JPS62239052A - Analysis of silicon in iron or steel - Google Patents

Analysis of silicon in iron or steel

Info

Publication number
JPS62239052A
JPS62239052A JP8364086A JP8364086A JPS62239052A JP S62239052 A JPS62239052 A JP S62239052A JP 8364086 A JP8364086 A JP 8364086A JP 8364086 A JP8364086 A JP 8364086A JP S62239052 A JPS62239052 A JP S62239052A
Authority
JP
Japan
Prior art keywords
silicon
capillary
sample
steel
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8364086A
Other languages
Japanese (ja)
Inventor
Takeshi Imakita
今北 毅
Renpei Morooka
諸岡 錬平
Kazuo Matsubara
松原 一夫
Masayuki Taniguchi
谷口 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBERUKO KAKEN KK
Original Assignee
KOBERUKO KAKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBERUKO KAKEN KK filed Critical KOBERUKO KAKEN KK
Priority to JP8364086A priority Critical patent/JPS62239052A/en
Publication of JPS62239052A publication Critical patent/JPS62239052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quickly and easily analyze silicon by dissolving a silicon-contg. iron or steel sample in an acid, adding an ammonium molybdate to the soln. to form a silicomolybdic acid complex and analyzing the same by a flow analysis method. CONSTITUTION:The silicon-contg. iron or steel sample is dissolved in the acid and the sample soln. 1 thereof is passed through a valve 3 and is fed to a capillary 8 in a hot bath vessel 9. The ammonium molybdate 7 is fed through a capillary 6 to the sample soln. and is brought into reaction at about >=50 deg.C hot bath temp. to form the molybdic acid complex. A disturbance suppressor (oxalic acid, etc.) for phosphorus and arsenic is passed through a capillary 10 and is mixed with the molybdic acid complex to decompose the molybdic acid complex of the phosphorus and arsenic. A reducing agent 13 is passed through a capillary 12 and is mixed wit the sample soln. to form a molybdenum blue complex. The absorptivity is measured by an absorption photometer 15 by which the silicon is analyzed. Since the measurement is made by the flow analysis method in the above-mentioned manner, the time for the measurement is shortened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄鋼中のケイ素含有率を簡便且つ迅速に測定
できる分析方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an analytical method that can easily and quickly measure the silicon content in steel.

[従来の技術] 鉄鋼中のケイ素を分析する方法として一般に採用されて
いるのはJIS  G1212に規定されている鉄及び
鋼中のケイ素定量方法である。
[Prior Art] A method for quantifying silicon in iron and steel specified in JIS G1212 is generally adopted as a method for analyzing silicon in steel.

この方法は鉄及び鋼試料を酸に溶解し、濾過し、定容と
した後、その一部を分取し、これにモリブデン酸アンモ
ニウム溶液を加え、10分間放置してケイモリブデン酸
錯体を生成させた後、シュウ酸溶液を添加してリン及び
ヒ素の妨害を除き、更に硫酸第一鉄アンモニウム溶液を
加えて生成したモリブデン青錯体の吸光度を測定してケ
イ素量を求めるものである。
This method involves dissolving iron and steel samples in acid, filtering them, adjusting the volume, taking a portion of the sample, adding ammonium molybdate solution to it, and leaving it for 10 minutes to form a silicomolybdate complex. After this, an oxalic acid solution is added to remove interference from phosphorus and arsenic, and a ferrous ammonium sulfate solution is added to measure the absorbance of the resulting molybdenum blue complex to determine the amount of silicon.

そして、このケイ素定量方法の実施に際しては、従来か
ら試料の分取、試薬の添加等が手作業で行なわれている
のが現状である。
In carrying out this method for quantifying silicon, the current situation is that sample separation, addition of reagents, etc. have traditionally been carried out manually.

一方、特公昭60−61646 (フローインジェクシ
ョン分析方法)において、一連の流路の途中でキャリア
液に指示薬や試料を添加し、試料中の酸濃度を比色検出
する吸光光度流れ分析方法により、迅速な酸濃度分析を
行なう枝術が開示されている。
On the other hand, in Japanese Patent Publication No. 60-61646 (flow injection analysis method), an indicator and sample are added to the carrier liquid in the middle of a series of flow paths, and the acid concentration in the sample is detected colorimetrically. A branch technique for conducting acid concentration analysis is disclosed.

[発明が解決しようとする問題点] ところで、鉄鋼中の多くの不純物元素の分析手段が機器
を用いた分析等で迅速化されているのに対し、ケイ素の
分析については上記のような湿式化学分析法によってお
り、迅速性及び簡便性に欠ける点が指摘されている。即
ち、上記の方法によると試料溶液の分取、試薬の添加等
一連の煩雑な操作を必要とするため熟練を要し、且つ迅
速な分析が行ない難いという問題点があった。
[Problems to be solved by the invention] By the way, while the means for analyzing many impurity elements in steel have been speeded up by analysis using instruments, the analysis of silicon has been carried out using the wet chemical method described above. It has been pointed out that the method is based on an analytical method and lacks speed and simplicity. That is, the above-mentioned method requires a series of complicated operations such as fractionating the sample solution and adding reagents, which requires skill and makes it difficult to carry out rapid analysis.

そこで、本発明は以上のような事情に対して上記の吸光
光度流れ分析方法に着目し、これを応用することによっ
て、鉄鋼中のケイ素含有率を従来より迅速且つ簡便に測
定できる分析法を提供することを目的として創作された
Therefore, in response to the above-mentioned circumstances, the present invention focuses on the above-mentioned absorbance flow analysis method, and by applying this, provides an analysis method that can measure the silicon content in steel more quickly and easily than before. was created with the purpose of

[問題点を解決するための手段1 本発明は、ケイ素を含有する鉄鋼試料を酸に溶解し、濾
過し、定容とした後、吸光光度流れ分析によりケイ素を
分析する方法において、キャリヤー溶液を流通せしめた
細管に試料溶液及びモリブデン酸アンモニウム溶液を注
入・混合し、該細管を湯浴槽に通じてケイモリブデン酸
錯体を生成させた後、該細管にリン及びヒ素の妨害抑制
剤と還元剤を順次注入・混合し、これにより生成したケ
イモリブデン酸錯体の吸光度を測定することによりケイ
素を分析することを特徴とした鉄鋼中のケイ素分析方法
に係る。
[Means for Solving the Problems 1] The present invention provides a method for analyzing silicon by spectrophotometric flow analysis after dissolving a silicon-containing steel sample in an acid, filtering it, and making it to a constant volume. A sample solution and an ammonium molybdate solution were injected and mixed into a thin tube that was allowed to flow, and the thin tube was passed through a hot water bath to form a silicon molybdate complex. After that, a phosphorus and arsenic interference inhibitor and a reducing agent were added to the thin tube. The present invention relates to a method for analyzing silicon in steel, characterized in that silicon is analyzed by sequentially injecting and mixing silicon molybdic acid complexes and measuring the absorbance of the resulting silicon molybdic acid complexes.

[作用] 本発明の基本的概念を示す流路は第1図に示され、以下
、反応の順に従って流路を説明する。
[Operation] A flow path showing the basic concept of the present invention is shown in FIG. 1, and the flow path will be explained below in accordance with the order of reaction.

先ず、ケイ素を含有する鉄鋼試料を酸に溶解し、濾過し
、定容とした試料溶液1をサンプルループ2へ導入する
First, a steel sample containing silicon is dissolved in an acid, filtered, and a sample solution 1 made up to a constant volume is introduced into the sample loop 2.

このサンプルループ2はバルブ3を介してキャリヤー溶
液4の流れている細管5に接続されており、バルブ3を
切り替えることによりキャリヤー溶液4中に一定量の試
料溶液1が注入され、混合される。
This sample loop 2 is connected via a valve 3 to a thin tube 5 through which a carrier solution 4 is flowing, and by switching the valve 3, a fixed amount of the sample solution 1 is injected into the carrier solution 4 and mixed.

細管5に注入された試お1溶液1には、細管6と細管5
とが接続されていることから、細管6内のモリブデン酸
アンモニウム7が細管5内に注入・混合され、接続後の
細管8へ導入されるが、同細管8は湯浴槽9で加熱され
るためにその間にケイモリブデン酸錯体が生成される。
The sample solution 1 injected into the capillary 5 contains the capillary 6 and the capillary 5.
Since ammonium molybdate 7 in the capillary tube 6 is injected and mixed into the capillary tube 5 and introduced into the capillary tube 8 after the connection, the capillary tube 8 is heated in the hot water bath 9. During this time, a silicon molybdic acid complex is formed.

このケイモリブデン酸錯体は、湯浴槽9を通過した細管
8が細管10と接続されていることから、この細管10
内のリン及びヒ素の妨害抑制剤11が細管8内に注入・
混合され、リン及びヒ素のモリブデン酎錯体は分解され
る。
Since the thin tube 8 that passed through the hot water bath 9 is connected to the thin tube 10, this silicomolybdic acid complex is contained in the thin tube 10.
The phosphorus and arsenic interference inhibitor 11 is injected into the thin tube 8.
When mixed, the phosphorus and arsenic molybdenum complexes are decomposed.

更に細管10は細管12と接続されており、この細管1
2内の還元剤13が細管10へ注入Q混合され、ケイモ
リブデン酸錯体は接続後の細管14を流れる間に還元さ
れてモリブデン青錯体となる。
Further, the capillary 10 is connected to a capillary 12, and this capillary 1
The reducing agent 13 in 2 is injected into the thin tube 10 and mixed, and the silicon molybdate complex is reduced while flowing through the connected thin tube 14 to become a molybdenum blue complex.

そして、最終的にこの細管14の流れの途中に設置され
た吸光光度計15によりモリブデン青錯体の吸光度を測
定することにより鉄鋼中のケイ素を定量的に分析するこ
とができる。
Finally, silicon in the steel can be quantitatively analyzed by measuring the absorbance of the molybdenum blue complex with an absorbance photometer 15 installed in the middle of the flow of the thin tube 14.

ここにおいて、酸性試料溶液lとモリブデン酸アンモニ
ウム溶液7との混合において、モリブデン酸アンモニウ
ム溶液7の濃度が5%以上では、細管B内にモリブデン
酸の沈殿が生じて細管8が詰まるため、5%以下である
必要があり、好ましくは3〜5%の濃度が適当である。
Here, in mixing the acidic sample solution 1 and the ammonium molybdate solution 7, if the concentration of the ammonium molybdate solution 7 is 5% or more, precipitation of molybdic acid will occur in the capillary tube B and the capillary tube 8 will be clogged. The concentration should be below, preferably 3 to 5%.

更に、細管8を湯浴槽9で加熱してケイモリブデン酸錯
体を生成させているが、この加熱温度が50℃以上であ
ると、はぼ100%反応が進行することになるので、5
0℃以上に設定する必要があり、50〜80℃の温度と
することがより望ましい。
Furthermore, the thin tube 8 is heated in a hot water bath 9 to generate a silicon molybdic acid complex, but if the heating temperature is 50°C or higher, the reaction will proceed almost 100%.
It is necessary to set the temperature to 0°C or higher, and it is more desirable to set the temperature to 50 to 80°C.

尚、温浴411!!9中の細管8の長さは反応を完結さ
せるためには長い方が望ましいが、長すぎると得られる
吸光度が小さくなるため、適当な長さにする必要がある
。。
In addition, warm bath 411! ! The length of the thin tube 8 in 9 is preferably long in order to complete the reaction, but if it is too long, the absorbance obtained will be low, so it is necessary to make it an appropriate length. .

リン及びヒ素の妨害抑制剤はシュウ酸またはフッ化水素
酸等が一般的であり、ケイモリブデン酸錯体の還元剤は
硫酸第一鉄アンモニウムまたはアスコルビン酸溶液等が
一般的である。
Oxalic acid or hydrofluoric acid is generally used as an interference inhibitor for phosphorus and arsenic, and ferrous ammonium sulfate or ascorbic acid solution is generally used as a reducing agent for the silicon molybdic acid complex.

また、細管14はケイモリブデン酸錯体の還元反応を完
結させるに充分な長さにする必要がある。
Further, the thin tube 14 must have a length sufficient to complete the reduction reaction of the silicon molybdic acid complex.

[実施例] 第1図に示した吸光高度流れ分析流路を用いて試料溶液
を連続縁り返し測定した。
[Example] Using the absorption high flow analysis flow path shown in FIG. 1, a sample solution was continuously measured in a circular motion.

この試料溶液としては純鉄(ケイ素含有率=0.001
wt%)0.5gにケイ素を0.01wt%、0.1w
t%相当を添加し、塩酸20m1.過酸化水素水10m
1を加えて溶解した後、100m1に稀釈したものであ
る。
This sample solution contains pure iron (silicon content = 0.001
wt%) silicon in 0.5g, 0.01wt%, 0.1w
t% equivalent was added, and 20 ml of hydrochloric acid was added. Hydrogen peroxide solution 10m
1 was added and dissolved, and then diluted to 100ml.

また、試料溶液注入量、試薬溶液、各液組成または試薬
濃度、各試薬流量は第1表に示すとおりであり、第1図
における細管8に相当するものは5m、細管14に相当
するものは3mとし、湯浴温度は55℃に設定した。
In addition, the sample solution injection amount, reagent solution, each liquid composition or reagent concentration, and each reagent flow rate are as shown in Table 1, and the one corresponding to capillary tube 8 in FIG. 1 is 5 m, and the one corresponding to capillary tube 14 is as shown in Table 1. 3 m, and the water bath temperature was set at 55°C.

この結果、試料溶液を注入後約3分間で第2図に示すよ
うな吸光度ピークが得られた。
As a result, an absorbance peak as shown in FIG. 2 was obtained approximately 3 minutes after injection of the sample solution.

繰り返し精度はそれぞれ変動係数で5.2%、0.7%
であり、従来方法とほぼ同様の精度が得られた。
The repeatability coefficient of variation is 5.2% and 0.7%, respectively.
, and almost the same accuracy as the conventional method was obtained.

同一試料について、従来の湿式化学分析と並行して本実
施例に係る分析方法を行なったところ、試料溶液12件
について従来法では90分間を要したのに対し、本実施
例では40分間で足りた。
When the analysis method according to this example was performed on the same sample in parallel with conventional wet chemical analysis, it was found that 40 minutes was sufficient for 12 sample solutions, whereas the conventional method required 90 minutes. Ta.

即ち、試料の分解以降の操作を従来法に比較して約半分
の所要時間で行なうことが可能となった。
That is, it has become possible to perform the operations after sample decomposition in about half the time required compared to the conventional method.

[発明の効果] 以上のように本発明は、鉄鋼中のケイ素の分析において
その分析に要する時間を飛躍的に短縮し、また鉄鋼試料
を酸に溶解し、濾過し、定容した後、一定量を装置に注
入するだけで足りるという極めて簡便な手段で分析する
ことを可能とする。
[Effects of the Invention] As described above, the present invention dramatically shortens the time required for analyzing silicon in steel. This makes it possible to analyze using an extremely simple method that only requires injecting the amount into the device.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的概念を示す流路の概略図、第2
図は横軸に時間を、縦軸に吸光度をとり、吸光光度計の
測定結果を示したグラフである。 l・・・試料溶液 2・・・サンプルループ 3・・・
バルブ 4・・・キャリヤー溶液 5・・・細管 6・
・・細管7・・・モリブデン酸アンモニウム 8・・・
細管9・・・湯浴槽 10・・・細管 11・・・リン
及びヒ素の妨害抑制剤 12・・・細管 13・・・還
元剤 14・・・細管 15・・・吸光光度計 l・・・試料溶液   2・・・サンプルループ3−・
・・バルブ 4・・・キャリヤー溶液 5・・・細管6
・・・細管  7・・・モリブデン酸アンモニウム8・
・・細管  9・・・湯浴槽    io・・・細管1
1・・・リン及びヒ素の妨害抑制剤 12・・・細管1
3・・・還元剤 14・・・細管 15・・・吸光光度
計第2図 吸光度 時間(分)
Fig. 1 is a schematic diagram of a flow path showing the basic concept of the present invention;
The figure is a graph showing the measurement results of an absorptiometer, with time on the horizontal axis and absorbance on the vertical axis. l...Sample solution 2...Sample loop 3...
Valve 4...Carrier solution 5...Tube 6.
...Tube 7...Ammonium molybdate 8...
Thin tube 9... Hot water bath 10... Thin tube 11... Phosphorus and arsenic interference inhibitor 12... Thin tube 13... Reducing agent 14... Thin tube 15... Spectrophotometer l... Sample solution 2...Sample loop 3-...
...Valve 4...Carrier solution 5...Thin tube 6
...tubule 7... ammonium molybdate 8.
... Thin tube 9... Hot water bath io... Thin tube 1
1... Phosphorus and arsenic interference inhibitor 12... Capillary 1
3... Reducing agent 14... Capillary 15... Absorption photometer Figure 2 Absorbance time (minutes)

Claims (1)

【特許請求の範囲】[Claims] ケイ素を含有する鉄鋼試料を酸に溶解し、濾過し、定容
とした後、吸光光度流れ分析によりケイ素を分析する方
法において、キャリヤー溶液を流通せしめた細管に試料
溶液及びモリブデン酸アンモニウム溶液を注入・混合し
、該細管を湯浴槽に通じてケイモリブデン酸錯体を生成
させた後、該細管にリン及びヒ素の妨害抑制剤と還元剤
を順次注入・混合し、これにより生成したケイモリブデ
ン酸錯体の吸光度を測定することによりケイ素を分析す
ることを特徴とした鉄鋼中のケイ素分析方法。
In a method of analyzing silicon by spectrophotometric flow analysis after dissolving a silicon-containing steel sample in acid, filtering it, and bringing it to a constant volume, the sample solution and ammonium molybdate solution are injected into a capillary tube through which a carrier solution flows.・After mixing and passing the capillary through a hot water bath to generate a silico-molybdic acid complex, a phosphorus and arsenic interference inhibitor and a reducing agent are sequentially injected and mixed into the capillary, thereby producing a silico-molybdic acid complex. A method for analyzing silicon in steel, characterized by analyzing silicon by measuring the absorbance of .
JP8364086A 1986-04-11 1986-04-11 Analysis of silicon in iron or steel Pending JPS62239052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8364086A JPS62239052A (en) 1986-04-11 1986-04-11 Analysis of silicon in iron or steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8364086A JPS62239052A (en) 1986-04-11 1986-04-11 Analysis of silicon in iron or steel

Publications (1)

Publication Number Publication Date
JPS62239052A true JPS62239052A (en) 1987-10-19

Family

ID=13808047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8364086A Pending JPS62239052A (en) 1986-04-11 1986-04-11 Analysis of silicon in iron or steel

Country Status (1)

Country Link
JP (1) JPS62239052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331766A (en) * 1989-06-29 1991-02-12 Shimadzu Corp Sample leading device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331766A (en) * 1989-06-29 1991-02-12 Shimadzu Corp Sample leading device

Similar Documents

Publication Publication Date Title
Kessler et al. An automated procedure for the simultaneous determination of calcium and phosphorus
Timerbaev et al. Speciation studies by capillary electrophoresis-Simultaneous determination of chromium (III) and chromium (VI)
Feng et al. Determination of arsenic, antimony, selenium, tellurium and bismuth in nickel metal by hydride generation atomic fluorescence spectrometry
AU655203B2 (en) Flow injection analysis of total inorganic phosphate
CN110865069A (en) Method for measuring titanium content in ferrochrome alloy by using inductively coupled plasma emission spectrometer
Zagatto et al. Mixing chambers in flow analysis: a review
Himeno et al. Simultaneous determination of chromium (VI) and chromium (III) by capillary electrophoresis
CN101324520B (en) Method for rapidly detecting micro trace quantity lead in ship hull steel with graphite oven atomic absorption
Maeck et al. Extraction-Flame Photometric Determination of Boron.
US4871681A (en) Method for the colorimetric determination of the cyanide concentration of aqueous solutions
JPS62239052A (en) Analysis of silicon in iron or steel
Padarauskas et al. Ion-pair chromatographic determination of chromium (VI)
Kass et al. Spectrophotometric determination of sulphur dioxide and hydrogen sulphide in gas phase by sequential injection analysis technique
US3930957A (en) Apparatus and method for biological analysis
Headridge et al. The determination of mobile nitrogen in steel using an ammonium ion-selective electrode
RU2043629C1 (en) Process of determination of iron (iii) and aluminium (iii) in acid liquors
US20080131319A1 (en) Method of Real-Time/Inline Detection of Ultratrace Metallic Element Contained in Sample Liquid and Apparatus Therefor
Quintero et al. Evaluation of the analytical use of the manganese-catalysed malachite green-periodate reaction by the stopped-flow technique
Bulatov et al. Concept of equilibrium flow-through methods: cyclic injection analysis and its analytical potential
JPH0429057A (en) Simultaneous analysis of selenic acid ion and selenious acid ion
JPS59116546A (en) Method for analyzing iron ion and cobalt ion
McNutt et al. Microdetermination of Silver Using Ion Exchange Concentration.
Safavi et al. Fluorimetric kinetic-FIA determination of Ag (I) based on its catalytic effect on the reduction reaction of safranine with iodide
SU822010A1 (en) Method of determining phosphorus-containing extractants
JP3638502B2 (en) Method and apparatus for highly sensitive analysis of trace arsenic