JPS62239025A - Detecting and diagnosing device for axial vibration of rotating shaft - Google Patents

Detecting and diagnosing device for axial vibration of rotating shaft

Info

Publication number
JPS62239025A
JPS62239025A JP8374686A JP8374686A JPS62239025A JP S62239025 A JPS62239025 A JP S62239025A JP 8374686 A JP8374686 A JP 8374686A JP 8374686 A JP8374686 A JP 8374686A JP S62239025 A JPS62239025 A JP S62239025A
Authority
JP
Japan
Prior art keywords
signal
rotating shaft
vibration
processing
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8374686A
Other languages
Japanese (ja)
Other versions
JPH0476569B2 (en
Inventor
Yuzo Sato
雄三 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8374686A priority Critical patent/JPS62239025A/en
Publication of JPS62239025A publication Critical patent/JPS62239025A/en
Publication of JPH0476569B2 publication Critical patent/JPH0476569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent a rotary machine from damaging by providing a signal transmitting means which sends the output signal of a vibration detector to a stationary part and a signal processing means which generates an alarm signal when the signal transmitted by the signal transmitting means exceeds a set value. CONSTITUTION:A detection signal processing part 17a converts a vibration acceleration signal which is detected 9 into a speed signal and a displacement signal, which are displayed 17b. One signal after the processing 17a is supplied to a data recorder 17d through a discriminator 17c and the vibration acceleration signal which exceeds a set value is recorded 17d automatically. Another signal after the processing 17a is supplied to an arithmetic processing part 17e and information on the arithmetic result is inputted to an abnormality diagnostic part 17f and a comparing decision device 17g. The diagnostic part 17f compares various pieces of information of a rotating shaft 6 based upon the safety of each operations state which is stored 17h previously on an interactive basis through the decision device 17g to diagnose the cause of vibrations, so that an abnormal diagnostic result is stored 17i. A computing element 17j adds the load on a thrust bearing to data after processing 17e to decide the danger of the thrust bearing, and generates an alarm 17k when the bearing is in a dangerous state.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は例えば蒸気タービン発電機などの回転機械に於
GJる、回転軸の軸Ij向異常振動や、地震発生時の軸
方向振動応益の振動加速庶を直接81制し、その振動加
速酊が設定以上かどうか判断して設定値以上のときに警
報信号を発11−する回転軸の軸方向振動検出診断装置
に関1Jる。 (従来の技術) 従来、原子力発電所、火力発電所t
[Purpose of the Invention] (Field of Industrial Application) The present invention is intended to solve the problem of abnormal vibration in the axis Ij direction of a rotating shaft in a rotating machine such as a steam turbine generator, or vibration acceleration due to axial vibration during an earthquake. The present invention relates to an axial vibration detection and diagnostic device for a rotating shaft which directly controls vibration, determines whether the vibration acceleration is above a set value, and issues an alarm signal when it exceeds the set value. (Conventional technology) Conventionally, nuclear power plants, thermal power plants

【どの蒸気タービン
発電機を設備している発電所は、11対設訓による安全
評価を行<’につで建設され、地震による事故発生に対
して、各秤保護系の作動ににる損傷事故の軽減ないし防
11−を行27うJ:うに運転され(゛いる。そして、
これらの発電所で【ま、地震81による構造物全体の地
震応答を検出する方法と、回転軸の振動を検出する方法
の2種類が採用されている。さらに、回転軸の振動を検
出器る方法には、回転軸を支えている軸受部に於いて、
回転111+半径方向絶対振動を、速度型振動計を具備
した振動棒によって検出器る方法、軸受と回転軸の相対
振動を検出する渦電流式非接触型変位泪ににる方法、更
に、軸受台の振動加速度又は速度4測による回転軸支持
系での間接的な振動検出の方法等を選択採用し、地震計
の応答制限値と回転軸撮動制限的によって、発電機の緊
急停止を行なうようになっている。 (発明が解決しようと覆る問題点) ところで、これらの構造物に於いて、地震力は拘束力が
低い不利な方向に作用しやすく、蒸気タービン発電機の
運転時に地震が発生し、地震力の最大水平動が回転軸方
向と一致した場合、蒸気タービン発電機に設けられてい
るスラスト軸受は回転軸の運転にともなうスラスト力と
同時に地震の水平動による回転軸の慣個エネル1=−を
直接うりる。これらの合成されたスラスト力は、地震の
水平動に位相があるため、回転軸の挙動は極めて複雑に
なる。そして、過去の地震に於いて、地震計によって4
測されている水平動最大加速度は、マグニチュード6〜
8で約0.16〜0.5Gを示している。したがって、
回転軸のff1ffiが大きくなる程慣+J1エネルギ
ーの増大とどもに、プラス1〜軸受は損傷を起こしやす
くなる。又、一方、前述の従来の技術の振動検出方法は
、回転軸半径方向の振動をd1測する方法であり、回転
機械の通常の運転時に問題どなり、かつ危険となる回転
軸の異常振動発生及びその徴候を検出することを1的と
しているため、回転軸の軸方向振動を検出づることは振
動検出方向が異なることから不可能であり、直接回転軸
の回転軸方向振動検出は実施されていない。そこで、本
発明は、回転軸の軸方向振動を検出し、その検出された
軸方向振動が設定伯以−トかどうかを判断し設定1+D
以上のどきに警報信号を発生させて、回転軸IJ向の異
常振動発生おJ、び地震応答による回転軸のプラス1〜
軸受の1(4傷ど回転機械の損傷の防止に奇!jするこ
とを目的どする。 〔発明の構成〕 (問題点を解決するための手段) 本発明による回転軸の軸方向振動検出診断装向は、回転
軸中心線上に設()られ、回転軸の軸方向の加速度を検
出する振動検出器と、この振動検出器の出力信号を静1
1部に伝える信号伝達手段と、この信号伝達手段によっ
て伝えられた信号が設定値以上かどうか判断して設定鎖
板」−の場合に警報信号を発生する信号処理手段とを備
えていることを特徴とJ゛る。 (作 用) 前記振動検出器は、回転軸に軸方向振動が発生すると、
この振動の加速度を検出する。この振動の加速度信号は
、回転部から静止部へ信号伝達手段を介して伝達され、
信号処理手段に入力される。 このとき前記加速度をα、通常運転時の回転軸のスラス
ト軸受に負荷されている加重をF8、振動加速度αによ
る変動荷車を「1、回転軸重iをW とすれば、FI=
W、・αとなり、したがつ■ でスラス1〜#A受最人負荷荷重1:1は、「□−Fs
−1−F1となる。ここでスラスト軸受のメタルの短期
局所許容面圧、すなわち、スラスl〜軸受メタル表面温
庶でのメタルの降伏点を[〕8とおき、軸受潤滑油有効
面積をΔ、軸受形式おにび回転機械型式毎に定められて
いる油膜圧力係数をβとすると、スラスI・軸受メタル
に発生する応力は、F■xβ/ALP、の場合、許容応
力以下であり、F、xβ/△≧P、の場合、許容応力以
上である。 したがって、スラスト軸受メタルに発生する応力が許容
応力以上となるような振動加速度αの信号を、信号処理
手段は危険であると判断し、警報信号を発生する。 (実施例) 第2図は振動検出器と信号伝達手段を蒸気タービン発電
機に取り付番ノだ場合の取り付は位置図である。蒸気タ
ービン発電*iは、高中圧タービン2、低圧タービン3
、発電機4、励磁機5、回転軸6、ジャーナル軸受7 
.7b、7C,7d。 スラスト軸受8を備えている。また、回転軸6の途中の
回転軸接合部の中心または、回転軸端の回転輪中心孔に
、回転軸の軸方向の加速度を検出り−る振動検出器9を
設りている。この振動検出器9は励磁機5の軸端部に設
【プられており、101転部ど静1!二部の電気信号伝
達を行なう、信号伝達手段(本図の揚台はスリプリング
駅間10)に接続されている。 第3図は振動検出器9の一実施例の構造を示す縦断面図
である。この振動検出器9は、振動加速度計9 、電気
絶縁材9h1保護ケース9C1すング9d、軸方向11
1カリング9゜、軸心(?7冒調整用スリーブ9 、カ
バー9 、入出力配I!i! 9 h、r      
   g および本体ケース9゜を備えていて、回転軸6の中心孔
6.に組込まれている。そして振動検出器9に内蔵され
る振動加速度目98の取付方向は、図中矢印6bで示す
振動加速度819.の加速1α応答方向の軸心ど回転軸
中心線とを一致させている。 これは、振動加速度計内の、外部強制振動変位に応答す
る振動子おもり、又は可りjコイル等の可動部を、検出
方向の可動をさまたげる回転軸の回転に伴う遠心力の不
拘−分η]影響を受けない状態、1なわち、回転軸対称
になるように取付け、撮動加速度計9.の可動部と静止
部の接触を防止している。ぞして、この振動加速度目9
.は、電気絶縁材9hににす、保護ケース9Cに一体成
形され組込まれている。これらはさらに、二゛:)のク
リビ断面のリング9dど、軸方向111カリング9゜及
び回転半径方向の軸心位置調整用スリー19[によって
、振動検出器の本体ケース9 に全体が組立てられてい
る。本体ケース9゜の端面にはカバー9、が組立てられ
、振動加速度目9aの入出力配線91.用の孔91が設
(〕られ、ぞして、空間部9、は、加速度泪9 の入出
力配線9hに、たりJ               
 aみと遊びが生じないにうに発泡成形月を注入し、充
満さけて成形している。板子のにうにして組込まれた加
a度R198は、組立中及び組立完了後に於いて、回転
軸の運転可能回転数領域で、組立微調整が実tffAさ
れ、外部強制振動変位入力に対する高い精度の応答感度
と信頼性を有することが確認され、実用される、そして
、ポルl〜9kによって回転軸6に組立てられる。 第4図は前記信号伝達手段に、F M発振器及び受信器
を用い、これらのFM発振器、受信器、および前記振動
検出器の動作電源として電磁誘導によって静止側から伝
達された電力を用いた場合の撮動検出器と信号伝達手段
のブロック図であり、第5図はFM発振器と振動検出器
を回転軸に取り付【ノた場合の取すイ・口J組立図であ
る。誘導電源装H11は、静止]イル11.に電流を流
して磁界を発生させ、この静止]イル11.と相対位置
に取り付けられた回転軸外周面上に、回転]イル12a
に電圧を誘起する。そして、ボルテージレギュレータ1
2は、撮動検出器9、検出信号を増幅する増幅器13、
シグナルコンディショナ14.1M発振器15を稼働さ
せる平滑な定電圧に変換し、これを供給する。一方、振
動検出器9は、増幅器13から供給された印加電圧入力
によって機能動作し、回転軸方向の振動加速度を電圧変
化信号として出力し、増幅器13で増幅される。そして
、増幅されたこの信号は、シグナルコンディショナ14
によって電圧変化に対応する同波数標準信号に変換され
、I:M発振器15に入力される。 さらに、1M発振器15、空中線アンテプづ5a1静1
1:側空中線アンテナ163.1M受信器16によって
、回転体からの信号の送受信を可能としCいる。そして
、FM受信器16で再度電圧変化信号に変換し、信号伝
達手段17に伝達される。 第1図は本発明による回転軸の軸方向振動検出診断袋間
の一実施例を示すブ[1ツク図である。 回転軸6の軸端の中心孔に設(−Jられた振動検出器9
の動作電源の供給と出力信号の伝達は、回転部ど静11
一部の電気信号伝達を行イ1うスリップリング10によ
って、信号処理手段17の検出イ3号処理部17.に電
気配線°づることににり行なわれCいる。この検出信号
処理部17.は、振動検出器9の動作電源の供給を行な
うと同時に検出された振動加速度信号を速度信号と変位
イエ号に変換し、表示器17bで、検出処理毎に上記信
号を数値で表示させるように機能動作する。一方、この
検出信号処理部17 は、弁別器17Cど接続され、さ
らに、データレコーダ17dに接続されている。 弁別器17 はデータレ:】−ダ17dへの、検出され
た振動加速度計号の入力記録の開始及び終了の動作命令
を行なう機能を有し、予め設定された振動加速度信号の
仕切値と、内蔵されているイへ号波形記憶遅延回路によ
り、入力記録量始時前の一定時間からの連続人ノJ記録
を可能とし、前)本の仕切値を越える振動加速度信号を
白!l!lJ記録するようになっている。又、一方、検
出信号処理部17aは演算処理部17oに接続される。 そして、演算処理部17oは、回転信号発生器18から
の回転信号を基準として、内蔵されている高速フーリエ
変換器ににって周波数分析を行い、パワースペクトラム
データにまとめると同時に、振動周波数ピーク毎の加速
度、速度、変位、振動振幅の最大値、振動振幅の増減の
変化率などを演算する。これらの振動検出処理され、演
算された結果の情報は、異常診断部17.と比較判定器
17゜に入力される。そして、異常診断部17.は、上
記の情報と、予め記憶部17、に上記の情報と同様に入
力記憶されている運転状態毎の安全を基準とする、回転
軸の軸り面振動の情報、及び種々の11111方向異常
撮動発生時の振動情報、地震応答時の模擬信号情報など
と、比較判定器17.との入出力対話形式により比較し
、撮動徴候による振動原因の診断を行なう。記憶部17
.は、これらの異常診断結果を記憶し、記憶部171.
と同様に機能する。又、一方、異常診断部17fは、発
電所内に設備されている地震h119の検出信号と、回
転軸方向の振動の検出信号とを比較し、地需計19での
地震発生の有無にJこって、地震発生時と、地震の発生
がない時を直接判別する。演算器17.は、演算処理部
17oから帽られた回転軸方向の振動加速度による回転
軸方向変動荷重を演算し、通常運転[5(1)スラスト
軸受負荷の荷重をIII算し、スラス1へ軸受のホワイ
トメタルの短期局所面Y[との比較を行い、スラスト軸
受の損傷発生及び危険判定を行なう。 そして、過負荷により危険であるとの判定結果が得られ
た場合は、■報器17kによって、この判定結果を表示
すると同時に、回転機械の損傷事故防止のために設備さ
れている各種保護系を作動させる。 〔発明の効果〕 本発明による回転軸の軸方向振動検出診断装置は、回転
中の回転軸の軸方向振動を検、出づ−ることができて、
この軸り面振動が設定値以上の場合に警報信号を発生さ
口るため、回転軸方向の異常振動の発生ならびに地震応
答による、回転軸のスラスト軸受の損傷と回転機械の損
傷の防止に寄与できる。
[Which power plants are equipped with steam turbine generators are constructed under the following 11-point safety evaluation system, and in the event of an accident caused by an earthquake, damage to the operation of each scale protection system will be avoided. Take measures to reduce or prevent accidents 27
These power plants employ two methods: a method that detects the seismic response of the entire structure due to an earthquake 81, and a method that detects vibrations of the rotating shaft. Furthermore, in the method of detecting the vibration of the rotating shaft, in the bearing part that supports the rotating shaft,
A method for detecting rotational 111 + radial absolute vibration using a vibration rod equipped with a velocity vibration meter, an eddy current non-contact displacement method for detecting relative vibration between a bearing and a rotating shaft, and a bearing stand. Selectively adopt a method of indirect vibration detection in the rotating shaft support system by measuring the vibration acceleration or velocity of It has become. (Problems that the invention attempts to solve) By the way, in these structures, seismic force tends to act in an unfavorable direction where the restraining force is low, and earthquakes occur when the steam turbine generator is operating, and the seismic force is When the maximum horizontal motion coincides with the direction of the rotating shaft, the thrust bearing installed in the steam turbine generator will directly absorb the individual energy 1=- of the rotating shaft due to the horizontal motion of the earthquake at the same time as the thrust force accompanying the operation of the rotating shaft. Ururu. Because these combined thrust forces have a phase with the horizontal motion of the earthquake, the behavior of the rotation axis becomes extremely complex. In past earthquakes, seismographs have shown that 4
The maximum horizontal acceleration measured is magnitude 6~
8 shows approximately 0.16 to 0.5G. therefore,
As the ff1ffi of the rotating shaft increases, the +J1 energy increases, and the +1~ bearing becomes more susceptible to damage. On the other hand, the conventional vibration detection method described above is a method of measuring d1 vibration in the radial direction of the rotating shaft, which prevents the occurrence of abnormal vibrations of the rotating shaft that can be problematic and dangerous during normal operation of the rotating machine. Since the primary purpose is to detect the symptoms, it is impossible to detect the axial vibration of the rotating shaft because the vibration detection direction is different, and direct vibration detection of the rotating shaft in the axial direction has not been carried out. . Therefore, the present invention detects the axial vibration of the rotating shaft, determines whether the detected axial vibration is higher than the setting value, and determines whether or not the detected axial vibration exceeds the setting value.
At the above times, an alarm signal is generated to prevent abnormal vibrations in the direction of the rotation axis IJ and the rotation axis plus 1~ due to earthquake response.
[Structure of the invention] (Means for solving the problem) Axial vibration detection and diagnosis of a rotating shaft according to the present invention. The device is equipped with a vibration detector that is installed on the center line of the rotating shaft and detects the acceleration in the axial direction of the rotating shaft, and an output signal of this vibration detector that is placed on the center line of the rotating shaft.
1, and a signal processing means for determining whether the signal transmitted by the signal transmitting means is equal to or greater than a set value and generating an alarm signal in the case of "setting chain plate". Characteristics and J. (Function) The vibration detector detects when axial vibration occurs on the rotating shaft.
The acceleration of this vibration is detected. The acceleration signal of this vibration is transmitted from the rotating part to the stationary part via a signal transmission means,
The signal is input to the signal processing means. At this time, if the acceleration is α, the load applied to the thrust bearing of the rotating shaft during normal operation is F8, the variable wagon due to the vibration acceleration α is 1, and the rotating shaft load i is W, then FI=
W, ・α becomes, and then ■, and the maximum load 1:1 for the thrust 1 to #A is ``□-Fs
-1-F1. Here, the short-term local permissible surface pressure of the metal of the thrust bearing, that is, the yield point of the metal between the thrust l and the bearing metal surface temperature, is set to []8, the effective area of the bearing lubricant is Δ, and the bearing type and rotation. If the oil film pressure coefficient determined for each machine type is β, then the stress generated in the thrust I/bearing metal is below the allowable stress in the case of F■xβ/ALP, and F, xβ/△≧P, , the stress is greater than the allowable stress. Therefore, the signal processing means determines that a signal of vibration acceleration α such that the stress generated in the thrust bearing metal exceeds the allowable stress is dangerous, and generates an alarm signal. (Example) FIG. 2 is a diagram showing the installation location of the vibration detector and the signal transmission means in the steam turbine generator. Steam turbine power generation *i is a high- and intermediate-pressure turbine 2 and a low-pressure turbine 3
, generator 4, exciter 5, rotating shaft 6, journal bearing 7
.. 7b, 7C, 7d. A thrust bearing 8 is provided. Further, a vibration detector 9 is provided at the center of the rotating shaft joint in the middle of the rotating shaft 6 or in the center hole of the rotating wheel at the end of the rotating shaft for detecting the acceleration in the axial direction of the rotating shaft. This vibration detector 9 is installed at the shaft end of the exciter 5, and the vibration detector 9 is installed at the end of the shaft of the exciter 5. It is connected to a signal transmission means (the hoist in this figure is between the slip ring stations 10) that performs two-part electric signal transmission. FIG. 3 is a longitudinal sectional view showing the structure of one embodiment of the vibration detector 9. This vibration detector 9 includes a vibration accelerometer 9, an electrical insulating material 9h, a protective case 9C, a hinge 9d, and an axial direction 11.
1 Culling 9°, shaft center (?7) adjustment sleeve 9, cover 9, input/output wiring I!i! 9 h, r
g and a main body case 9°, and has a center hole 6.g of the rotating shaft 6. is incorporated into. The mounting direction of the vibration acceleration eye 98 built into the vibration detector 9 is the vibration acceleration 819. shown by the arrow 6b in the figure. The axis of the acceleration 1α response direction and the rotational axis center line are made to coincide with each other. This is the unrestricted centrifugal force due to the rotation of the rotating shaft that prevents the movable parts such as the vibrator weights or coils in the vibration accelerometer from moving in the detection direction, which responds to external forced vibration displacement. ] Unaffected state, 1, that is, mounted so as to be symmetrical about the rotational axis, and the imaging accelerometer 9. This prevents contact between the moving and stationary parts of the Therefore, this vibration acceleration
.. The electrical insulating material 9h is integrally molded and incorporated into the protective case 9C. These are further assembled into the main body case 9 of the vibration detector by means of a ring 9d with a cribi cross section of 2゛: There is. A cover 9 is assembled on the end face of the main body case 9°, and input/output wiring 91. for the vibration acceleration eye 9a. A hole 91 is provided for the space 9, and the input/output wiring 9h of the acceleration 9 is connected to the space 9.
Foaming molding is injected into the mold to prevent any play, and molding is done to avoid filling. The acceleration R198 incorporated into the plate is finely adjusted during and after assembly in the operating speed range of the rotary shaft, resulting in high accuracy against external forced vibration displacement input. It has been confirmed that it has response sensitivity and reliability, and is put into practical use, and is assembled on the rotating shaft 6 by Pol l~9k. FIG. 4 shows a case where an FM oscillator and a receiver are used as the signal transmission means, and power transmitted from the stationary side by electromagnetic induction is used as the operating power source for the FM oscillator, receiver, and vibration detector. Fig. 5 is a block diagram of the imaging detector and signal transmission means, and Fig. 5 is an assembly diagram when the FM oscillator and vibration detector are attached to the rotating shaft. The induction power supply H11 is stationary] 11. A current is applied to generate a magnetic field, and the stationary state]11. A rotating shaft 12a is mounted on the outer circumferential surface of the rotating shaft, which is mounted at a relative position to
induces a voltage in And voltage regulator 1
2 is an imaging detector 9, an amplifier 13 that amplifies the detection signal,
Signal conditioner 14.1M converts it into a smooth constant voltage that operates the oscillator 15 and supplies it. On the other hand, the vibration detector 9 functions in response to the applied voltage input supplied from the amplifier 13 and outputs vibration acceleration in the direction of the rotation axis as a voltage change signal, which is amplified by the amplifier 13. This amplified signal is then sent to the signal conditioner 14.
The signal is converted into the same wave number standard signal corresponding to the voltage change, and is input to the I:M oscillator 15. In addition, 1M oscillator 15, antenna antenna 5a1 static 1
1: Side antenna antenna 163.1M receiver 16 enables transmission and reception of signals from the rotating body. Then, the FM receiver 16 converts it into a voltage change signal again, and transmits it to the signal transmission means 17. FIG. 1 is a block diagram showing an embodiment of a diagnostic bag for detecting axial vibration of a rotating shaft according to the present invention. A vibration detector 9 installed (-J) in the center hole of the shaft end of the rotating shaft 6
The supply of operating power and the transmission of output signals are carried out by the static 11
Detection of the signal processing means 17 by the slip ring 10 which carries out some electrical signal transmission. The electrical wiring is carried out in the following manner. This detection signal processing section 17. At the same time as supplying operating power to the vibration detector 9, the detected vibration acceleration signal is converted into a velocity signal and a displacement signal, and the display 17b displays the above-mentioned signal numerically for each detection process. Function works. On the other hand, this detection signal processing section 17 is connected to a discriminator 17C and further connected to a data recorder 17d. The discriminator 17 has a function of instructing the data recorder 17d to start and end input recording of the detected vibration acceleration signal, and has a preset partition value of the vibration acceleration signal and a built-in The built-in waveform storage delay circuit enables continuous recording of people from a certain time before the start of the input recording amount, and detects vibration acceleration signals that exceed the division value of the previous) book! l! It is designed to record lJ. On the other hand, the detection signal processing section 17a is connected to the arithmetic processing section 17o. Then, the arithmetic processing unit 17o performs frequency analysis using a built-in fast Fourier transformer using the rotation signal from the rotation signal generator 18 as a reference, and compiles the data into power spectrum data. Calculate the acceleration, velocity, displacement, maximum value of vibration amplitude, rate of change in vibration amplitude, etc. Information on the results of these vibration detection processes and calculations is sent to the abnormality diagnosis section 17. is input to the comparison/judgment unit 17°. Then, the abnormality diagnosis section 17. includes the above information, information on the longitudinal surface vibration of the rotating shaft based on safety for each operating state, which is previously input and stored in the storage unit 17 in the same way as the above information, and various 11111 direction abnormalities. Vibration information at the time of imaging occurrence, simulated signal information at the time of earthquake response, etc., and comparison/judgment unit 17. Diagnosis of the cause of vibration is performed based on the photographed symptoms by comparing the data in an input/output dialog format. Storage section 17
.. stores these abnormality diagnosis results and stores them in the storage unit 171.
It works the same way. On the other hand, the abnormality diagnosis unit 17f compares the detection signal of earthquake h119 installed in the power plant with the detection signal of vibration in the direction of the rotation axis, and determines whether or not an earthquake has occurred at the earth demand meter 19. directly determine when an earthquake has occurred and when no earthquake has occurred. Arithmetic unit 17. calculates the variable load in the direction of the rotation axis due to the vibration acceleration in the direction of the rotation axis received from the arithmetic processing unit 17o, calculates the load of the thrust bearing load in normal operation [5 (1) A comparison is made with the short-term local plane Y[, and damage occurrence and danger of the thrust bearing are determined. If a judgment result is obtained that the overload is dangerous, the alarm 17k displays this judgment result and at the same time activates various protection systems installed to prevent damage to rotating machinery. Activate. [Effects of the Invention] The axial vibration detection and diagnosis device of the rotating shaft according to the present invention is capable of detecting and detecting the axial vibration of the rotating shaft during rotation.
An alarm signal is generated when this axial surface vibration exceeds a set value, which helps prevent damage to the thrust bearing of the rotating shaft and damage to the rotating machine due to abnormal vibration in the direction of the rotating shaft and earthquake response. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による回転軸の軸方向振動検出診断装置
の一実施例を示すブロック図、第2図は振動検出器ど信
号伝達手段とを蒸気タービン発電機に取り付けた場合の
取り付【プ位置図、第3図【ま振動検出器の一実施例を
示す縦断面図、第4図は信号伝達手段と振動検出器の動
作電源として静止側から電磁誘導によって伝達された電
力を用いlこ場合の振動検出器と信号伝達手段の111
79図、第5図は「M発1辰器ど振動検出器をI夏11
転騨1に取り(=t L−Jた場合の取り付は図である
。 9・・・振動検出器、10・・・スリップリング、15
・・・FM発振器、16・・・FM受信器、17・・・
信2二処即手段。 出願人代理人  佐  藤  −雄 上 も2図
Fig. 1 is a block diagram showing an embodiment of the axial vibration detection and diagnosis device for a rotating shaft according to the present invention, and Fig. 2 shows the installation of the vibration detector and signal transmission means when attached to a steam turbine generator. Fig. 3 is a longitudinal cross-sectional view showing one embodiment of the vibration detector, and Fig. 4 is a vertical cross-sectional view showing an example of the vibration detector, and Fig. 4 shows an electric power transmitted from the stationary side by electromagnetic induction as the signal transmission means and the operating power source of the vibration detector. 111 of the vibration detector and signal transmission means in this case
Figure 79 and Figure 5 show the vibration detector
The figure shows how to install it in the case where it is attached to the converter 1 (=t L-J). 9...Vibration detector, 10...Slip ring, 15
...FM oscillator, 16...FM receiver, 17...
22 immediate means. Applicant's agent Sato - Yugami also Figure 2

Claims (1)

【特許請求の範囲】 1、回転軸中心線上に設けられ、回転軸の軸方向の加速
度を検出する振動検出器と、この振動検出器の出力信号
を静止部に伝える信号伝達手段と、この信号伝達手段に
よつて伝えられる信号が設定値以上かどうか判断し設定
値以上の場合に警報信号を発生する信号処理手段とを備
えていることを特徴とする回転軸の軸方向振動検出診断
装置。 2、前記信号伝達手段がスリップリング装置である特許
請求の範囲第1項に記載された回転軸の軸方向振動検出
診断装置。 3、前記信号伝達手段が回転軸側にFM発信器、静止部
にFM受信器を備えている特許請求の範囲第1項に記載
された回転軸の軸方向振動検出診断装置。
[Claims] 1. A vibration detector provided on the center line of the rotating shaft to detect acceleration in the axial direction of the rotating shaft, a signal transmission means for transmitting an output signal of this vibration detector to a stationary part, and this signal A diagnostic device for detecting and diagnosing axial vibration of a rotating shaft, comprising signal processing means for determining whether a signal transmitted by the transmission means is equal to or greater than a set value and generating an alarm signal if the signal is equal to or greater than the set value. 2. The axial vibration detection and diagnosis device for a rotating shaft according to claim 1, wherein the signal transmission means is a slip ring device. 3. The axial vibration detection and diagnosis device for a rotating shaft according to claim 1, wherein the signal transmission means includes an FM transmitter on the rotating shaft side and an FM receiver on the stationary part.
JP8374686A 1986-04-11 1986-04-11 Detecting and diagnosing device for axial vibration of rotating shaft Granted JPS62239025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8374686A JPS62239025A (en) 1986-04-11 1986-04-11 Detecting and diagnosing device for axial vibration of rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8374686A JPS62239025A (en) 1986-04-11 1986-04-11 Detecting and diagnosing device for axial vibration of rotating shaft

Publications (2)

Publication Number Publication Date
JPS62239025A true JPS62239025A (en) 1987-10-19
JPH0476569B2 JPH0476569B2 (en) 1992-12-04

Family

ID=13811094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8374686A Granted JPS62239025A (en) 1986-04-11 1986-04-11 Detecting and diagnosing device for axial vibration of rotating shaft

Country Status (1)

Country Link
JP (1) JPS62239025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062177U (en) * 1992-06-11 1994-01-14 三菱電機株式会社 Vibration measuring device
JP2018173297A (en) * 2017-03-31 2018-11-08 三菱重工業株式会社 Blade vibration monitoring apparatus, rotation machine system, and blade vibration monitoring method
JP2021096106A (en) * 2019-12-16 2021-06-24 フロイント産業株式会社 Pan coating device, failure detection system of pan coating device and failure detection method of pan coating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826230A (en) * 1981-08-10 1983-02-16 Hitachi Ltd Diagnosing device for abnormality of rotating machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826230A (en) * 1981-08-10 1983-02-16 Hitachi Ltd Diagnosing device for abnormality of rotating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062177U (en) * 1992-06-11 1994-01-14 三菱電機株式会社 Vibration measuring device
JP2018173297A (en) * 2017-03-31 2018-11-08 三菱重工業株式会社 Blade vibration monitoring apparatus, rotation machine system, and blade vibration monitoring method
JP2021096106A (en) * 2019-12-16 2021-06-24 フロイント産業株式会社 Pan coating device, failure detection system of pan coating device and failure detection method of pan coating device

Also Published As

Publication number Publication date
JPH0476569B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
Walker et al. Results of subsynchronous resonance test at Mohave
JP3383955B2 (en) Vibration reduction and condition monitoring device
US7322794B2 (en) Method and apparatus for condition-based monitoring of wind turbine components
US6263738B1 (en) Vibration phasor monitoring system for rotating members
EP3143418B1 (en) Method and system for detecting rotor fault
CN101105202A (en) Intelligent bearing with compound sensor
CA1124827A (en) Method of detecting rubbing between rotating body and stationary body
Radionov et al. Implementation of telemetrie on-line monitoring system of elastic torque of rolling mill line of shafting
KR19980084275A (en) Motor abnormal condition monitoring system through signal analysis of power supply line
JPS62239025A (en) Detecting and diagnosing device for axial vibration of rotating shaft
EP0284087B1 (en) A shaft torsional vibration monitor for a multi-mass rotary shaft system
ES477470A1 (en) Apparatus for monitoring phase currents and torsional vibrations of a turbine-generator
CN112798950A (en) Consistency testing apparatus, sensor system and process
CN112033476A (en) Monitoring system and monitoring method for wind power boosting rotor
US6412339B1 (en) Monitoring of bearing performance
JPH0557528B2 (en)
JP2002286586A (en) Instrument for measuring load displacement amount
KR101225614B1 (en) Non-contact eddy cur rent displacement probes with vibration absorber
CN108982014A (en) A kind of aero tyre fixed point position and the balanced compensated system of limited point
US20240210276A1 (en) Signal Processing Method, Signal Processing Device, And Signal Processing Program
JPS6189912A (en) Turbine vibration monitoring device
JPS6126905Y2 (en)
JPH0743207A (en) Vibration meter
JP2573847Y2 (en) Monitoring equipment for hydraulic machines
Moyers A microcomputer-based data acquisition system for diagnostic monitoring and control of high-speed electric motors