JPS62239010A - Circulation driving type rate gyro - Google Patents

Circulation driving type rate gyro

Info

Publication number
JPS62239010A
JPS62239010A JP61084534A JP8453486A JPS62239010A JP S62239010 A JPS62239010 A JP S62239010A JP 61084534 A JP61084534 A JP 61084534A JP 8453486 A JP8453486 A JP 8453486A JP S62239010 A JPS62239010 A JP S62239010A
Authority
JP
Japan
Prior art keywords
force
forces
signals
elements
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61084534A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博史 山口
Ryo Kimura
涼 木村
Yoshitake Hayashi
祥剛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61084534A priority Critical patent/JPS62239010A/en
Priority to US07/033,761 priority patent/US4791815A/en
Priority to KR1019870003484A priority patent/KR910001145B1/en
Publication of JPS62239010A publication Critical patent/JPS62239010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To separate a component corresponding to a Coliolis force and a component corresponding to a disturbing inertial force with high accuracy by weighting and adding deviation detection signals obtained by detecting independently forces operating on a couple of mass elements which are driven symmetrically. CONSTITUTION:The piezoelectric elements 1a and 1b are driven cyclically in the opposite directions to make the Coliolis force operate, and detect the forces operating on them to generate the deviation detection signals 1a' and 1b'. The signals 1a' and 1b' contain components corresponding to inertial forces, disturbing inertial forces, etc., accompanying the driving. Preamplifiers 2a and 2b convert the signals 1a' and 1b' into low-impedance voltage signals 2a' and 2b'. An adder 4 weight and adds the signals 2a' and 2b'. A signal processing circuit 3 extracts and processes the component corresponding to the Coliolis force from the output signal of the adder 4 to generate an output proportional to an input angular velocity. Thus, the sensitivity variance of the elements 1a and 1b is compensated by the adder to compose the differential response between operating forces to both elements equally, thereby canceling the components corresponding to the disturbing inertial forces almost completely.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、物体の慣性角速度を検出するレートジャイロ
に係わり、特に振動又は旋回といった、循環駆動型レー
トジャイロに係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rate gyro for detecting the inertial angular velocity of an object, and particularly to a cyclically driven rate gyro such as vibration or rotation.

従来の技術 一般に慣性角速度といわれる慣性系に対する回転率を測
定する装置は種々であって、角速度センサー(八ngu
lar rate 5ensorまたは^ngular
 vel。
2. Description of the Related Art There are various devices for measuring the rotation rate with respect to an inertial system, which is generally referred to as inertial angular velocity.
lar rate 5ensor or ^ngular
vel.

−city 5ensor) 、  レートジャイロ、
角速度検出器(Angular rate sensi
ng device)など、いろいろな名称で呼ばれて
いる。以下、本発明ではレートジャイロという呼称を用
いる。
-city 5ensor), rate gyro,
Angular rate detector
It is called by various names such as ng device). Hereinafter, the term "rate gyro" will be used in the present invention.

従来、レートジャイロには様々なものが提案されている
が、それらに共通する動作原理は、1)質量要素を、被
測定座標系内で強制駆動する、 2)そQ駆動により、被測定座標系が慣性座標系に対し
回転運動したときに、前記質量要素にコリオリの力を作
用させる、 3)前記質量要素に作用する力を検知して、その偏位検
知信号から、コリオリの力に応じた成分を抽出し、コリ
オリの力の発生メカニズムに応じた信号処理を施して、
慣性角速度に比例した出力を得る、 ということができる。
Conventionally, various rate gyros have been proposed, but the operating principles common to all of them are: 1) The mass element is forcibly driven within the measured coordinate system. 2) The Q-drive moves the measured coordinate system. When the system rotates with respect to the inertial coordinate system, a Coriolis force is applied to the mass element; 3) The force acting on the mass element is detected, and the deviation detection signal is used to detect the Coriolis force in response to the Coriolis force. The components are extracted and subjected to signal processing according to the Coriolis force generation mechanism.
It can be said that an output proportional to the inertial angular velocity is obtained.

ところでこれまで提案されている種々のレートジャイロ
を特徴づけるのは、その駆動形態(単振動駆動か、旋回
駆動か、回転駆動か、直線状駆動か)、駆動方法(電磁
作用を利用したもの、圧電効果を利用したもの等)、コ
リオリの力を作用させるべき質量要素(例えば片持ち梁
、音叉、弦の振動部、ロータの構成要素、放出ガス等)
及びその質量要素に作用する力の検出方法(電磁作用を
利用したもの、圧電効果を利用したもの、カンチレバー
によるもの、トルクバネによるもの等)などがあり、着
眼点によって、その分類のしかたも変わって来る。
By the way, the various rate gyros that have been proposed so far are characterized by their drive form (simple vibration drive, swing drive, rotational drive, linear drive), drive method (those using electromagnetic action, mass elements to which the Coriolis force is applied (e.g. cantilevers, tuning forks, vibrating parts of strings, rotor components, emitted gas, etc.)
There are also methods for detecting the force acting on the mass element (methods using electromagnetic action, methods using piezoelectric effect, methods using cantilevers, methods using torque springs, etc.), and the method of classification changes depending on the point of view. come.

本発明で対象とするレートジャイロ装置は、上述の分類
要素のうち駆動方式に着目して、単振動駆動、又はその
二次元的合成である旋回駆動といった循環駆動型レート
ジャイロに属する。
The rate gyro device targeted by the present invention focuses on the drive method among the above-mentioned classification elements, and belongs to a cyclic drive type rate gyro such as a simple harmonic drive or a swing drive that is a two-dimensional combination thereof.

この循環駆動型レートジャイロは、前述の他の要素の違
いによって、例えば片持ち梁を電磁力により振動させ、
慣性角速度が入力された際にその先端部にコリオリの力
を作用させそれによる偏位を電磁的に検出するもの、あ
るいは励振、検知のいずれか一方、又は、両方に圧電効
果を利用するもの(いずれも米国特許第2544646
号)、カンチレバー状の圧電素子を旋回駆動してそれに
作用するコリオリの力をピックアップするもの(米国特
許第2716893号)等がある。
This circulation-driven rate gyro uses differences in the other factors mentioned above, such as vibrating a cantilever beam using electromagnetic force.
When an inertial angular velocity is input, a Coriolis force is applied to the tip and the resulting deviation is electromagnetically detected, or a piezoelectric effect is used for excitation, detection, or both ( Both are US Patent No. 2544646
(No.), and one that picks up the Coriolis force acting on a cantilever-shaped piezoelectric element by rotating it (US Pat. No. 2,716,893).

このような装置における問題点の一つに外乱慣性力に対
する応答がある。即ち装置に外乱慣性力が加わると、こ
れが前記質量要素に作用して誤差出力をもたらすという
問題である。
One of the problems with such devices is the response to disturbance inertial force. That is, when a disturbance inertial force is applied to the device, this acts on the mass element and causes an error output.

従って装置を構成する際には、前記質量要素に作用する
力の応答である偏位検知信号から、コリオリの力に応じ
た成分と外乱慣性力に応じた成分を如何に分離するかが
ポイントとなる。
Therefore, when configuring the device, the key point is how to separate the component corresponding to the Coriolis force and the component corresponding to the disturbance inertial force from the deflection detection signal, which is a response to the force acting on the mass element. Become.

ここでコリオリの力は入力慣性角速度と駆動速度のベク
トル積に比例するので、前記質量要素に作用するコリオ
リの力は瞬時駆動速度と入力慣性角速度の両者に直交し
た方向に作用する。
Here, since the Coriolis force is proportional to the vector product of the input inertial angular velocity and the drive speed, the Coriolis force acting on the mass element acts in a direction perpendicular to both the instantaneous drive speed and the input inertial angular velocity.

そこで循環駆動型レートジャイロを構成する場合、質量
要素を対に設けてこれを互いに逆方向に対称駆動し、各
々に作用する力を機械−電気変換して得た偏位検知信号
の差を取り、逆向きに作用するコリオリの力に応じた成
分を加算し、同一方向に作用する外乱慣性力を相殺する
のが一般的である。
Therefore, when configuring a circulation drive type rate gyro, a pair of mass elements are provided and the mass elements are driven symmetrically in opposite directions, and the difference between the deviation detection signals obtained by mechanical-electrical conversion of the forces acting on each is calculated. , it is common to add a component corresponding to the Coriolis force acting in the opposite direction to cancel out the disturbance inertia force acting in the same direction.

例えばカンチレバー状の圧電素子を循環的に駆動して、
素子自身をコリオリの力を作用させるべき質量要素であ
ると同時に、自らに作用する力を検知して偏位検知信号
を発生する偏位検知信号源としても用いるような場合、
2つの圧電素子を対として互いに逆方向に駆動して、互
いに逆方向の作用力に対する出力電荷(電圧)が加算と
なるように並列接続して取り出すのが一般的である。こ
の模様をブロック図として第2図にしめす。
For example, by driving a cantilever-shaped piezoelectric element cyclically,
When the element itself is used as a mass element to which Coriolis force is applied, and at the same time as a deviation detection signal source that detects the force acting on itself and generates a deviation detection signal,
It is common to drive two piezoelectric elements as a pair in opposite directions and connect them in parallel so that the output charges (voltages) for forces acting in opposite directions are added. This pattern is shown in Figure 2 as a block diagram.

第2図においてla、lbは互いに逆方向に循環的に駆
動された1対のカンチレバー状の圧電素子であり自らに
作用する力に応じてそれぞれ偏位検知信号1a’l  
lb’を発生する。偏位検知信号1a1.lb/は並列
接続によって合成され1′となりプリアンプ2に送られ
る。
In FIG. 2, la and lb are a pair of cantilever-shaped piezoelectric elements that are cyclically driven in opposite directions, and each generates a deflection detection signal 1a'l according to the force acting on itself.
lb' is generated. Deviation detection signal 1a1. lb/ is combined by parallel connection to become 1' and sent to preamplifier 2.

2は容量性、ハイインピーダンスの出力インピーダンス
の偏位検知信号1′をローインピーダンスの電圧信号に
変換するためのプリアンプであり、短絡電荷を取り出す
チャージアンプ、または開放電圧を取り出す電圧フォロ
アー(インピーダンス変換器)である。
2 is a preamplifier for converting the capacitive, high-impedance output impedance deviation detection signal 1' into a low-impedance voltage signal, and is a charge amplifier that extracts short-circuit charges or a voltage follower (impedance converter) that extracts open voltage. ).

3は、プリアンプ2の出力信号からコリオリの力に応じ
た成分を抽出、処理して入力角速度に比例した出力を発
生する信号処理回路であり、通常同期検波器を基本要素
として構成される。
3 is a signal processing circuit that extracts and processes a component corresponding to the Coriolis force from the output signal of the preamplifier 2 to generate an output proportional to the input angular velocity, and is usually constructed using a synchronous detector as a basic element.

このような構成によれば、偏位検知信号に含まれるコリ
オリの力に応じた成分は加算され、外乱慣性力に応じた
成分は減算されるので確かに外乱慣性力に対する応答は
相対的に減衰する。
According to this configuration, the component corresponding to the Coriolis force included in the deflection detection signal is added, and the component corresponding to the disturbance inertial force is subtracted, so it is true that the response to the disturbance inertial force is relatively attenuated. do.

発明が解決しようとする問題点 但、この減衰効果は2つの質量要素に作用する力を電気
信号化する際の各々の偏位検知信号源の感度の整合性に
よって制限される。
Problem to be Solved by the Invention However, this damping effect is limited by the consistency of the sensitivity of each deflection sensing signal source in converting the force acting on the two mass elements into an electrical signal.

例えば前述の例のようにカンチレバー状の圧電素子を用
いた場合、圧電素子の材料定数のばらつき、矩形板に切
出す際の加工精度、及びカンチレバーを構成する際の組
み立て精度限界などによって数〜10パーセント程度の
感度ばらつきは不可避的である。
For example, when a cantilever-shaped piezoelectric element is used as in the above example, several to ten Sensitivity variations on the order of percent are unavoidable.

又、偏位検知源として他のものを用いても、同程度の不
整合は避けられない。
Furthermore, even if other sources are used as the deviation detection source, the same degree of misalignment is unavoidable.

例えばこの感度の不整合を10パーセントとすると、こ
の時の外乱慣性力成分の減衰効果は、カンナレバー状の
圧電素子を単独で用いた場合と比べて、コリオリの力に
応じた成分が約2倍程度になるのに対して外乱慣性力成
分は10分の1程度になるので相対的に約20分の1と
なるにすぎない。
For example, if this sensitivity mismatch is 10%, the attenuation effect of the disturbance inertial force component in this case is that the component corresponding to the Coriolis force is approximately 2 Although it is about twice as large, the disturbance inertial force component is about one-tenth, so it is relatively only about one-twentieth.

この値は、特に外乱慣性力に対して鈍感であることが要
求されるような応用に当たっては大きな問題となる。
This value becomes a big problem especially in applications where insensitivity to disturbance inertia force is required.

問題点を解決するための手段 本発明は上記問題点を解決するため、対称駆動された1
対の質量要素に作用する力を独立に検知して得た偏位検
知信号を、重みづけして加算する加算手段を設けること
により上記の目的を達するものである。
Means for Solving the Problems The present invention solves the above problems by using a symmetrically driven motor.
The above object is achieved by providing an adding means that weights and adds the deflection detection signals obtained by independently detecting the forces acting on the paired mass elements.

作用 以上のような手段によれば、偏位検知信号に含まれるコ
リオリの力に応じた成分と外乱慣性力に応じた成分とを
、偏位検知信号源の感度の整合性に制限されることなく
精度高く分離することが出来、外乱慣性力に対して誤差
応答の少ない高性能な特性を得ることができる。
Effect: According to the means described above, the component corresponding to the Coriolis force and the component corresponding to the disturbance inertial force included in the deviation detection signal can be limited by the consistency of the sensitivity of the deviation detection signal source. It is possible to perform high-precision separation without any interference, and it is possible to obtain high-performance characteristics with little error response to disturbance inertial force.

実施例 以下、本発明の一実施例について、偏位検知信号源とし
て圧電素子を用いた場合を例にとって、図面を用いて説
明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a case where a piezoelectric element is used as a deviation detection signal source.

第1図は本実施例に於ける循環駆動型レートジャイロの
構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a circulation drive type rate gyro in this embodiment.

第1図において、la、lbはコリオリの力を作用させ
るべき質量要素を構成するとともに、自らに作用する力
を検知してそれに応じた電気出力(偏位検知信号)la
’、lb’を発生する1対の圧電素子であり、互いに逆
方向に循環的に駆動される。
In Fig. 1, la and lb constitute mass elements on which the Coriolis force is applied, and detect the force acting on itself and generate an electric output (deviation detection signal) la
This is a pair of piezoelectric elements that generate ', lb' and are cyclically driven in opposite directions.

このとき、前記偏位検知信号1a′、1b′にはコリオ
リの力に応じた成分の他に駆動にともなう慣性力、外乱
慣性力などに応じた成分が夫々の圧電素子1a、lbの
感度に応じて含まれている。
At this time, the deviation detection signals 1a' and 1b' include components corresponding to the Coriolis force as well as components corresponding to the inertia force accompanying the drive, disturbance inertia force, etc., which affect the sensitivity of the respective piezoelectric elements 1a and 1b. Included accordingly.

2a、2bは偏位検知信号1a′、1b′をローインピ
ーダンスの電圧信号2a1,2b’に変換するためのプ
リアンプであり圧電素子1a′。
2a and 2b are piezoelectric elements 1a' which are preamplifiers for converting the deviation detection signals 1a' and 1b' into low impedance voltage signals 2a1 and 2b';

1bに逆向きの力が作用した時に同極性の信号を出力す
るように結線されており等しい増幅度をもつ。
They are wired to output signals of the same polarity when a force in the opposite direction is applied to 1b, and have equal amplification.

4は2a′、2b′を重みづけして加算する加算器であ
りその重みづけの比は1:1を中心にして微調整ができ
るようになっている。
Reference numeral 4 denotes an adder that weights and adds 2a' and 2b', and the weighting ratio can be finely adjusted around 1:1.

3は、加算器4の出力信号からコリオリの力に応じた成
分を抽出、処理して入力角速度に比例した出力を発生す
る信号処理回路であり、通常同期検波器を基本要素とし
て構成される。
3 is a signal processing circuit that extracts and processes a component corresponding to the Coriolis force from the output signal of the adder 4 to generate an output proportional to the input angular velocity, and is usually constructed using a synchronous detector as a basic element.

以上のように構成すれば、1対の圧電素子の感度ばらつ
きを加算器の重みづけによって補うことによって、圧電
素子1a、lbへの作用力に対する差動応答を均等に合
成することができ、従って外乱慣性力に応じた成分をほ
ぼ完全に相殺することができる。
With the above configuration, by compensating for variations in sensitivity between a pair of piezoelectric elements by weighting the adder, differential responses to forces acting on the piezoelectric elements 1a and lb can be equally synthesized, and therefore The component according to the disturbance inertia force can be almost completely canceled out.

なお、本実施例においては重みづけの微調整をプリアン
プの直後としたが、これは信号が交流で扱われている段
階であれば何処で行ってもよく、例えばプリアンプのゲ
インを微調整して加算器を固定してもよい。
In this embodiment, the fine adjustment of the weighting was made immediately after the preamplifier, but this may be done at any stage as long as the signal is being treated as an alternating current; for example, by finely adjusting the gain of the preamplifier. The adder may be fixed.

又、本実施例に於ては偏位検知信号源として、圧電素子
を用いたものを例に取って説明したが、これは被駆動質
量要素に作用する力を検知し得るものであれば利用可能
であり、例えば質量要素に作用する力による偏位を容量
変化として検出するものでもよい。
Furthermore, in this embodiment, a piezoelectric element was used as an example of the deviation detection signal source, but this can be used as long as it can detect the force acting on the driven mass element. For example, a displacement due to a force acting on a mass element may be detected as a capacitance change.

発明の効果 以上詳細に説明して明らかなように、本発明の循環駆動
型レートジャイロは、互いに逆方向に対称駆動された1
対の質量要素に作用する力を検知して得た偏位検知信号
を重みづけして加算する加算手段を設けることにより、
偏位検知信号源の感度の整合性に制限されることなく高
い精度でコリオリの力に応じた成分と外乱慣性力に応じ
た成分を分離することができ、外乱慣性力に対する応答
の少ない高精度な特性を得ることが出来る。
Effects of the Invention As is clear from the detailed explanation above, the circulation drive type rate gyro of the present invention has two units driven symmetrically in opposite directions.
By providing an adding means that weights and adds the deflection detection signals obtained by detecting the forces acting on the paired mass elements,
The components corresponding to the Coriolis force and the disturbance inertia force can be separated with high accuracy without being limited by the consistency of the sensitivity of the deflection detection signal source, resulting in high precision with little response to disturbance inertia force. characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は従来例の構成を示すブロック図である。 la、lb・・・・・・圧電素子、2.2a、2b・旧
・・プリアンプ、3・・・・・・信号処理回路。 代理人の氏名 弁理士 中尾敏男 はか1名F
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a conventional example. la, lb...piezoelectric element, 2.2a, 2b...old...preamplifier, 3...signal processing circuit. Name of agent: Patent attorney Toshio Nakao Haka1 F

Claims (1)

【特許請求の範囲】[Claims] 互いに反対方向に循環的に駆動される1対の質量要素と
、前記1対の質量要素に作用する力を独立に検知して電
気信号を出力する1対の偏位検知信号源と、前記1対の
偏位検知信号源を重みずけして加算する加算手段とを備
えたことを特徴とする循環駆動型レートジャイロ。
a pair of mass elements cyclically driven in opposite directions; a pair of deflection detection signal sources that independently detect forces acting on the pair of mass elements and output electrical signals; A cyclically driven rate gyro comprising: adding means for weighting and adding a pair of deviation detection signal sources.
JP61084534A 1986-04-11 1986-04-11 Circulation driving type rate gyro Pending JPS62239010A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61084534A JPS62239010A (en) 1986-04-11 1986-04-11 Circulation driving type rate gyro
US07/033,761 US4791815A (en) 1986-04-11 1987-04-03 Cyclically driven gyro and adjusting system therefor
KR1019870003484A KR910001145B1 (en) 1986-04-11 1987-04-11 Cyclically driven gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61084534A JPS62239010A (en) 1986-04-11 1986-04-11 Circulation driving type rate gyro

Publications (1)

Publication Number Publication Date
JPS62239010A true JPS62239010A (en) 1987-10-19

Family

ID=13833305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61084534A Pending JPS62239010A (en) 1986-04-11 1986-04-11 Circulation driving type rate gyro

Country Status (1)

Country Link
JP (1) JPS62239010A (en)

Similar Documents

Publication Publication Date Title
US6230563B1 (en) Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability
US4791815A (en) Cyclically driven gyro and adjusting system therefor
US4930351A (en) Vibratory linear acceleration and angular rate sensing system
JP4688073B2 (en) Six-degree-of-freedom micro-processing multi-sensor
US4611491A (en) Accelerometer system
US6350983B1 (en) Micro-electro-opto-mechanical inertial sensor
US8056413B2 (en) Sensor and sensing method utilizing symmetrical differential readout
JP4126833B2 (en) Angular velocity sensor device
US6621279B2 (en) Drive feedthrough nulling system
EP0704674B1 (en) Micromachined rate sensor comb drive device and method
JP2006524825A (en) Microfabricated multi-sensor that provides 2-axis acceleration detection and 1-axis angular velocity detection
JPH08504275A (en) 3-axis angular velocity / acceleration sensor
GB2156107A (en) Drive signal generator circuit
CA2016808A1 (en) Piezoelectric vibratory rate sensor
CA2483710A1 (en) Mems gyroscope with parametric gain
US6598455B1 (en) Non-inertial calibration of vibratory gyroscopes
EP0917652B1 (en) Tunneling sensor with linear force rebalance
WO2001079862A1 (en) Z-axis micro-gyro
US5045745A (en) Spinning piezoelectric beam of a dual-axis angular rate sensor and method for its adjustment
US5189913A (en) Apparatus and method for determining the rate of rotation of a moving body
JP2760628B2 (en) PWM electrostatic servo accelerometer
JPS62239010A (en) Circulation driving type rate gyro
JPS62280609A (en) Adjusting method for cyclic driving type rate gyro
NO843479L (en) APPARATUS FOR AA MAKING A SIGNAL REPRESENTING THE ANGLE MOVEMENT SPEED OF A CONSTRUCTION
Yang et al. Two-dimensional excitation operation mode and phase detection scheme for vibratory gyroscopes