JPS62238816A - Spinning of polyester yarn - Google Patents

Spinning of polyester yarn

Info

Publication number
JPS62238816A
JPS62238816A JP7999786A JP7999786A JPS62238816A JP S62238816 A JPS62238816 A JP S62238816A JP 7999786 A JP7999786 A JP 7999786A JP 7999786 A JP7999786 A JP 7999786A JP S62238816 A JPS62238816 A JP S62238816A
Authority
JP
Japan
Prior art keywords
spinning
cooling
yarn
speed
thinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7999786A
Other languages
Japanese (ja)
Inventor
Koichi Iohara
耕一 庵原
Kazushi Fujimoto
和士 藤本
Shinji Owaki
大脇 新次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7999786A priority Critical patent/JPS62238816A/en
Publication of JPS62238816A publication Critical patent/JPS62238816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain polyester fibers, having mechanical and thermal properties usable for weaving and knitting and capable of exhibiting latent crimps, by quenching discharged filaments with a liquid at a specific position and spinning a polyester under good spinning condition at a high speed. CONSTITUTION:In high-speed spinning of a polyester at >=6,000m/min-<9,000m/ min, discharged filaments 1 are quenched with a liquid fed from a quenching device 3 at a position within the range of 5cm on the upstream side of the end point of thinning to 3cm on the downstream side, preferably 5cm on the upstream side to the end point of thinning. In order to quench the filament group in an unbundled state, the group is quenched with the (quenching) liquid jetted from plural extrusion holes. Furthermore, quenching can be carried out by applying the quenching medium, oiling agent, etc., while bundling the filaments.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はポリエステルの高速製糸方法に関し、さらに詳
しくは、ポリエステルを高速で紡糸する際の紡糸安定性
を向上させる高速製糸方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for high-speed spinning of polyester, and more particularly to a high-speed spinning method for improving spinning stability when spinning polyester at high speed.

〈従来技術〉 ポリエチレンテレフタレート等のポリエステルを溶融紡
糸において引取り速度を高くしていくと、引取糸の分子
配向が高くなり且つ結晶が形成される事によって、紡糸
工程のみで実用上充分な特性を有する繊維が得られる(
例えば、特公昭35−3cm04号公報、繊維学会誌第
33巻丁208〜T214ページ等参照)。これらによ
れば、例えばポリエチレンテレフタレートの場合、引取
速度が約5000m/分以上になると得られる繊維は従
来の延伸糸に近いものになるとされている。
<Prior art> When polyester such as polyethylene terephthalate is melt-spun and the take-up speed is increased, the molecular orientation of the taken-up yarn increases and crystals are formed, making it possible to obtain practically sufficient properties through the spinning process alone. Fibers with (
For example, see Japanese Patent Publication No. 35-3cm04, Journal of the Japan Institute of Fiber Science, Vol. 33, pages 208-214). According to these, in the case of polyethylene terephthalate, for example, when the take-up speed is about 5000 m/min or more, the fiber obtained becomes similar to conventional drawn yarn.

しかし、引取速度の高速化、特に6000m /分収上
の速度に増速した場合、一方では紡糸時に頻繁な単糸切
れを招き、操業性を著しく悪化させる。
However, when the take-off speed is increased, particularly to a speed above 6000 m 2 /minute yield, on the other hand, frequent breakage of single fibers occurs during spinning, which significantly deteriorates operability.

この傾向はm維の単糸デニールが小さく、またフィラメ
ント数が多くなる程顕著になり、通常のポリエステル繊
維として使用されている単糸デニール(0,5〜5de
)、フィラメント数(10以上)の場合、6000m’
/分以上の速度での紡糸は非常に困難となる。
This tendency becomes more pronounced as the single filament denier of m-fibers becomes smaller and the number of filaments increases.
), if the number of filaments (10 or more), 6000 m'
Spinning at speeds higher than 1/min becomes extremely difficult.

この問題を解決する手段として、高速紡糸中に進行する
配向結晶化を抑える方法がある。例えば口金下の雰囲気
温度を高温にし、かつその保温ゾーンを長くとって分子
配向を抑制する方法、ベースとなるポリエステル、ポリ
イミド等に何らかの物質を添加、ブレンドあるいは共重
合して、結晶化の進行速度を抑える方法等が挙げられる
。しかしながら、本発明者らの検討によるとこれらの方
法が効果的であるのは、高々700077L /分迄の
高速紡糸に対してであり、それ以上の超高速紡糸に対し
ては好ましい結果が得られない事が判明した。
As a means to solve this problem, there is a method of suppressing oriented crystallization that progresses during high-speed spinning. For example, by increasing the ambient temperature under the cap and making the heat retention zone long to suppress molecular orientation, or by adding, blending, or copolymerizing some substance to the base polyester, polyimide, etc., the rate of crystallization progresses. Examples include methods to suppress this. However, according to the studies of the present inventors, these methods are effective for high-speed spinning of up to 700,077 L/min, and favorable results cannot be obtained for ultra-high-speed spinning at higher speeds. It turned out that there was no.

紡糸の引取り速度が高くなるにつれ、結晶の成長は著し
く速くなる。したがって、配向結晶化を抑制するために
は更に有効な手段が必要である。
As the spinning take-off speed increases, crystal growth becomes significantly faster. Therefore, more effective means are required to suppress oriented crystallization.

その手段として最近提案されているのは、高速紡糸中の
走行糸条に水あるいは油剤を付与して急冷させる方法で
ある(例えば特開昭58−169513号報。
A recently proposed method for this purpose is to apply water or oil to the running yarn during high-speed spinning to rapidly cool it (for example, Japanese Patent Application Laid-open No. 169513/1983).

同58−136816号報、同58−208416号報
、同59−1573cm8号報参照)。
(See No. 58-136816, No. 58-208416, No. 59-1573cm8).

ここで、特開昭58−169513号報の場合8−、吐
出フィラメントがなお無定形の状態にある位置に急冷浴
を置くもので、この時には清水収縮率が45%以上と高
い収縮率を有する高配向非晶質の繊維を得ている。この
繊維は仮撚加工用の原糸として使用する事は可能である
が、そのままの状態でただちに11編物用途に提供する
事はできない。
Here, in the case of JP-A-58-169513 8-, a quenching bath is placed at a position where the discharged filament is still in an amorphous state, and at this time, the fresh water shrinkage rate is as high as 45% or more. Highly oriented amorphous fibers are obtained. Although this fiber can be used as a raw yarn for false twisting, it cannot be immediately provided as it is for knitting purposes.

次に、特開昭58−136816号公報の場合、紡糸口
金面下方1TL以内の位置で給油用ノズルガイドによっ
て集束し、かつ給油する事、およびこの集束。
Next, in the case of Japanese Patent Application Laid-Open No. 58-136816, the fibers are focused by a lubricating nozzle guide at a position within 1 TL below the spinneret surface, and oil is supplied, and this focusing.

給油位置は紡糸口金に近い事が好ましいが、繊維形成の
過程で軟弱な繊維の破断が発生しない位置を選ぶ事が述
べられている。また同一発明者を含む特開昭58−20
8416号公報の発明も同様の趣旨であるが、集束およ
び給油する位置はフィラメント群の細化完了点より5 
cm以上の下流域であり細化完了点より5 cm未満の
下流でフィラメント群を集束すると細化完了点より上流
の位置でフィラメント同志が接触し、紡糸状況が不安定
となり、単糸切れが多発する事が述べられている。
Although it is preferable that the oil supply position be close to the spinneret, it is stated that the position should be selected so that breakage of soft fibers will not occur during the fiber formation process. Also, JP-A-58-20 which includes the same inventor
The invention of Publication No. 8416 has the same purpose, but the focusing and lubricating position is 5 points from the point where the filament group has completed thinning.
If a group of filaments is focused at a downstream region of more than 5 cm but less than 5 cm downstream from the point at which thinning is completed, the filaments will come into contact with each other at a position upstream from the point at which thinning is completed, making the spinning situation unstable and causing frequent breakage of single filaments. It is stated what to do.

しかしながら、本発明者らの検討によると、紡糸時の引
取速度が8000m /分収上にょうに超高速化した場
合、以上のような集束、冷却では紡糸調子向上の効果は
ほとんど認められなくなる事が判明した。本発明者の知
見によればこのような場合には結晶の成長速度が極端に
速いので、僅かな冷却位置の違いでも紡糸調子には大き
な差となって現れる。また、このような超高速紡糸にお
いてマルチフィラメントを集束する事は必ずしも好まし
くはない事が判明した。
However, according to the studies of the present inventors, when the take-up speed during spinning becomes extremely high, such as 8000 m/min, the effect of improving the spinning condition will hardly be recognized by the above-mentioned focusing and cooling. found. According to the findings of the present inventors, in such cases, the crystal growth rate is extremely high, so even a slight difference in the cooling position results in a large difference in the spinning condition. Furthermore, it has been found that it is not necessarily preferable to bundle multifilaments in such ultra-high speed spinning.

更に、特開昭59−1573cm8@公報の場合、二重
カット挾み取りフィラメントの複屈折へ〇が最も急速に
増加する点から下流30α以内で集束し、かつ給油する
方法が述べられている。但し、この場合も前記方法と同
様冷却位置の範囲が広く、超高速紡糸の紡糸性向上に必
要な結晶成長のコントロールに必要な冷却位置の特定化
に必要な知見は得られていない。
Further, in the case of JP-A-59-1573cm8@, a method is described in which the birefringence of a double cut filament is focused and lubricated within 30α downstream from the point where 0 increases most rapidly. However, in this case as well, the range of cooling positions is wide as in the above method, and knowledge necessary for specifying the cooling position necessary for controlling crystal growth necessary for improving spinnability in ultrahigh-speed spinning has not been obtained.

また、これらの出願ではマルチフィラメントを集束する
事が必要である旨述べているが超高速紡糸フィラメント
の冷却の場合は逆に集束しない方が好ましい事が判明し
た。
Further, although these applications state that it is necessary to bundle the multifilaments, it has been found that in the case of cooling ultra-high speed spun filaments, it is preferable not to bundle the filaments.

〈発明の目的〉 本発明の第1の目的はかがる従来法の問題を解決し、ポ
リエステル超高速紡糸においても良好な紡糸調子を示す
ような紡糸方法を提供する事にある。
<Objects of the Invention> The first object of the present invention is to provide a spinning method that solves the problems of the conventional method and exhibits good spinning condition even in ultrahigh-speed polyester spinning.

本発明の別の目的は、紡糸巻取そのままの状態で織編物
用として供しうる力学的性質、熱的性質を持ち、かつ適
度の顕在捲縮を示すポリエステル繊維を製造する方法を
提供する事にある。
Another object of the present invention is to provide a method for producing polyester fibers that have mechanical and thermal properties that can be used for woven or knitted fabrics in the as-spun and spooled state, and that exhibit appropriate apparent crimp. be.

〈発明の構成〉 本発明によれば、ポリエステルを6000m /分収上
9000m/分未満の引取速度で高速紡糸するに際し、
吐出糸条をその細化終了点の5clIl上流から3cm
下流迄の範囲において、液体により冷却する事を特徴と
するポリエステル糸の製糸方法が提供される。
<Configuration of the Invention> According to the present invention, when polyester is spun at a high speed of less than 9000 m/min in terms of yield of 6000 m/min,
3cm from the 5clIl upstream of the end point of the ejected yarn
Provided is a method for spinning polyester yarn, which is characterized by cooling with a liquid in the downstream range.

本発明におけるポリエステルとはポリエチレンテレフタ
レート、ポリブチレンテレフタレート。
The polyester in the present invention refers to polyethylene terephthalate and polybutylene terephthalate.

ポリエチレンナフタレート、ポリブチレンナフタレート
、ポリトリメチレンテレフタレート、ポリへキサメヂレ
ンテレフタレート等、所謂芳香族ポリエステルを指すが
、特にポリエチレンテレフタレートが好ましい。また該
ポリエチレン中には10重量%以下の割合で、種々の目
的に応じて、有機。
It refers to so-called aromatic polyesters such as polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, and polyhexamedylene terephthalate, with polyethylene terephthalate being particularly preferred. In addition, in the polyethylene, an organic compound may be added in an amount of 10% by weight or less depending on various purposes.

無機の低分子又は高分子がブレンド又は共重合されてい
ても差支えない。
There is no problem even if inorganic low molecules or polymers are blended or copolymerized.

本発明の場合、6000m /分以上900077L 
/分未満の引取速度での高速紡糸が対象である。600
0T!L /分未満の引取速度の場合には本発明を適用
しなくても紡糸調子は良好である。他方、9000m、
 /分収上の超高速紡糸では巻取装置の製作、保持が極
めて難しい。
In the case of the present invention, 900077L of 6000m/min or more
High-speed spinning at take-off speeds of less than /min is of interest. 600
0T! When the take-up speed is less than L/min, the spinning condition is good even without applying the present invention. On the other hand, 9000m,
/It is extremely difficult to manufacture and maintain the winding device for ultra-high-speed spinning for fractional spinning.

ポリ・エステルの高速紡糸において溶融吐出フィラメン
トは冷却されつつ細化していく。本発明の場合、吐出糸
条を細化終了点の5 ctn上流から3 cm下流、好
ましくは5傭上流から2 cm下流、更に好ましくは5
CIR上流から細化終了点迄の範囲において、液体によ
り冷却する事が必要である。一本発明において細化の終
了点は次のように決定される。すなわち、紡糸細化過程
中のマルチフィラメントの中から直径1本のフィラメン
トを取りだし、その直径をz immer社(西独) 
Oiameter−M onitor460 A / 
5により測定する。測定器からのアナログデータは、A
/D変換器によりデジタルデータへ変換され、さらにコ
ンピュータにより、直径の度数分布曲線としてし処理さ
れる。
During high-speed spinning of polyester, the molten filament becomes finer as it cools. In the case of the present invention, the ejected yarn is 3 cm downstream from the 5 ctn upstream of the thinning end point, preferably 2 cm downstream from the 5 ctn upstream, more preferably 5 ctn.
It is necessary to cool with liquid in the range from the CIR upstream to the end point of attenuation. In one aspect of the present invention, the end point of thinning is determined as follows. That is, one filament with a diameter is taken out from among the multifilaments in the process of spinning and thinning, and its diameter is determined by Zimmer (West Germany).
Oiameter-Monitor460A/
Measured according to 5. Analog data from the measuring instrument is A
The data is converted into digital data by a /D converter, and further processed by a computer as a frequency distribution curve of diameters.

その度数分布曲線の最多頻度点を測定点における繊維直
径とする。
The most frequent point of the frequency distribution curve is taken as the fiber diameter at the measurement point.

スピンラインに沿ってこの測定をくり返すことにより細
化曲線を得ることができる。
By repeating this measurement along the spin line, a thinning curve can be obtained.

細化終了点は以上の細化曲線における繊維径が、巻取糸
のモノフィラメント繊維直径の1.1倍になった点とす
る。第1図には種々の紡糸速度細化曲線を例示する。
The thinning end point is the point at which the fiber diameter in the above thinning curve becomes 1.1 times the monofilament fiber diameter of the wound yarn. FIG. 1 illustrates various spinning speed thinning curves.

本発明において走行フィラメント群は集束する事なく冷
却した方が好ましい。勿論、集束しても良いが、フィラ
メント数が多くなった場合、冷W位置の上流でフィラメ
ント同志が密着して破断する等の懸念がある。
In the present invention, it is preferable that the traveling filament group be cooled without converging. Of course, convergence may be used, but when the number of filaments increases, there is a concern that the filaments may come into close contact with each other upstream of the cold W position and break.

但し、以上のような冷却を行った後その下において集束
、冷却、オイリング等を加えるのは差支えない。特に上
記冷却点の下流10 cm以内の部分でフィラメント群
を集束冷却する事は上記第1次冷却の糸道を安定化させ
るとともに第1次冷却の若干の不足を補うため有効であ
る。
However, after the above cooling is performed, there is no problem in applying focusing, cooling, oiling, etc. below. In particular, focusing the filament cooling within 10 cm downstream of the cooling point is effective in stabilizing the thread path of the primary cooling and compensating for any deficiency in the primary cooling.

本発明における冷却液体の温度は空温でも良いが、5℃
以下の温度に保持した方が、より効果的である。冷却液
体の温度は更に冷たい程効果的になる。
The temperature of the cooling liquid in the present invention may be air temperature, but may be 5°C.
It is more effective to maintain the temperature below. The colder the temperature of the cooling liquid, the more effective it becomes.

本発明において、吐出糸条を冷却するために用いる冷N
1装置の一実施態様を第2図に示す。
In the present invention, cold N used to cool the discharged yarn
One embodiment of the device is shown in FIG.

第2図(イ)および(01は、夫々冷却装置の斜視図お
よび平面図を示し、吐出糸条1は冷却装置の中空環状部
2を通過し、その際本体3に設けられた環状の冷却媒体
案内管4の各噴出孔5から噴出される冷却媒体により冷
却される。尚、6は冷却媒体の供給導管である。冷却媒
体は単一の吐出孔から吐出してもよいが、集束しない状
態でフィラメント群を均一に冷却するには、第2図のよ
うに′lri数の吐出孔から冷却液を吐出した方がより
均一な冷却が可能である。
2(a) and (01) respectively show a perspective view and a plan view of the cooling device, in which the discharge thread 1 passes through the hollow annular portion 2 of the cooling device, and at this time, It is cooled by the cooling medium ejected from each ejection hole 5 of the medium guide tube 4. Note that 6 is a supply conduit for the cooling medium.The cooling medium may be ejected from a single ejection hole, but it is not concentrated. In order to uniformly cool the filament group in this state, it is possible to achieve more uniform cooling by discharging the cooling liquid from the discharge holes of the number 'lri' as shown in FIG.

また、第3図は冷却が進んだ吐出糸条を1を集束しつつ
冷却媒体、油剤等を付与するに適した冷却装置の斜視図
である。7は装置本体で集束部8に対して供給導管9を
介して噴出管10を設けたもので、このものは特に計」
オイリング方式で好ましく使用される。
Further, FIG. 3 is a perspective view of a cooling device suitable for applying cooling medium, oil, etc. while converging discharged yarns 1 that have been cooled. 7 is a main body of the device, and a jet pipe 10 is provided through a supply conduit 9 to a focusing section 8.
Preferably used in oiling method.

本発明において上記冷却と同時に油剤を付与する事はよ
り好ましい方法である。この場合、冷却装置と走行フィ
ラメントの間の摩擦が少なくなる利点がある。
In the present invention, it is more preferable to apply an oil agent at the same time as the cooling. In this case, the advantage is that there is less friction between the cooling device and the running filament.

く作用・効果〉 本発明によれば、6000m /分取上の亀高速引取り
においても紡糸安定性のすぐれた高速紡糸法が提供され
る。
Effects and Effects> According to the present invention, a high-speed spinning method with excellent spinning stability is provided even in high-speed take-off of 6000 m 2 /preparation.

この効果は同時に行った紡糸中の繊維構造発現過程の解
析によって、以下のとおりと推定される。
This effect is estimated to be as follows based on the simultaneous analysis of the fiber structure development process during spinning.

すなわち、該解析によれば、6000m/分以上の高速
で引取られたポリエステルは所謂「ネッキング」と呼ば
れる急激な細化を紡糸線上の一部で示し、その終了とと
もに巻取り状態での繊維径に達する。
In other words, according to this analysis, polyester drawn at a high speed of 6,000 m/min or more exhibits rapid thinning called "necking" in a part of the spinning line, and as this ends, the fiber diameter in the wound state decreases. reach

しかしながら結晶の形成はこのl維径の変化終了と同時
に進行を開始する。まず、芳香族環が双極子間の相互作
用により積層し、ポリエチレンテレフタレートの場合に
ついて言えばa軸方向に結晶の核らしきものが発生する
。この芳香族環がスクッキングする速度は紡糸の引取り
速度が高い程、まだベンゼン環よりナフタレン環のよう
に芳香族双極子作用が大になる程著しくなるが、一般に
次の結晶成長の速度に比較すると著しく速い。
However, the formation of crystals begins to proceed at the same time as this change in l-fiber diameter ends. First, aromatic rings are stacked due to interaction between dipoles, and in the case of polyethylene terephthalate, what appears to be a crystal nucleus is generated in the a-axis direction. The rate of scooking of this aromatic ring becomes more pronounced as the spinning take-up speed is higher, and as the aromatic dipole effect becomes stronger, such as with naphthalene rings than with benzene rings, but in general, the rate of subsequent crystal growth increases. It's noticeably faster in comparison.

次いで、結晶は分子鎖の折れ曲がりを伴いながら成長し
ていく。ポリエチレンテレフタレートの場合について言
えばこの成長はa 、 b’両軸方向に等しく発生する
。この成長速度は先の結晶核発生の速度よりやや遅く、
ネッキング状細化終了点から下流20〜30αに迄かか
わる事もある。もちろんその成長速度も紡糸引取速度に
依存しており例えば6000m /分の場合、細化終了
点から下流20G位迄結晶成長が続くのであるが、80
00m /分では下流B crn位迄、90QOm/分
では下流5 cm位迄の間で結晶成長は完了する。また
、この成長速度は分子鎖の剛直性、共重合等による変性
によっても変化し、これらの場合一般に遅くなる。
Next, the crystal grows with bending of the molecular chains. In the case of polyethylene terephthalate, this growth occurs equally along both the a and b' axes. This growth rate is slightly slower than the previous rate of crystal nucleation,
It may also be involved up to 20 to 30 α downstream from the end point of necking-like thinning. Of course, the growth rate also depends on the spinning take-off speed; for example, in the case of 6000 m/min, crystal growth continues from the thinning end point to about 20 G downstream, but 80 m/min.
At 00 m/min, crystal growth is completed up to about B crn downstream, and at 90 QOm/min, crystal growth is completed up to about 5 cm downstream. The growth rate also changes depending on the rigidity of the molecular chain, modification by copolymerization, etc., and generally becomes slower in these cases.

ところで、高速紡糸の安定性はこれら結晶の形成と大き
く関係する。ある程度の大きさの結晶は巻取り繊維の熱
的安定性を与える点で不可欠であるが、必要以上に大き
く発達した結晶は高速紡糸過程において応力集中を招く
原因となるので、単糸切れ、断糸を発生するようになる
By the way, the stability of high-speed spinning is largely related to the formation of these crystals. Crystals of a certain size are essential for providing thermal stability to the wound fiber, but crystals that develop larger than necessary can cause stress concentration during the high-speed spinning process, resulting in single fiber breakage and breakage. It will start producing threads.

したがって、廼高速下で紡糸する場合結晶の成長を極力
抑える事が望ましい。そのためには、一般に結晶の核が
発生した後、あるいは結晶が成長しようとする初期を急
速に冷却する事が望ましい。
Therefore, when spinning at high speeds, it is desirable to suppress crystal growth as much as possible. To this end, it is generally desirable to cool rapidly after the crystal nucleus is generated or at the initial stage when the crystal is about to grow.

急冷の位置が結晶核発生の前になると、引ぎ取られた繊
維の製造は高配向非晶とより、通常の使用可能な糸では
なくなる。一方、急冷する位置が結晶成長の中期以降に
なると、特に超高速になる程急速になる結晶成長を抑え
る事が難しくなる。
If the quenching occurs before nucleation, the pulled fibers will be highly oriented amorphous and will no longer be normal usable yarns. On the other hand, if the quenching position is at or after the middle stage of crystal growth, it becomes difficult to suppress crystal growth, which becomes more rapid as the speed becomes ultra-high.

このため本発明においては細化終了点の5 cm上流か
ら3 cm下流、好ましくは5cIR上流から21下流
、更に好ましくは5 cm上流から細化終了点迄の間で
吐出糸条を液体により冷却する。
For this reason, in the present invention, the discharged yarn is cooled with liquid between 5 cm upstream and 3 cm downstream of the thinning end point, preferably from 5cIR upstream to 21 downstream, and more preferably from 5 cm upstream to the thinning end point. .

尚、細化終了後より上流で吐出糸条を冷却することには
次の様なメリットがある。すなわち、一般にネッキング
の位置は紡糸線に沿って相当上下しているので、細化終
了点下流側に冷」した場合、ネッキング装置が上流側ヘ
シフトした時、冷却位置が相対的に過度に下流になる恐
れがある。この場合、結晶成長の抑制効果が小さくなる
。これに対し細化終了点の上流側で冷却した場合、ネッ
キング細化終了点の位置が該冷却装置付近に固定され、
上下の変動が小さくなる。すなわち冷却装置の安定性が
保たれるのである。
Note that cooling the discharged yarn upstream after the completion of thinning has the following advantages. In other words, the necking position generally moves up and down considerably along the spinning line, so if cooling occurs downstream of the thinning end point, when the necking device shifts upstream, the cooling position will relatively move downstream too much. There is a risk that it will happen. In this case, the effect of suppressing crystal growth becomes small. On the other hand, when cooling is performed upstream of the thinning end point, the position of the necking thinning end point is fixed near the cooling device,
Vertical fluctuations become smaller. In other words, the stability of the cooling device is maintained.

本発明により得られた高速紡糸繊維は、結晶化している
。そのため、熱的に安定であり、例えば清水収縮率は1
0%以下になる。
The high speed spun fibers obtained according to the present invention are crystallized. Therefore, it is thermally stable, and for example, the shrinkage rate of fresh water is 1
Becomes 0% or less.

更に本発明において巻取られた高速紡糸繊維は一般に捲
縮を有している。この捲縮は紡糸走行フィラメントのよ
り上流を冷却する程、また液温の低い液体で冷却する程
強く且つ細くなる。
Furthermore, the high speed spun fibers wound in the present invention generally have crimps. This crimp becomes stronger and thinner as the spinning filament is cooled further upstream or cooled with a liquid having a lower liquid temperature.

実施例1 極限粘度[ηコCが0.63であり、Ti 02を0.
03 ff1(至)%含有するポリエチレンテレフタレ
ートを160℃で4時間熱風乾燥した後、3cm0℃の
紡糸温度でノズル径0.35 mの丸型孔24個を有す
る紡糸口金から吐出した。吐出フィラメントは口金下1
0〜90αの間、風速20cttr/秒の横吹き冷却風
によって冷却され、口金下3mに位置するワインダーに
巻取られた。この時の引取り速度は8500m /分で
あり、得られたマルチフィラメントは75de/24f
ilであった(サンプルA)。
Example 1 Intrinsic viscosity [ηcC is 0.63, and Ti02 is 0.63.
After drying polyethylene terephthalate containing 1% (to) 03ff with hot air at 160°C for 4 hours, it was discharged from a spinneret having 24 round holes with a nozzle diameter of 0.35 m at a spinning temperature of 3 cm and 0°C. The discharge filament is at the bottom of the nozzle 1.
It was cooled by cross-blown cooling air at a wind speed of 20 cttr/sec between 0 and 90[alpha], and wound up in a winder located 3 m below the mouthpiece. The take-up speed at this time was 8500 m/min, and the obtained multifilament was 75 de/24 f.
(Sample A).

次に24本のフィラメント群の中から1本を取り出し、
z 1O1ner社製の外径測定器により、紡糸線に沿
った繊維径の変化を測定した。その結果、ネッキング状
細化の終了点は平均的に口金下78CIRである事がわ
かった。
Next, take out one filament from the group of 24 filaments,
Changes in fiber diameter along the spinning line were measured using an outer diameter measuring device manufactured by Z1O1ner. As a result, it was found that the end point of necking-like thinning was 78 CIR below the cap on average.

次に第2図に示す冷却装置を口金下の種々の位置に投首
し、走行するマルチフィラメントを急冷した。この急冷
装置の冷却媒体としては氷水(水温3℃)−紡糸油剤の
エマルジョンを用いたくサンプルB〜G)。
Next, the cooling devices shown in FIG. 2 were installed at various positions under the cap to rapidly cool the running multifilament. As the cooling medium of this quenching device, an emulsion of ice water (water temperature: 3° C.) and spinning oil was used for samples B to G).

以上のようにして得られたサンプルA−Gの結晶サイズ
(a 、 b軸方向)、清水収縮率および捲縮発生の様
子を紡糸調子とともに第1表に示す。
Table 1 shows the crystal size (a, b axis direction), fresh water shrinkage rate, and crimp occurrence of samples A to G obtained as described above, together with the spinning condition.

(以下余白) サンプルへの場合は紡糸過程で特別の冷却を行わない場
合であり、紡糸調子は極めて悪く一数秒で単糸切れが発
生し引続いて断糸した。
(The following is a margin) In the case of the sample, no special cooling was performed during the spinning process, and the spinning condition was extremely poor, and single yarn breakage occurred within a few seconds, followed by yarn breakage.

これに対しサンプルBの場合、冷却位置がネッキング細
化終了点(78cIR)に比べて過度に上流側に位置し
たため、冷却装置の上流でフィラメント相互の密着がお
こり紡糸調子は更に悪化した。サンプルGの場合は、逆
に冷却位置が過度に下流であったため、結晶成長の抑制
効果はほとんど無く紡糸調子は改善されなかった。
On the other hand, in the case of sample B, since the cooling position was located too far upstream compared to the necking thinning end point (78cIR), the filaments came into close contact with each other upstream of the cooling device, further worsening the spinning condition. In the case of sample G, on the contrary, since the cooling position was too far downstream, there was almost no effect of suppressing crystal growth and the spinning condition was not improved.

以上に対しサンプルC−Fの場合は明らかに紡糸調子の
向上が認められた。その中でも特に冷却位置が上流にな
るサンプルC,Dにおいては紡糸調子の改善が著しかっ
た。
In contrast to the above, in the case of Samples C-F, a clear improvement in spinning condition was observed. Among them, especially in samples C and D where the cooling position was upstream, the improvement in spinning condition was remarkable.

これら紡糸調子が良好であるサンプルにおいては、サン
プルA又はGに比較して結晶サイズが小さくなっており
、清水収縮率は逆に増加している。
In these samples with good spinning condition, the crystal size is smaller than that of Sample A or G, and the fresh water shrinkage rate is on the contrary increased.

すなわち、結晶化の抑制が効を奏している。これは特に
紡調の良好なサンプルCおよびDにおいて著しい。
In other words, suppression of crystallization is effective. This is particularly noticeable in samples C and D, which are well-spun.

尚、サンプルBの場合は結晶の形成がほとんど認められ
ず、清水収縮率は他のサンプルに比べて格段に高くなっ
た。この場合は事実上高配向非品性の繊維構造であると
考えられる。
In the case of sample B, almost no crystal formation was observed, and the fresh water shrinkage rate was significantly higher than that of the other samples. In this case, it is considered that the fiber structure is actually highly oriented and poor quality.

またサンプルB、C,Dにおいては巻取り糸は強い捲縮
を呈したが、サンプルA、E、F、Gでは捲縮性はほと
んど認められなかった。
Further, in Samples B, C, and D, the wound yarn exhibited strong crimp, but in Samples A, E, F, and G, almost no crimp was observed.

※ 捲縮は、特開昭58−54035号公報に記載され
た、以下の方法により評価した。
* The crimp was evaluated by the following method described in Japanese Patent Application Laid-Open No. 58-54035.

通常の紡糸延伸糸(フラットヤーン)の嵩高度を基準と
して、これの3〜4倍のものを“′大パ、2〜3@のち
のを゛中″、1〜2倍のものを′無し°゛とした。
Based on the bulk of ordinary spun and drawn yarn (flat yarn), those 3 to 4 times the bulk of this are ``Large'', 2 to 3 are ``Medium'', and those 1 to 2 times are ``No''. It was ゛゛.

嵩高度の測定 0.64 gの糸条をボックス(高さ2.5゜巾1.o
cm、艮ざ10aR,底面0 、5 Crnの曲率半径
)に充填し蓋(重量69)の荷重下に糸条の一定値の手
伝(W9−0.649 )の体積(V ci )を以下
の式により算出する。
Measurement of bulk height 0.64 g of yarn was placed in a box (height 2.5° width 1.0
cm, width 10aR, bottom surface 0, radius of curvature of 5 Crn) is filled, and under the load of the lid (weight 69), the volume (Vci) of a constant value of yarn (W9-0.649) is as follows. Calculated using the formula.

嵩高度(c#i/ 9 ) = V/W比較例1 実施例1において第2図の冷却装置の代りに、第3図に
示すような冷却装置を用いてマルチフィラメントを集束
し、かつ冷却した。
Bulk height (c#i/9) = V/W Comparative Example 1 In Example 1, instead of the cooling device shown in FIG. 2, a cooling device as shown in FIG. 3 was used to collect and cool the multifilament. did.

実施例1サンプルBおよびCに相当する位置に該冷却装
置を置いた所、マルチフィラメント相互の密着が起り易
く、紡糸は不可能であった。サンプルD、Eに相当する
位置では、数十秒の紡糸は可能であったが、間もなく密
着に基づく断糸が発生した。サンプルEの位置では数分
の紡糸が可能であった。しかし、サンプルGに相当する
位置の集束、冷却では数秒で単糸切れが起るなど紡糸調
子は再び悪化した。
When the cooling device was placed at a position corresponding to Samples B and C of Example 1, the multifilaments tended to adhere to each other, making spinning impossible. At the positions corresponding to samples D and E, spinning was possible for several tens of seconds, but yarn breakage soon occurred due to close contact. At the position of sample E, spinning for several minutes was possible. However, when focusing and cooling at a position corresponding to sample G, the spinning condition deteriorated again, with single yarn breakage occurring within a few seconds.

実施例2 実施例1サンプルCに相当して第2図の冷却装置を設置
し、かつその下流5 cmに第3図の冷却装置を置いて
、その他は実施例1と同様にして高速紡糸した。この場
合紡糸調子は良好であり30分の完巻きが可能であった
Example 2 The cooling device shown in FIG. 2 was installed corresponding to Example 1 Sample C, and the cooling device shown in FIG. . In this case, the spinning condition was good and complete winding was possible in 30 minutes.

実施例3 実施例1にサンプルD1.:、115いて冷却媒体を室
温の水(水温25℃)および温水(水温50℃)に変更
した所、第2表の結果を得た。
Example 3 Sample D1. When the cooling medium was changed to room temperature water (water temperature 25°C) and hot water (water temperature 50°C), the results shown in Table 2 were obtained.

第2表 冷却液温が高くなると結晶サイズが増加し、紡糸調子が
若干悪くなる傾向を示す。
Table 2 shows that as the coolant temperature increases, the crystal size increases and the spinning condition tends to deteriorate slightly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に際した吐出フィラメントの細化
曲線(引取速度5000〜10000m/m)の−例を
示すグラフである。第2〜3図は本発明における冷却装
置の例を示す斜視図(イ)および平面図(01である。 第2〜3図おいて 1・・・吐出糸条、 2・・・中空環状部3.7・・・
本体、 4・・−案内管 5・・・噴出孔、  6.9・・・供給導管10・・・
噴出管、  8・・・集束部吐出m6.2g/min、
−1 0金からの距離  (cm)
FIG. 1 is a graph showing an example of a thinning curve of a discharged filament (take-up speed of 5,000 to 10,000 m/m) when the present invention is carried out. Figures 2 and 3 are a perspective view (a) and a plan view (01) showing an example of the cooling device according to the present invention. 3.7...
Main body, 4...-guide pipe 5... nozzle hole, 6.9... supply conduit 10...
Ejection pipe, 8... Focusing section discharge m6.2 g/min,
-1 0 Distance from gold (cm)

Claims (7)

【特許請求の範囲】[Claims] (1)ポリエステルを6000m/分以上9000m/
分未満の引取速度で高速紡糸するに際し吐出糸条をその
細化終了点の5cm上流から3cm下流迄の範囲におい
て液体により冷却する事を特徴とするポリエステル糸の
製糸方法。
(1) Polyester at 6000 m/min or more 9000 m/min
A method for spinning polyester yarn, which comprises cooling the discharged yarn with a liquid in a range from 5 cm upstream to 3 cm downstream of the thinning end point during high-speed spinning at a take-up speed of less than 1 minute.
(2)細化終了点の5cm上流から2cm下流迄の範囲
において、吐出糸条を液体により冷却する特許請求の範
囲第(1)項記載のポリエステル糸の製糸方法。
(2) The polyester yarn spinning method according to claim (1), wherein the discharged yarn is cooled with liquid in a range from 5 cm upstream to 2 cm downstream of the thinning end point.
(3)細化終了点の5cm上流から細化終了点迄の範囲
において、吐出糸条を液体により冷却する特許請求の範
囲第(1)項のポリエステル糸の製糸方法。
(3) The method for spinning polyester yarn according to claim (1), wherein the discharged yarn is cooled with liquid in a range from 5 cm upstream of the end point of attenuation to the end point of attenuation.
(4)吐出糸条を集束する事なく液体により冷却する特
許請求の範囲第(1)項〜第(3)項の何れか記載のポ
リエステル糸の製糸方法。
(4) The polyester yarn spinning method according to any one of claims (1) to (3), wherein the discharged yarn is cooled with a liquid without being bundled.
(5)液体による冷却点の下流10cm以内において、
吐出糸条を集束し、且つ液体により冷却する特許請求の
範囲第(4)項記載のポリエステル糸の製糸方法。
(5) Within 10 cm downstream of the cooling point by the liquid,
The polyester yarn spinning method according to claim (4), wherein the discharged yarn is bundled and cooled with a liquid.
(6)冷却液体の液温が5℃以下である特許請求の範囲
第(1)項〜第(3)項何れか記載のポリエステル糸の
製糸方法。
(6) The method for spinning polyester yarn according to any one of claims (1) to (3), wherein the temperature of the cooling liquid is 5°C or less.
(7)吐出糸条を冷却すると同時にオイリングする特許
請求の範囲第(1)項〜第(5)項記載のポリエステル
糸の製糸方法。
(7) A method for spinning polyester yarn according to claims (1) to (5), in which the discharged yarn is cooled and oiled at the same time.
JP7999786A 1986-04-09 1986-04-09 Spinning of polyester yarn Pending JPS62238816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7999786A JPS62238816A (en) 1986-04-09 1986-04-09 Spinning of polyester yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7999786A JPS62238816A (en) 1986-04-09 1986-04-09 Spinning of polyester yarn

Publications (1)

Publication Number Publication Date
JPS62238816A true JPS62238816A (en) 1987-10-19

Family

ID=13705934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7999786A Pending JPS62238816A (en) 1986-04-09 1986-04-09 Spinning of polyester yarn

Country Status (1)

Country Link
JP (1) JPS62238816A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121613A (en) * 1981-01-19 1982-07-29 Asahi Chem Ind Co Ltd Polyester fiber dyeable at normal pressure
JPS57161121A (en) * 1981-03-31 1982-10-04 Asahi Chem Ind Co Ltd Easily dyeable polyethylene terephthalate fiber
JPS58169513A (en) * 1982-03-18 1983-10-06 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Production of amorphous polyethylene- terephthalate yarn for texture processing spun at high speed
JPS6081311A (en) * 1983-10-05 1985-05-09 Toray Ind Inc Preparation of previously dyed yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121613A (en) * 1981-01-19 1982-07-29 Asahi Chem Ind Co Ltd Polyester fiber dyeable at normal pressure
JPS57161121A (en) * 1981-03-31 1982-10-04 Asahi Chem Ind Co Ltd Easily dyeable polyethylene terephthalate fiber
JPS58169513A (en) * 1982-03-18 1983-10-06 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Production of amorphous polyethylene- terephthalate yarn for texture processing spun at high speed
JPS6081311A (en) * 1983-10-05 1985-05-09 Toray Ind Inc Preparation of previously dyed yarn

Similar Documents

Publication Publication Date Title
EP0205960B1 (en) Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
US4228118A (en) Process for producing high tenacity polyethylene fibers
US4276348A (en) High tenacity polyethylene fibers and process for producing same
US4237187A (en) Highly oriented, partially drawn, untwisted, compact poly(ε-caproamide) yarn
EP0034880A1 (en) Process for forming a continuous filament yarn from a melt spinnable polyethylene terephthalat and novel polyester yarns produced by the process
US6780358B2 (en) Manufacturing method for polyester yarn excellent in yarn transferring, packaging and loosing with no white powder occurred when weaving and polyester yarn made from the same
JPS5947726B2 (en) Polyester fiber manufacturing method
KR100422029B1 (en) Poly(trimethylene terephthalate) modified cross-section yarn
JP2755820B2 (en) Melt spinning of super oriented crystalline filament
JP2005179823A (en) Method for producing polyester fiber and spinning cap for melt spinning
US5268133A (en) Melt spinning of ultra-oriented crystalline filaments
KR100208055B1 (en) A spinning process for producing high strength, high modulus, low shrinkage synthetic yarns
JPS62238816A (en) Spinning of polyester yarn
JPS6359412A (en) Spinning of polyester
JPS5891811A (en) Spinning
JPS61194218A (en) Production of polyester fiber
JP3672810B2 (en) High density screen monofilament
JPS6353292B2 (en)
JP3190553B2 (en) Polyester fiber
KR100211140B1 (en) The method of preparing a polyester ultra fine multi filament yarn
KR930003949B1 (en) Process for the preparation of high strength polyglycolic acid fiber
JPH0532492B2 (en)
JPH02269807A (en) Polyester multifilament and production thereof
JPH10251919A (en) Polyester fiber and its production
JPS62133112A (en) Production of combined filament yarn having shrinkage difference