JPS62238730A - Manufacture of thermally fixed oriented container - Google Patents

Manufacture of thermally fixed oriented container

Info

Publication number
JPS62238730A
JPS62238730A JP61080179A JP8017986A JPS62238730A JP S62238730 A JPS62238730 A JP S62238730A JP 61080179 A JP61080179 A JP 61080179A JP 8017986 A JP8017986 A JP 8017986A JP S62238730 A JPS62238730 A JP S62238730A
Authority
JP
Japan
Prior art keywords
mold
temperature
molded product
heated
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61080179A
Other languages
Japanese (ja)
Other versions
JPH0443498B2 (en
Inventor
Shunsaku Hirata
平田 俊策
Yoji Mizutani
水谷 洋司
Manabu Hosokawa
学 細川
Kichiji Maruhashi
丸橋 吉次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP61080179A priority Critical patent/JPS62238730A/en
Publication of JPS62238730A publication Critical patent/JPS62238730A/en
Publication of JPH0443498B2 publication Critical patent/JPH0443498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • B29C2049/4838Moulds with incorporated heating or cooling means for heating moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • B29C2049/4838Moulds with incorporated heating or cooling means for heating moulds or mould parts
    • B29C2049/4846Moulds with incorporated heating or cooling means for heating moulds or mould parts in different areas of the mould at different temperatures, e.g. neck, shoulder or bottom
    • B29C2049/4848Bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C49/6605Heating the article, e.g. for hot fill

Abstract

PURPOSE:To obtain a biaxially oriented blow molded container of thermoplastic polyester to the whole of which thermal fixation has been applied stably without whitening the bottom and a shoulder part of the container, by a method wherein blow molding and thermal fixation are applied to a preform within a mold whose mold surface corresponding to a shell part and that corresponding to the bottom and shoulder part are heated respectively at a high temperature and low temperature, a molded product is cooled and shrunk by unloading the same, held within a secondary mold and molded under blowing-in of a fluid. CONSTITUTION:An inner cylindrical part 4 of a cavity mold is provided by applying heat insulation to the same and the inside of the same is provided with a heater 8. A mold surface 11 corresponding to a shell part is heated at a high temperature and, on the one hand, mold surfaces 12, 13 corresponding to a shoulder part and the bottom are heated at the temperature which is lower than that of the mold surface 11 corresponding to the shell part and does not become more than the whitening temperature. Biaxially oriented blow molding is applied to a preform in the mold, a formed molded product is held within the mold in a state that fluid pressure is applied to the inside and thermal fixation is applied to the same. The molded product is cooled by unloading the same by breaking the mold and shrinkage is allowed. The cooled and shrunk molded product is held within a secondary mold and molded into the final container form under blowing-in of a fluid.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱可塑性ポリエステルから成る熱固定延伸成形
容器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a heat-set stretch-molded container made of thermoplastic polyester.

(従来の技術) ポリエチレンテレフタレートCPET)の如き熱可塑性
ポリエステルの二軸延伸ブロー成形容器は、優れた透明
性や表面光沢を有すると共に、びんに必要な耐衝撃性、
剛性、ガスバリヤ−性をも有しており、各種液体のびん
詰合器として利用されている。
(Prior Art) Biaxially stretched blow-molded containers made of thermoplastic polyester such as polyethylene terephthalate (CPET) have excellent transparency and surface gloss, as well as the impact resistance and
It also has rigidity and gas barrier properties, and is used as a bottle filler for various liquids.

しかしながら、ポリエステル容器は、耐熱性に劣るとい
う欠点があり、内容物を熱間充填する用途に対しては、
熱変形や容積の収縮変形を生じるため二軸延伸ブロー容
器を成形後に熱固定(ヒート−セット)すべく多くの提
案が既に行われている。
However, polyester containers have the disadvantage of poor heat resistance, and are not suitable for hot filling applications.
Many proposals have already been made to heat-set biaxially stretched blown containers after molding to avoid thermal deformation and volume shrinkage deformation.

熱固定の方法には、特公昭60−56606号公報にみ
られる通り、延伸ブロー成形により得られる成形品を成
形ブロー型から取出した後、熱固定用の金型内に保持し
て熱固定を行う方法や、特公昭59−6218号公報に
みられる通り、ブロー成形型中で延伸ブロー成形と同時
に熱固定を行う方法が知られている。また、特開昭57
−53326号公報には、−沈金型中で延伸ブロー成形
と同時に熱処理を行い、成形品を取出してこれを冷却す
ることなく、二次処理金型中でブロー成形する方法が記
載されている。
As shown in Japanese Patent Publication No. 60-56606, the heat setting method involves taking out the molded product obtained by stretch blow molding from the blow mold, and then holding it in a heat setting mold to heat set it. There are known methods for carrying out heat setting at the same time as stretch blow molding in a blow mold, as shown in Japanese Patent Publication No. 59-6218. In addition, JP-A-57
Japanese Patent No. 53326 describes a method in which heat treatment is carried out simultaneously with stretch blow molding in a sinking mold, and blow molding is carried out in a secondary treatment mold without taking out the molded product and cooling it.

(発明が解決しようとする問題点) しかしながら、前述した延伸ブロー型と熱固定型とを用
いる方法では、熱固定のための加熱が再度必要であり、
熱エネルギーの点で不経済であると共に、熱固定金型の
占有時間が長く、生産性が低いという欠点がある。
(Problems to be Solved by the Invention) However, in the method using the stretch-blow type and heat-setting type described above, heating is required again for heat-setting.
It is disadvantageous in that it is uneconomical in terms of thermal energy, requires a long time to occupy the heat-setting mold, and has low productivity.

また、ブロー成形型中で延伸ブロー成形と同時に熱固定
を行う方法は、熱固定後の成形品の取出しに問題があり
、特公昭59−6216号公報にみられる通り、熱固定
のための加熱に続いて取出しのための冷却を行う方法で
は、熱効率の点でも、型占有時間や生産性の点でも未だ
十分に満足し得るものでない。
In addition, the method of heat setting in a blow mold at the same time as stretch blow molding has problems in taking out the molded product after heat setting, and as seen in Japanese Patent Publication No. 59-6216, The method of subsequently cooling the mold for removal is still not fully satisfactory in terms of thermal efficiency, mold occupation time, and productivity.

更に、前記特開昭57−53326号公報にみられる方
法では、熱固定中に未延伸乃至は低延伸の底部や肩部が
熱結晶化して白化する傾向があり、また−成金型から二
次金型への移送中に成形品が不規則に変形して最終ブロ
ー成形が困難になる等の欠陥がある。
Furthermore, in the method disclosed in JP-A-57-53326, unstretched or lightly stretched bottoms and shoulders tend to thermally crystallize and whiten during heat setting, and - There are defects such as irregular deformation of the molded product during transfer to the mold, making final blow molding difficult.

従って、本発明の技術的課題は、最終容器の底部や肩部
が白化することなくしかも全体が安定に熱固定された熱
可塑性ポリエステルの二軸延伸ブロー成形容器を、優れ
た熱効率と生産性とをもって製造し得る方法を提供する
ものである。
Therefore, the technical problem of the present invention is to create a biaxially stretched blow-molded container made of thermoplastic polyester that does not whiten the bottom or shoulders of the final container and is stably heat-set as a whole, with excellent thermal efficiency and productivity. The purpose of this invention is to provide a method that can be manufactured using the following methods.

(問題点を解決するための手段) 本発明の方法は、熱可塑性ポリエステルから珍成され且
つ容器口頚部に対応する口頚部を有する有底プリフォー
ムを、胴部に対応する型表面が高温に加熱され且つ底部
に対応する型表面及び肩部に対応する型表面が該ポリエ
ステルの結晶化速度の低い温度に加熱された金型内で二
軸方向に延伸ブロー成形すると共に、該金型内に成形品
を保持して熱固定を行い、熱固定された成形品を該金型
から取出して、該成形品を冷却すると共にその収縮を許
容させ、次に該成形品を二次金型中に保持して、流体吹
込み下に最終容器形状に成形することに特徴を有する。
(Means for Solving the Problems) The method of the present invention uses a bottomed preform made of thermoplastic polyester and having a mouth neck corresponding to the container mouth neck, when the mold surface corresponding to the body is heated to a high temperature. Stretch blow molding is carried out in biaxial directions in a mold in which the mold surface corresponding to the bottom and the mold surface corresponding to the shoulder are heated to a temperature at which the crystallization rate of the polyester is low. The molded product is held and heat-set, the heat-set molded product is taken out of the mold, the molded product is cooled and allowed to shrink, and then the molded product is placed in a secondary mold. It is characterized by being held and molded into the final container shape under fluid injection.

(作  用) 本発明によれば、高度に二軸方向に分子配向される洞部
に対しては、ブロー金型の胴部対応型表面を高温に加熱
しておくことにより、これを高度に配向結晶化させ、一
方分子配向の程度の小さい底部及び肩部に対しても、対
応型表面を結晶化温度以上には達しないという条件下に
加熱しておくことにより、これらを白化しない範囲内で
結晶化の程度を向上させることかでさる。このため、本
発明によれば、最終容器の外観を肩部及び底部の白化に
よって見苦しくならないように良好な状態に維持しなが
ら、高度の熱固定を安定に行うことができる。また、プ
リフォームが延伸温度に予備加熱されており、しかもブ
ロー金型内表面が全て加熱されていることがら熱固定の
ための時間も短かく、従ってブロー金型の占有時間も短
かくてよいことになる。
(Function) According to the present invention, by heating the body-corresponding mold surface of the blow mold to a high temperature, the cavities in which molecules are highly oriented in biaxial directions can be highly oriented. By heating the corresponding mold surface under conditions that do not reach the crystallization temperature or higher, even for the bottom and shoulders where the degree of molecular orientation is small, it is possible to achieve oriented crystallization within a range that does not cause whitening. It is possible to improve the degree of crystallization. Therefore, according to the present invention, a high degree of heat setting can be stably performed while maintaining the appearance of the final container in a good condition so as not to make it unsightly due to whitening of the shoulders and bottom. In addition, since the preform is preheated to the stretching temperature and the entire inner surface of the blow mold is heated, the time for heat setting is short, and therefore the time occupied by the blow mold can be shortened. It turns out.

次に、熱固定処理が終った成形品をブロー金型から直ち
に取出し、成形品を冷却すると共に自己収縮させる。成
形品を非拘束条件下におき、自己収縮させることは、延
伸ブロー成形−熱固定の段階を経て成形品中に残留する
応力を緩和させ、寸法を安定化することを意図するもの
であるが、この際取出される成形品を冷却することは、
二次金型へ移送される成形品の不規則且つ不必要な変形
を抑制すると共に、この成形品の温度を二次金型での成
形に適した温度にもたらす作用をする。特にこの冷却に
より高温でしかも薄肉の胴部は他の部分に比してより急
速に冷却され、二次金型での成形に適した温度となる。
Next, the molded product that has been heat-set is immediately taken out from the blow mold, cooled, and self-shrinked. Placing the molded product under unrestrained conditions and allowing it to self-shrink is intended to relieve the stress remaining in the molded product after the stretch blow molding-heat setting stage and stabilize its dimensions. , to cool the molded product taken out at this time,
It functions to suppress irregular and unnecessary deformation of the molded product transferred to the secondary mold, and to bring the temperature of the molded product to a temperature suitable for molding in the secondary mold. In particular, by this cooling, the high-temperature and thin-walled body part is cooled more rapidly than other parts, and reaches a temperature suitable for molding in the secondary mold.

最後に、冷却された成形品を二次金型中に保持して、流
体吹込み下に最終容器形状に成形する。
Finally, the cooled molded article is held in a secondary mold and molded into the final container shape under fluid injection.

本発明においては、二次成形に先立って成形物の予備に
冷却が行われていることから、m形品の二次金型におけ
る占有時間も少なく、全体として高い熱効率と生産性と
で熱固定された二軸延伸ブロー容器を製造することが可
能となる。
In the present invention, since the molded product is preliminarily cooled prior to secondary molding, the time occupied in the secondary mold for m-shaped products is shortened, resulting in high thermal efficiency and productivity as a whole. It becomes possible to manufacture a biaxially stretched blow container.

(好適実施態様の説明) 本発明において、熱可塑性ポリエステルとしては、エチ
レンテレフタレート単位を主体とする熱可塑性ポリエス
テル、例えばPETやグリコール成分としてヘキサヒド
ロキシリレングリコール等の他のグリコール類の少量を
含有せしめ或いは二塩基酸成分としてイソフタル酸やヘ
キサヒドロテレフタル酸等の他の二塩基酸成分の少量を
含有せしめた所謂改質PET等が使用される。これらの
ポリエステルは、単独でも或いはナイロン類、ポリカー
ボネート或いはボリアリレート等の他の樹脂とのブレン
ド物の形でも使用し得る。用いるポリエステルは、当然
のことながら、フィルムを形成するに足る分子量を有す
るべきである。
(Description of Preferred Embodiments) In the present invention, the thermoplastic polyester is a thermoplastic polyester mainly containing ethylene terephthalate units, such as PET, or containing a small amount of other glycols such as hexahydroxylylene glycol as a glycol component; So-called modified PET, which contains a small amount of other dibasic acid components such as isophthalic acid and hexahydroterephthalic acid, is used as the dibasic acid component. These polyesters can be used alone or in the form of blends with other resins such as nylons, polycarbonates or polyarylates. The polyester used should, of course, have a sufficient molecular weight to form a film.

延伸ブロー成形に使用する有底プリフォームは、それ自
体公知の任意の手法、例えば射出成形法、パイプ押出成
形法等で製造される。前者の方法では、溶融ポリエステ
ルを射出し、最終容器に対応する口頚部を備えた有底プ
リフォームを非晶質の状態で製造する。後者の方法はエ
チレン−ビニルアルコール共重合体等のガスバリヤ−性
中間樹脂層を備えた有底プリフォームの製造に有利な方
法であり、押出された非晶質パイプを切断し。
The bottomed preform used in stretch blow molding is manufactured by any method known per se, such as injection molding method, pipe extrusion molding method, etc. In the former method, molten polyester is injected to produce a bottomed preform in an amorphous state with a mouth and neck corresponding to the final container. The latter method is advantageous for producing a bottomed preform having a gas barrier intermediate resin layer such as ethylene-vinyl alcohol copolymer, and involves cutting an extruded amorphous pipe.

一端部に圧縮成形で口頚部を形成させると共に。A mouth and neck part is formed at one end by compression molding.

他端部を閉じて有底プリフォームとする。高温下での蓋
との係合、密封状態を良好に維持するために、容器口頚
部となる部分のみを予じめ熱結晶化させておくことがで
きる。勿論、この熱結晶下は以後の任意の段階で行うこ
ともできる。
The other end is closed to form a bottomed preform. In order to maintain good engagement with the lid and sealing under high temperatures, only the portion that will become the mouth and neck of the container can be thermally crystallized in advance. Of course, this thermal crystallization can also be carried out at any subsequent step.

本発明において、延伸ブロー成形及び熱固定に用いる金
型を説明するための第1図及び第2図において、この金
型は、大別してキャビティ金型lコア金型2及びベース
(底)金型3から構成される。コア金型2は、プリフォ
ームの口頚部を把持するものであり、キャビティ金型1
は内部にキャビティlaを備えた割型であり、成形され
る容器胴部及び肩部の形状を規定するものである。ペー
ス金型3は容器の底形状を規定するものであり、キャビ
ティ金型1と一体に固定されていてもよく、またキャビ
ティ金型の軸方向に移動可能に設けられていて、底部に
更に延伸を手えるようになったものでもよい。
In the present invention, in FIGS. 1 and 2 for explaining the molds used for stretch blow molding and heat setting, these molds are roughly divided into a cavity mold, a core mold 2, and a base (bottom) mold. Consists of 3. The core mold 2 is for gripping the mouth and neck of the preform, and the cavity mold 1
is a split mold with a cavity la inside, which defines the shape of the container body and shoulder to be molded. The pace mold 3 defines the bottom shape of the container, and may be fixed integrally with the cavity mold 1, or may be movable in the axial direction of the cavity mold. It may be something that you can now get your hands on.

キャビティ金型lは内筒部4と外筒部5とから成り、内
筒部4と外筒部5との間には断熱剤6が設けられている
。また、コア金型2とキャビティ金型内筒部4との間に
もドーナツ状の断熱剤7が設けられている。かくして、
キャビティ金型内筒部4は外筒部5からも、またコア金
型2からも断熱されていることが了解されよう。
The cavity mold l consists of an inner cylinder part 4 and an outer cylinder part 5, and a heat insulating material 6 is provided between the inner cylinder part 4 and the outer cylinder part 5. Further, a doughnut-shaped heat insulating material 7 is also provided between the core mold 2 and the cavity mold inner cylindrical portion 4. Thus,
It will be appreciated that the cavity mold inner tube 4 is insulated from both the outer tube 5 and the core mold 2.

キャビティ金型内筒部4には、キャビティ内面を加熱す
るために、キャビテイ軸方向に延びている複数本のカー
トリッジヒーター8が円周状に配設して設けられる。同
様に、ベース金型3の内部にもその表面を加熱するため
のヒーター9が設けられている。またコア金型2には該
金型で保持されるブリフォームロ頚部を冷却するための
冷却媒体通路10が設けられる。
A plurality of cartridge heaters 8 extending in the axial direction of the cavity are arranged in a circumferential manner in the cavity mold inner cylindrical part 4 in order to heat the inner surface of the cavity. Similarly, a heater 9 is provided inside the base mold 3 to heat the surface thereof. Further, the core mold 2 is provided with a cooling medium passage 10 for cooling the neck of the preform rotor held by the mold.

キャビティ金型内筒部4が断熱して設けられ、しかもそ
の内部にはヒーター8が設けられているため、胴部対応
型表面11は高温に加熱され、一方、肩部対応表面工2
は、ヒーター8からの伝熱距離が長いことと、強制冷却
されたコア金型2と接続されていることとによって、胴
部対応型表面j1よりも低い温度でしかも白化温度以上
とならない温度に加熱される。また、底部対応型表面1
3はヒーター9により、上記と同様な範囲の温度に維持
される。
Since the cavity mold inner cylindrical part 4 is provided with heat insulation and a heater 8 is provided inside thereof, the body part corresponding mold surface 11 is heated to a high temperature, while the shoulder part corresponding surface treatment 2 is heated to a high temperature.
Due to the long heat transfer distance from the heater 8 and the connection with the forcedly cooled core mold 2, the temperature is lower than that of the body corresponding mold surface j1 and does not exceed the whitening temperature. heated. In addition, the bottom compatible surface 1
3 is maintained at a temperature within the same range as above by a heater 9.

第1図の型内におけるプリフォームの二輛延伸ブロー成
形は、それ自体公知の条件で行われ、例えば延伸温度、
一般に90乃至130℃、特に100乃至120℃の温
度に予備加熱されたプリフォームに対して、延伸棒によ
りプリフォームを軸方向に引張延伸すると共に、流体吹
込みにより周方向に[1111!延伸される。軸方向の
延伸倍率は1.5乃至3.5倍、特に2乃至3倍とし、
周方向の延伸倍率は胴部で2乃至5倍、特に3乃至4.
5倍とするのがよい。
The two-body stretch blow molding of the preform in the mold shown in FIG. 1 is carried out under conditions known per se, such as the stretching temperature,
Generally, the preform is preheated to a temperature of 90 to 130°C, particularly 100 to 120°C, and the preform is stretched in the axial direction with a stretching rod, and circumferentially [1111!] by blowing fluid. Stretched. The stretching ratio in the axial direction is 1.5 to 3.5 times, especially 2 to 3 times,
The stretching ratio in the circumferential direction is 2 to 5 times, especially 3 to 4 times, in the body.
It is better to increase it by 5 times.

延伸ブロー成形により形成された成形品は、内部に流体
圧が印加された状態で引続き第1図の金型内に保持され
、熱固定が行われる。
The molded article formed by stretch blow molding is continuously held in the mold shown in FIG. 1 while fluid pressure is applied to the inside, and heat setting is performed.

一般に、胴部対応型表面11は、熱可塑性ポリエステル
の融点よりも低い熱固定温度、例えば120乃至230
℃、特に150乃至200℃の温度に維持するのがよく
、一方、肩部対応型表面12及び底部対応型表面13は
、肩部及び底部の分子配向の程度が胴部のそれに比して
小さいことから、胴部対応型表面11の温度よりも低く
且つ白化温度よりも低い温度でしかも可及的に高い温度
に維持するのがよい、具体的な加熱温度は肩部対応型表
面12で70乃至140℃、特に100乃至130℃の
範囲がよく、また底部対応型表面13で70乃至140
℃、特に80乃至120℃の範囲がよい。
Typically, the torso-compatible surface 11 is heated at a heat setting temperature below the melting point of the thermoplastic polyester, e.g.
℃, especially between 150 and 200 degrees Celsius, while the shoulder-compatible surface 12 and the bottom-compatible surface 13 have a lower degree of molecular orientation in the shoulder and bottom regions than in the torso. Therefore, it is preferable to maintain the temperature at a temperature lower than the temperature of the torso corresponding surface 11 and lower than the whitening temperature, but as high as possible. A temperature range of 140°C to 140°C, particularly 100°C to 130°C is preferable, and a temperature of 70°C to 140°C is preferable for the bottom-compatible surface 13.
℃, particularly preferably in the range of 80 to 120℃.

本発明においては、型全面が加熱されていることから、
金型内での熱固定に必要な時間は比較的短時間であるこ
とも利点であり、この時間は型表面温度によっても相違
するが一般に1乃至30秒間、特に3乃至15秒間程度
の時間で十分である。
In the present invention, since the entire surface of the mold is heated,
Another advantage is that the time required for heat setting in the mold is relatively short, and although this time varies depending on the mold surface temperature, it is generally 1 to 30 seconds, particularly 3 to 15 seconds. It is enough.

金型を開いて、熱固定された成形品を取出し、この成形
品を冷却すると共に、その収縮を許容させる。この工程
は延伸及び熱固定後に、成形品中に残留する応力を除去
して、その形態及び寸法を安定化させるものであるが、
この工程で熱固定後の成形品を冷却することにより、型
から取出された成形品の過度の変形を防止すると共に、
該成形品を二次金型内での成形に適した温度に速やかに
もたらすものである。取出し後の成形品をこの段階で冷
却する程度は、成形品洞部の温度が胴部対応型表面の温
度よりも3乃至40℃低い温度、特に5乃至30℃低い
温度となるように冷却するのがよい、この冷却は、ブロ
ー成形金型から二次金型への成形品の移送中に、室温の
空気雰囲気に曝露し放冷によって行うか、或いは取出し
た成形品に対して冷風を積極的に吹付けるかして行うこ
とができる。
The mold is opened, the heat-set molded product is taken out, and the molded product is cooled and allowed to shrink. This process removes the stress remaining in the molded product after stretching and heat setting, and stabilizes its shape and dimensions.
By cooling the molded product after heat setting in this process, excessive deformation of the molded product taken out from the mold is prevented, and
The molded article is quickly brought to a temperature suitable for molding within the secondary mold. The degree to which the molded product is cooled at this stage after being taken out is such that the temperature of the molded product cavity is 3 to 40°C lower than the temperature of the mold surface corresponding to the body, particularly 5 to 30°C lower. This cooling should be done by exposing the molded product to an air atmosphere at room temperature while it is being transferred from the blow molding mold to the secondary mold, or by actively blowing cold air onto the molded product after it has been taken out. This can be done by spraying.

次いで、冷却され且つ収縮された成形品を二次金型中に
保持し、流体吹込み下に最終容器形状に成形する。この
最終吹込み成形に際しては、最終容器形状に保持するよ
うな成形乃至保形が行われれば十分であり、成形品のど
の部分についても延伸の程度は可及的に低くするのがよ
い、一般に、この成形は、体積膨脹率が、冷却、収縮後
の成形品を基準として、30%以下、特に20%以下と
なるように行うのが望ましい、即ち1体積141脹率が
上記範囲を越えると、二次成形時における延伸歪で最終
容器の熱収縮や熱変形が生じるようになる。この体積膨
脹率は、容器の耐熱性の点からは可及的に小さいことが
望ましいが、これをあまり小さく取り過ぎると、二次金
型中への成形品の保持が困難となることから、体積膨脹
率を30%以下、特に20%以下とすることが望ましい
The cooled and shrunken molded article is then held in a secondary mold and formed into the final container shape under fluid injection. During this final blow molding, it is sufficient to perform molding or shape retention to maintain the final container shape, and it is best to keep the degree of stretching as low as possible in any part of the molded product. This molding is preferably carried out so that the volumetric expansion rate is 30% or less, especially 20% or less, based on the molded product after cooling and shrinking.In other words, if the volumetric expansion rate exceeds the above range, , thermal shrinkage and thermal deformation of the final container occur due to stretching strain during secondary molding. It is desirable that this volumetric expansion coefficient be as small as possible from the viewpoint of the heat resistance of the container, but if it is set too low, it will be difficult to hold the molded product in the secondary mold. It is desirable that the volumetric expansion rate be 30% or less, particularly 20% or less.

二次金型の型内面温度は、当然のことながら、−成金型
の型内面温度よりも低いものであり、一般に10乃至7
0℃の温度が適当である。
The mold inner surface temperature of the secondary mold is, of course, lower than the mold inner surface temperature of the -forming mold, and is generally 10 to 7
A temperature of 0°C is suitable.

本発明によれば、かくして85℃の温度における体積収
縮率が1%以下に抑制され、しかもこの温度での熱変形
も有効に防止されることになる。
According to the present invention, the volumetric shrinkage rate at a temperature of 85° C. is suppressed to 1% or less, and thermal deformation at this temperature is also effectively prevented.

(発明の作用効果) 本発明によれば、最終容器の底部や肩部が白化すること
なく、しかも全体にわたって安定に熱固定された熱可塑
性ポリエステルの二軸延伸ブロー成形容器が、優れた熱
効率と生産性とをもって製造されるという利点が得られ
る。
(Operations and Effects of the Invention) According to the present invention, a biaxially stretched blow-molded container made of thermoplastic polyester, which does not whiten at the bottom or shoulders of the final container and is stably heat-set throughout, has excellent thermal efficiency. The advantage is that it can be manufactured with high productivity.

(実施例) 実施例 l 固有粘度1.0のポリエチレンテレフタレートを射出成
形し、高さ162mm、胴部径26mm、胴部平均肉厚
4+w+a、首部肉厚1.5 IImの有底プリフォー
ムを成形し、口部のみ熱風(240℃)による熱処理を
行い結晶化させた。
(Example) Example 1 Polyethylene terephthalate with an intrinsic viscosity of 1.0 is injection molded to form a bottomed preform with a height of 162 mm, a body diameter of 26 mm, an average body thickness of 4+w+a, and a neck thickness of 1.5 IIm. Then, only the mouth part was heat-treated with hot air (240°C) to crystallize it.

このプリフォームを延伸温度95℃〜100℃に加熱し
、加熱されたプリフォームをキャビティ表面温度が胴部
で180℃、肩部で110℃、底部で100℃に加熱さ
れた、内容積1 、150ccのキャビティを有するブ
ロー金型(−成金型)内で二軸延伸ブローして中間成形
品を成形すると共に、該−成金型内に4秒間保持して熱
固定(ヒートセット)を行った後中間成形品をブロー金
型から取出し、この中間成形品を自然放冷により約30
℃冷却させ、約20%収縮させてキャビティ表面が60
℃に保持され一次金型より内容積の小さい二次金型内で
最終形状の容器にブロー成形して内容積1.0OOcc
の容器を得た。この場合の成形サイクルは6秒/本であ
った。
This preform was heated to a stretching temperature of 95°C to 100°C, and the heated preform was heated to a cavity surface temperature of 180°C at the body, 110°C at the shoulder, and 100°C at the bottom. After molding the intermediate molded product by biaxial stretching blowing in a blow mold (-forming mold) having a 150 cc cavity, and holding it in the mold for 4 seconds to perform heat setting. The intermediate molded product is taken out from the blow mold, and the intermediate molded product is left to cool naturally for about 30 minutes.
℃ and shrink by about 20% until the cavity surface reaches 60℃.
The final shape of the container is blow molded in a secondary mold that is maintained at ℃ and has an internal volume smaller than the primary mold, with an internal volume of 1.0OOcc.
I got a container of. The molding cycle in this case was 6 seconds/piece.

この容器は底部や肩部の白濁もなく良好な外観を呈した
This container had a good appearance with no cloudiness on the bottom or shoulders.

この容器に85℃の液体を充填しても収縮や変形が生じ
ることがなかった。さらに、120℃の熱処理に対して
も収縮や変形が生じることもなかった。
Even when this container was filled with liquid at 85° C., no shrinkage or deformation occurred. Furthermore, no shrinkage or deformation occurred even after heat treatment at 120°C.

実施例 2 内外層を固有粘度1.0のポリエチレンテレフタレート
、中間層をビニルアルコール70モル%のエチレン−ビ
ニルアルコール共重合体、内外層と中間層との間に介在
させる接着層をコポリアミドとした多層共射出成形し、
高さ162mm、胴部径28+s■、胴部平均肉厚41
組首部肉厚1.5 ratsの有底プリフォームを成形
し、口部のみ熱風(240℃)による熱処理を行い結晶
化させた。
Example 2 The inner and outer layers were made of polyethylene terephthalate with an intrinsic viscosity of 1.0, the middle layer was made of ethylene-vinyl alcohol copolymer containing 70 mol% of vinyl alcohol, and the adhesive layer interposed between the inner and outer layers and the middle layer was made of copolyamide. Multi-layer co-injection molding,
Height 162mm, body diameter 28+s■, body average thickness 41
A bottomed preform with a neck wall thickness of 1.5 rats was molded, and only the mouth portion was heat-treated with hot air (240° C.) to crystallize it.

このプリフォームを延伸温度95℃〜100℃に加熱し
、加熱されたプリフォームをキャビティ表面温度が胴部
で180℃、肩部で110℃、底部で100℃に加熱さ
れた一次金型内で二輪延伸ブローして中間成形品を成形
すると共に、該−成金型内に4秒間保持して熱固定(ヒ
ートセット)を行った後中間成形品をブロー金型から取
り出し、この中間成形品を自然放冷により約30℃冷却
させ、約20%収縮させてキャビティ表面が60℃に保
持され一次金型より内容積の小さい二次金型内で最終形
状の容器にブロー成形して内容積1,0OOccの容器
を得た。この場合の成形サイクルは7秒/本であった。
This preform is heated to a stretching temperature of 95°C to 100°C, and the heated preform is placed in a primary mold whose cavity surface temperature is 180°C at the body, 110°C at the shoulder, and 100°C at the bottom. An intermediate molded product is formed by two-wheel stretch blowing, and after being held in the mold for 4 seconds to perform heat setting, the intermediate molded product is taken out from the blow mold and this intermediate molded product is The cavity surface is maintained at 60°C, and the container is blow-molded into the final shape in a secondary mold, which has a smaller internal volume than the primary mold. A container of 0OOcc was obtained. The molding cycle in this case was 7 seconds/piece.

この容器は底部や肩部の白濁もなく良好な外観を呈した
This container had a good appearance with no cloudiness on the bottom or shoulders.

この容器に93℃の液体を充填しても収縮や変形が生じ
ることがなかった。さらに、120℃の熱処理に対して
も収縮や変形が生じることもなかった。
Even when this container was filled with liquid at 93° C., no shrinkage or deformation occurred. Furthermore, no shrinkage or deformation occurred even after heat treatment at 120°C.

比較例 l 実施例1に使用したプリフォームを延伸温度95〜10
0℃に加熱し、加熱されたプリフォームをキャビティ表
面温度が約120℃に加熱された一次金型内で加熱流体
を用いて二軸延伸ブローして容器を成形すると共に該−
成金型内に12秒間保持してヒートセットを行った後、
該−成金型内の加熱流体を冷却流体に切り変えて内容積
1.000ccの容器を得た。この場合の成形サイクル
は16秒/本であった。
Comparative Example l The preform used in Example 1 was stretched at a temperature of 95 to 10
The heated preform is heated to 0°C and biaxially stretched and blown using a heated fluid in a primary mold whose cavity surface temperature is approximately 120°C to form a container.
After heat setting by holding in the mold for 12 seconds,
The heating fluid in the mold was changed to a cooling fluid to obtain a container with an internal volume of 1.000 cc. The molding cycle in this case was 16 seconds/piece.

この容器は底部中央や肩部上方に熱結晶化による白濁が
生じた。更に、この容器に85℃の液体を充填しても収
縮や変形はほとんどなかったが、120℃で熱処理する
と容器の収縮が大きく変形を生じた。
In this container, cloudiness occurred in the center of the bottom and above the shoulder due to thermal crystallization. Further, even when this container was filled with a liquid at 85° C., there was almost no shrinkage or deformation, but when heat treated at 120° C., the container contracted significantly and deformed.

比較例 2 実施例1に使用したプリフォームを延伸温度95〜10
0℃に加熱し、加熱されたプリフォームをキャビティ表
面温度が約180℃に加熱された一次金型内で加熱流体
を用いて二軸延伸ブローして中間成形品を成形すると共
に該−成金型内に3秒間保持してヒートセットを行った
後、特開昭57−53326号公報記載のとおり、中間
成形品を冷却することなく一次金型から二次金型へ移送
する場合、中間成形品の一次金型から二次金型への移送
がうまく行われず、N14足な最終形状の容器は得られ
なかった。
Comparative Example 2 The preform used in Example 1 was stretched at a temperature of 95 to 10
The heated preform is heated to 0°C and biaxially stretched and blown using a heated fluid in a primary mold whose cavity surface temperature is approximately 180°C to form an intermediate molded product. When the intermediate molded product is transferred from the primary mold to the secondary mold without cooling as described in JP-A No. 57-53326, the intermediate molded product is The transfer from the primary mold to the secondary mold was not successful, and a container with the final shape of N14 could not be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる一次金型の断面図、第2図は第
1図のA−A断面図である。 l・・・・・・キャビティ金型  2・旧・・コア金型
3・・・・・・ベース金型  6,7・・・・・・断熱
材8.9・・・・・・ヒーター
FIG. 1 is a sectional view of a primary mold used in the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. l...Cavity mold 2.Old...Core mold 3...Base mold 6,7...Insulation material 8.9...Heater

Claims (5)

【特許請求の範囲】[Claims] (1)熱可塑性ポリエステルから形成され且つ容器口頚
部に対応する口頚部を有する有底プリフオームを、胴部
に対応する一次金型表面が高温に加熱され且つ底部に対
応する型表面及び肩部に対応する型表面が結晶化速度の
低い温度に加熱された金型内で二軸方向に延伸ブロー成
形すると共に、該金型内に成形品を保持して熱固定を行
い、吹込 熱固定された成形品を該金型から取出して該成形品を冷
却すると共にその収縮を許容させ、次に該成形品を二次
金型中に保持して、流体吹込み下に最終容器形状に成形
することを特徴とする熱固定延伸容器の製造方法。
(1) A preform with a bottom made of thermoplastic polyester and having a neck part corresponding to the mouth neck part of the container is heated to a high temperature and the primary mold surface corresponding to the body part is heated to a high temperature, and the mold surface corresponding to the bottom part and the shoulder part are heated to a high temperature. Stretch blow molding is carried out in biaxial directions in a mold in which the corresponding mold surface is heated to a temperature at which the crystallization rate is low, and the molded product is held in the mold and heat set to perform blow heat setting. Removing the molded article from the mold, allowing the molded article to cool and shrink, and then retaining the molded article in a secondary mold and forming it into the final container shape under fluid injection. A method for producing a heat-set stretched container characterized by:
(2)延伸ブロー成形及び熱固定に際し、胴部対応型表
面を160乃至230℃の温度、底部対応型表面を70
乃至140℃の温度、肩部対応型表面を70乃至140
℃の温度に夫々維持する特許請求の範囲第1項記載の方
法。
(2) During stretch blow molding and heat setting, the temperature of the mold surface corresponding to the body is 160 to 230 °C, and the surface of the mold corresponding to the bottom is 70 °C.
Temperatures from 140°C to 70°C to 140°C
2. A method according to claim 1, wherein the temperature is respectively maintained at .degree.
(3)熱固定を、成形品を金型中に1乃至30秒保持し
て行う特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein heat setting is carried out by holding the molded product in a mold for 1 to 30 seconds.
(4)成形品胴部を胴部対応型表面の温度よりも3乃至
40℃低い温度になるように冷却する特許請求の範囲第
1項記載の方法。
(4) The method according to claim 1, wherein the body of the molded product is cooled to a temperature 3 to 40° C. lower than the temperature of the surface of the mold corresponding to the body.
(5)二次金型内での成形を、体積膨脹率が30%以下
となるように行う特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, wherein the molding in the secondary mold is performed such that the volumetric expansion rate is 30% or less.
JP61080179A 1986-04-09 1986-04-09 Manufacture of thermally fixed oriented container Granted JPS62238730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080179A JPS62238730A (en) 1986-04-09 1986-04-09 Manufacture of thermally fixed oriented container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080179A JPS62238730A (en) 1986-04-09 1986-04-09 Manufacture of thermally fixed oriented container

Publications (2)

Publication Number Publication Date
JPS62238730A true JPS62238730A (en) 1987-10-19
JPH0443498B2 JPH0443498B2 (en) 1992-07-16

Family

ID=13711128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080179A Granted JPS62238730A (en) 1986-04-09 1986-04-09 Manufacture of thermally fixed oriented container

Country Status (1)

Country Link
JP (1) JPS62238730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281387A (en) * 1992-07-07 1994-01-25 Continental Pet Technologies, Inc. Method of forming a container having a low crystallinity
US5352402A (en) * 1989-10-23 1994-10-04 Nissei Asb Machine Co., Ltd. Method and apparatus for manufacturing biaxially oriented, thermally stable, blown containers
US5411698A (en) * 1992-09-22 1995-05-02 Pepsico., Inc. Process and apparatus for blow mold annealing and subsequently heat treating thermoplastic articles
US5829614A (en) * 1992-07-07 1998-11-03 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
JP2009166482A (en) * 2007-12-17 2009-07-30 Toyo Seikan Kaisha Ltd Manufacturing process of resin container, and blow molding machine
US11203142B2 (en) * 2017-08-02 2021-12-21 Krones Ag Automatic change of blow mould

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126376A (en) * 1976-04-14 1977-10-24 Toray Industries Plastics container
JPS56105935A (en) * 1980-01-26 1981-08-22 Mitsubishi Plastics Ind Ltd Forming of plastic bottle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126376A (en) * 1976-04-14 1977-10-24 Toray Industries Plastics container
JPS56105935A (en) * 1980-01-26 1981-08-22 Mitsubishi Plastics Ind Ltd Forming of plastic bottle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540879A (en) * 1989-10-23 1996-07-30 Nissei Asb Machine Co., Ltd. Method and apparatus for manufacturing biaxially oriented, thermally stable, blown containers
US5352402A (en) * 1989-10-23 1994-10-04 Nissei Asb Machine Co., Ltd. Method and apparatus for manufacturing biaxially oriented, thermally stable, blown containers
US5501590A (en) * 1989-10-23 1996-03-26 Nissei Asb Machine Co., Ltd. Apparatus for manufacturing biaxially oriented, thermally stable blown containers
US5520877A (en) * 1992-07-07 1996-05-28 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US5281387A (en) * 1992-07-07 1994-01-25 Continental Pet Technologies, Inc. Method of forming a container having a low crystallinity
US5829614A (en) * 1992-07-07 1998-11-03 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US6372318B1 (en) 1992-07-07 2002-04-16 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US6926859B2 (en) 1992-07-07 2005-08-09 Graham Packaging Pet Technologies Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US7445826B2 (en) 1992-07-07 2008-11-04 Graham Packaging Pet Technologies Inc. Container with high-crystallinity sidewall and low-crystallinity base
US5411698A (en) * 1992-09-22 1995-05-02 Pepsico., Inc. Process and apparatus for blow mold annealing and subsequently heat treating thermoplastic articles
US5505612A (en) * 1992-09-22 1996-04-09 Pepsico Inc. Appartus for blow mold annealing and heat treating thermoplastic articles
JP2009166482A (en) * 2007-12-17 2009-07-30 Toyo Seikan Kaisha Ltd Manufacturing process of resin container, and blow molding machine
US11203142B2 (en) * 2017-08-02 2021-12-21 Krones Ag Automatic change of blow mould

Also Published As

Publication number Publication date
JPH0443498B2 (en) 1992-07-16

Similar Documents

Publication Publication Date Title
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
EP0073151A2 (en) Method of moulding a blow-moulded bottle-shaped container
US5747130A (en) Intermediate product capable of being formed into a biaxially oriented polyethylene terephthalate resin bottle-shaped container and method of blow-molding the same
JPS6056606B2 (en) Container manufacturing method and device
JPH0456734B2 (en)
JPS6359513A (en) Manufacture of hollow polyester molded body
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JPS62238730A (en) Manufacture of thermally fixed oriented container
JPS6356104B2 (en)
JPS5892536A (en) Biaxially stretched plastic bottle
JPS6124170B2 (en)
JPH01157828A (en) Heat-setting polyester orientation molding container
JPS63185620A (en) Production of thermally set polyester stretched molded container
JP4222462B2 (en) Preform for heat-resistant PET bottle
JPH0473696B2 (en)
JP4289048B2 (en) Two-stage blow molding method for heat-resistant bottles
JPH0431286B2 (en)
JPS60189418A (en) Manufacture of heat resisting polyester bottle
JP2757732B2 (en) Polyester container having a body part partially different in crystallinity and method for producing the same
JPS6387219A (en) Manufacture of biaxially oriented polyester vessel
JP2002067130A (en) Method for manufacturing heat resistant neck bent container
JPH09216275A (en) Biaxial stretching blow molding method
JP4087181B2 (en) Method for producing synthetic resin container having inner rib at bottom and container produced using the same
WO2000023252A1 (en) Injection stretch blow molding method
JPH0365247B2 (en)