である。
FIG. 3 is a diagram illustrating the image intensity distribution of a unit information area having a grid appearing on the one-dimensional sensor light-receiving surface in the arrangement shown in FIG. 2.

像強度工は前記格子を有する単位情報エリアの像部分3
1では低く、格子の無い部分32では高くなる。像強度
分布の計算の手順を以下簡単に説明する。
The image intensity technique is the image portion 3 of the unit information area having the grid.
1, it is low, and it becomes high in the part 32 where there is no grid. The procedure for calculating the image intensity distribution will be briefly explained below.

光源であるLEDより出射した光束を計算の都合上−た
ん平面波f0に変換し九とし、該平面波が照明系の開口
Aを通って集光レンズによりカード面上に集光されると
すると、その複素振幅分布はA、f、のフーリエ変換F
(A、fo)で表わされる。この分布をカード面上で平
行移動させることをmt、+とすれば平行移動された振
幅分布はm(1)(F(A−fo ))で表わされる。
For calculation purposes, the light flux emitted from the LED, which is the light source, is converted into a plane wave f0, which is assumed to be 9, and the plane wave passes through the aperture A of the illumination system and is focused onto the card surface by the condensing lens. The complex amplitude distribution is the Fourier transform F of A, f.
It is represented by (A, fo). If the translation of this distribution on the card surface is defined as mt, +, then the translated amplitude distribution is expressed as m(1)(F(A-fo)).

カードによる位相変調を0、結像系の変換をDとすると
、センナ−面上での像強度分布はI D (C、mtx
l(F(A、fo ))) 12となる。従って格子を
有する情報単位のセンサー面上における像強度分布Et
、は !t、−710(C,011(1)(P(A−fo )
))12a!で求められる。讃3図のグラフは曲成を用
いて数値計算を行なうことによって得られるが、工。
If the phase modulation by the card is 0 and the conversion of the imaging system is D, the image intensity distribution on the sensor plane is I D (C, mtx
l(F(A, fo ))) 12. Therefore, the image intensity distribution Et on the sensor surface of the information unit having the grid
,teeth! t, -710(C,011(1)(P(A-fo)
)) 12a! is required. The graph in Figure 3 can be obtained by performing numerical calculations using curve construction, but it is difficult to understand.

の形は格子の形状及び深さ、ピッチ、結像レンズのNA
等のパラメータによって様々に変化する。この僧強度を
CODの如き1次元センサーでかできるだけ高く、かつ
できるだけ解像度が高すことが望ましい。
The shape of the grating depends on the shape and depth of the grating, the pitch, and the NA of the imaging lens.
It changes variously depending on the parameters such as. It is desirable to have this intensity as high as possible using a one-dimensional sensor such as a COD, and to have as high a resolution as possible.

本件出瀬人は本発明に適した前記パラメータの組合せを
見出す為、iずラインスペース比1:1の矩形格子、対
称形の三角形格子の2[について、格子のピッチ及び格
子の高さく反射型位相格子の場合1位相差の1/2に相
当)を変化させたときの前記強IW分布を計算し、さら
にコントラストCを求めた。このとき結像系のMAは0
.18、照明光の波長は0.88μmとし念。
In order to find a combination of the above-mentioned parameters suitable for the present invention, the inventor of the present invention investigated a rectangular lattice with a line space ratio of 1:1, a symmetrical triangular lattice, and a reflective type by adjusting the pitch of the lattice and the height of the lattice. In the case of a phase grating, the strong IW distribution was calculated when changing the phase difference (equivalent to 1/2 of one phase difference), and the contrast C was also determined. At this time, the MA of the imaging system is 0
.. 18. The wavelength of the illumination light is 0.88 μm.

第4図及び第5図にその結果をグラフで示す。The results are shown graphically in FIGS. 4 and 5.

グラフから分かるように矩形格子、三角形格子いずれの
場合も格子のピッチによらずほぼ一定の格子高さでコン
トラストが最良になる。矩形格子の場合、約0.25μ
mの高さを中心に±0.05μffl程度の範囲でほぼ
0.8以上のコントラストが得られ、三角形格子では0
.45μm±0.05μmの範囲で0.95以上のコン
トラストが得られる。
As can be seen from the graph, in both the rectangular and triangular grids, the contrast is best when the grid height is approximately constant, regardless of the grid pitch. For rectangular grid, approximately 0.25μ
A contrast of approximately 0.8 or more is obtained within a range of approximately ±0.05μffl centered on the height of
.. A contrast of 0.95 or more can be obtained in a range of 45 μm±0.05 μm.

波長単位に換算すると、矩形格子では0.28λ±0.
06λ、三角形格子では0.51λ±0.06λ(λ=
 0.88μm)である。
When converted into wavelength units, a rectangular grating has a wavelength of 0.28λ±0.
06λ, 0.51λ±0.06λ for triangular lattice (λ=
0.88 μm).

次に格子の高さを上記の中心値、即ち矩形格子では0.
25μm、三角形格子では0.45μmに保ち、結像系
のNAを変化させて同様の計算によりコントラストを求
めた。その結果を第6図及び第7図にグラフで示す。結
像系のNAをパラメータとした場合、 NAを小さくし
ていくとセンサー面に到達する絶対光量が低下するので
2単にコントラストだけでなく光量にも注目する必要が
ある。従って同図には格子が無い場合の巣位情報エリア
からセンサー面に到達する光量の相対比車本併せて示し
た。(破線) 第6図から矩形格子の場合NA O,2付近でコントラ
ストが最も良くかつ格子の無い部分からの51t量も十
分得られることが分かる。第6図の三角形格子の場合お
よそNA O,20〜0.25の範囲がコントラスト、
光量ともに良好な領破である。いずれの場合も、NAが
大きくなりすぎるとコントラストが低下し、逆にHAが
小さすぎると絶対光量が不足する。実用的に使用し得る
NAの範囲は製雪の仕様によって異なるが、上のグラフ
に以下のような解釈を加えること和よっておおむね使用
し得る範囲を特定することができる。
Next, set the height of the grid to the above central value, that is, 0 for a rectangular grid.
The contrast was determined by the same calculation while keeping the diameter at 25 μm and 0.45 μm for the triangular grating, and changing the NA of the imaging system. The results are shown graphically in FIGS. 6 and 7. When using the NA of the imaging system as a parameter, as the NA decreases, the absolute amount of light that reaches the sensor surface decreases, so it is necessary to pay attention not only to the contrast but also to the amount of light. Therefore, the figure also shows the relative ratio of the amount of light reaching the sensor surface from the nest position information area when there is no grid. (Dotted line) From FIG. 6, it can be seen that in the case of a rectangular lattice, the contrast is best near NA O,2, and a sufficient amount of 51t can be obtained from a portion without a lattice. In the case of the triangular grid in Figure 6, the contrast is approximately NA O, in the range of 20 to 0.25.
It is a good break in both light quantity. In either case, if the NA becomes too large, the contrast will decrease, and conversely, if the HA is too small, the absolute light amount will be insufficient. The range of NA that can be practically used differs depending on the snowmaking specifications, but by adding the following interpretation to the above graph, the approximately usable range can be determined.

まず再生光学系のNAを大きくしていく場合を考えると
、一般[NAが大きくなるにつれて光学系の解像力は高
くなり、単位情報エリア内の細かい格子まで解像するよ
うになる丸め全体としてのコントラストは下がる。これ
は格子によって回折された光のうち高次の回折光まで光
学系内にとり込まれ結俊に寄与する為である。逆にNA
が小さくなってゆくと、ついには0次の回折光が辿られ
始め、センサー面に到達する絶対光量が域中する。従っ
て格子を有する電位情報エリアの場合、少くともO次元
はとり込まれ1次以上の回折光はと9込まれない範囲を
1つの目安とすることができる。次に格子を有しない単
位?′#報エリアについて考える。単位情報エリアはあ
る有限の幅を持つ開口と着すことができるから、該琲位
情報エリアによる回折光のうちどれだけを結像系にとり
込むかを考えればよい。
First, if we consider the case of increasing the NA of the reproduction optical system, we will see that in general [as the NA increases, the resolving power of the optical system increases, and it becomes possible to resolve fine grids within the unit information area. goes down. This is because even high-order diffracted light out of the light diffracted by the grating is taken into the optical system and contributes to the resolution. On the contrary, NA
As the value becomes smaller, the zero-order diffracted light finally begins to be traced, and the absolute amount of light reaching the sensor surface reaches its peak. Therefore, in the case of a potential information area having a grating, one guideline can be a range in which at least the O dimension is included and diffracted light of the first order or higher is not included. Next, a unit without a lattice? '# Think about the news area. Since the unit information area can be attached to an aperture having a certain finite width, it is only necessary to consider how much of the diffracted light by the position information area should be taken into the imaging system.

絶対光量の低下を防ぐ為には少なくとも0次光はとシ込
む必要がある。−万高次の回折光をと抄込んでも、この
場合格子は存在しないので、単位情報エリアのコントラ
ストが低下することはない。従ってこの場合、少なくと
も開口によって定まる回折光の0次以上をとシ込むMA
の範囲を良好な出力信号fI:得る為の目安とすること
ができる。
In order to prevent a decrease in the absolute light amount, it is necessary to filter out at least the 0th order light. - Even if the diffracted light of the highest order is extracted, since there is no grating in this case, the contrast of the unit information area will not deteriorate. Therefore, in this case, the MA that injects at least the 0th order or more of the diffracted light determined by the aperture
The range of fI can be used as a guideline for obtaining a good output signal fI.

格子の基本周期をp、格子本aeffl、再生光の波長
をλとし、回折光の回折角をθとすると。
Let the fundamental period of the grating be p, the grating length aeffl, the wavelength of the reproduced light be λ, and the diffraction angle of the diffracted light be θ.

垂直入射光に対してはよく知られているようにλ θInl w − なるθ方向に1次回折光の極大値を有する。格子を有し
ない単位情報エリアの場合、開口の幅はmpで与えられ
るから、0次光と1次光の間で光量が極小になる角度を
θ′とするとλ sinθ′=□ mp となる、、光学系のN、Aは光学系の前後の屈折率が1
の場合にはN、A = sinθの関係がある。
As is well known, for vertically incident light, the first-order diffracted light has a maximum value in the θ direction of λ θInl w − . In the case of a unit information area without a grating, the width of the aperture is given by mp, so if θ' is the angle at which the amount of light becomes minimum between the 0th-order light and the 1st-order light, then λ sinθ' = □ mp. , N and A of the optical system have refractive indexes of 1 before and after the optical system.
In the case of , there is a relationship of N, A = sin θ.

従って が良好なコントラストを与え、かつ光量も低下しない光
学系のN、Aの範囲を与える。
Therefore, it provides a range of N and A for the optical system that provides good contrast and does not reduce the amount of light.

以上説明した様に、本発明においては単位情報エリア内
に格子を形成し、かつ格子の形状を前述の如く設定する
ことによって良好な再生出力を達成することができる。
As explained above, in the present invention, a good reproduction output can be achieved by forming a grid within a unit information area and setting the shape of the grid as described above.

前出の実施例においては特に光反射型の位相物体を用い
て説明し友が1本発明の主旨によれば勿論透過型位相物
体にも、また振幅格子型の物体にも適用oTt!である
。また本発明は光カードに特に適するがそれにとどまら
ず光ディスク元テープ等各種の形態の情報記録媒体に応
用できる。
In the above-mentioned embodiments, a light-reflecting phase object was particularly used for the explanation, but according to the gist of the present invention, it can also be applied to a transmission-type phase object and an amplitude grating type object. It is. Furthermore, although the present invention is particularly suitable for optical cards, it is not limited thereto and can be applied to various forms of information recording media such as optical disk source tapes.

【図面の簡単な説明】[Brief explanation of drawings]

4X 1図(A)(B)は単位情報エリアが格子である
光情報記録媒体の構造と情報検出の原理を示す図、第2
図は本発明に係る光t#報再再生装置概略的な構成を示
す図、第3国は8g2図に示した配置に於いて、受光セ
ンサー上く現われる情報単位エリアの像強IJ1′分布
を説明する図、第4図、第5図、第6図及び第7図は本
発明に係る装置の好ましい実施例を説明する為の図。 11・・・・光情報記録媒体 12・・・・単位情報エリア P、・・・・半導体レーザー 22・・・・対物レンズ 25・・・・集光レンズ 26・・・・受光センサー
4X 1 Figures (A) and (B) are diagrams showing the structure of an optical information recording medium in which the unit information area is a lattice and the principle of information detection.
The figure shows the schematic configuration of the optical t# information reproducing device according to the present invention.The third country shows the image intensity IJ1' distribution of the information unit area appearing on the light receiving sensor in the arrangement shown in Figure 8g2. The explanatory drawings, FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are diagrams for explaining preferred embodiments of the apparatus according to the present invention. 11... Optical information recording medium 12... Unit information area P,... Semiconductor laser 22... Objective lens 25... Condensing lens 26... Light receiving sensor

Claims (1)

【特許請求の範囲】 (1)情報を記録すべき単位情報エリア内に格子を形成
し、該格子の有無により情報を記録する光情報記録媒体
からの情報を再生する装置であつて、前記格子がピッチ
P、本数mの位相格子で、再生光の波長をλとすると、
前記装置の光学系の開口数N.A.は、 λ/mP≦N.A.≦λ/P なる関係を満足する事を特徴とする光情報再生装置。 (2)前記位相格子が矩形の断面形状を持ち、かつ、位
相差Δnが 0.22λ≦Δn≦0.34λ の範囲である特許請求の範囲第1項記載の光情報再生装
置。 (3)前記位相格子が三角形の断面形状を持ち、かつ位
相差Δnが 0.4λ≦Δn≦0.5λ の範囲である特許請求の範囲第1項記載の光情報再生装
置。
[Scope of Claims] (1) An apparatus for reproducing information from an optical information recording medium that forms a grid in a unit information area in which information is to be recorded, and records information depending on the presence or absence of the grid, the apparatus comprising: is a phase grating with pitch P and number m, and the wavelength of the reproduction light is λ, then
Numerical aperture N. of the optical system of the device. A. is λ/mP≦N. A. An optical information reproducing device characterized by satisfying the relationship: ≦λ/P. (2) The optical information reproducing device according to claim 1, wherein the phase grating has a rectangular cross-sectional shape, and the phase difference Δn is in the range of 0.22λ≦Δn≦0.34λ. (3) The optical information reproducing device according to claim 1, wherein the phase grating has a triangular cross-sectional shape, and the phase difference Δn is in the range of 0.4λ≦Δn≦0.5λ.
JP61081399A 1986-04-08 1986-04-08 Optical information reproducer Pending JPS62239338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081399A JPS62239338A (en) 1986-04-08 1986-04-08 Optical information reproducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081399A JPS62239338A (en) 1986-04-08 1986-04-08 Optical information reproducer

Publications (1)

Publication Number Publication Date
JPS62239338A true JPS62239338A (en) 1987-10-20

Family

ID=13745230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081399A Pending JPS62239338A (en) 1986-04-08 1986-04-08 Optical information reproducer

Country Status (1)

Country Link
JP (1) JPS62239338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101397A (en) * 1988-10-25 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method for recording signals/reproducing signals on/from film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330453A (en) * 1976-09-02 1978-03-22 Nippon Kokan Kk Deformed steel bar manufacturing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330453A (en) * 1976-09-02 1978-03-22 Nippon Kokan Kk Deformed steel bar manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101397A (en) * 1988-10-25 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method for recording signals/reproducing signals on/from film

Similar Documents

Publication Publication Date Title
JP2854264B2 (en) Optical pickup system
EP0418879B1 (en) Optical recording/reproducing system and method, optical storage medium
JP3037462B2 (en) Optical storage device for storing digital information, method for reading optical information, and optical reading device
US5930219A (en) Optical pickup device for discs of varying characteristics
JP3067874B2 (en) Optical disc, optical disc reproducing apparatus, and optical disc recording / reproducing method
JPH07182687A (en) Optical pick-up
JPH0721569A (en) Optical disk, optical disk reproducing device and recording and reproducing method for optical disk
JP3002318B2 (en) Optical disk and optical disk reproducing device
JPH04315820A (en) Recording/reproducing method/device/system
US5450387A (en) Optical pickup apparatus for phase changing optical disk
JP3067873B2 (en) Optical disk and optical disk reproducing device
JP2000132849A (en) Optical head device
JPS62239338A (en) Optical information reproducer
JP3303250B2 (en) Displacement measuring device and optical pickup
CA1328134C (en) Method for detecting tracking error in optical disk system and its optical system devices therefor
JP2574906B2 (en) Optical head
JP2655747B2 (en) Optical pickup
JPS61129748A (en) Optical information recording medium
JP2673465B2 (en) Optical reader
JP3438469B2 (en) Light head
JPH07105052B2 (en) How to track an optical pickup
KR0141006B1 (en) Optical pick-up available dual focusing
JPH0855366A (en) Information recording medium
KR930004021Y1 (en) Slim type laser pick-up
JPH09167373A (en) Optical head device