JPS62238678A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS62238678A
JPS62238678A JP8137386A JP8137386A JPS62238678A JP S62238678 A JPS62238678 A JP S62238678A JP 8137386 A JP8137386 A JP 8137386A JP 8137386 A JP8137386 A JP 8137386A JP S62238678 A JPS62238678 A JP S62238678A
Authority
JP
Japan
Prior art keywords
film
refractive index
thickness
dielectric film
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8137386A
Other languages
Japanese (ja)
Inventor
Satoo Komatsubara
小松原 恵男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8137386A priority Critical patent/JPS62238678A/en
Publication of JPS62238678A publication Critical patent/JPS62238678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To alleviate internal stress yielded at an interface between a dielectric film at an end surface and a laser element, in a semiconductor light emitting device, in which the dielectric film is formed at each end surface, by changing the refractive index of the dielectric film at the end surface in the direction of the thickness of the film. CONSTITUTION:An SiN (refractive index n1=1.49) film is formed to a thickness of an optical film thickness lambda/2 as a dielectric film 4 having distribution in refractive index at each end surface of a laser layer 1. The SiN film is formed by an ordinary chemical vapor growth (CVD) method as follows: a ratio between silane (SiN4) and ammonia (NH3) as raw material gases is adjusted; composition is controlled; the refractive index (n) becomes no=3.34 when the film thickness is 0; the refractive index is gradually decreased with the increase in film thick ness; g and the refractive index (n) becomes n1=1.91 when the film thickness is lambda/2. When a protecting film such as this is formed, difference in strain be tween a cleavage surface and the SiN film becomes less. Even in heat treatment, occurrence of cracks and bubbles can be suppressed.

Description

【発明の詳細な説明】 〔概要〕 半導体発光装置、とくに半導体レーザの端面に保護膜、
あるいは高反射多層膜として誘電体膜を形成しているが
、誘電体膜がレーザ素子(本体)との間で剥離や、発泡
のないように、誘電体膜の屈折率を膜厚方向に変化させ
て内部応力を緩和した構造を提起する。
[Detailed Description of the Invention] [Summary] A semiconductor light emitting device, especially a semiconductor laser, has a protective film on the end face.
Alternatively, a dielectric film is formed as a highly reflective multilayer film, but the refractive index of the dielectric film is changed in the film thickness direction to prevent the dielectric film from peeling or forming bubbles between it and the laser element (main body). In this way, we propose a structure in which internal stress is alleviated.

〔産業上の利用分野〕[Industrial application field]

本発明は、端面に誘電体膜を形成してなる半導体発光装
置に関する。
The present invention relates to a semiconductor light emitting device having a dielectric film formed on its end face.

半導体レーザは光通信分野の光源として用いられてお5
す、本発明は半導体レーザ端面に保護膜、高反射多層膜
として形成される誘電体膜に利用できる。
Semiconductor lasers are used as light sources in the optical communications field.
The present invention can be applied to a dielectric film formed as a protective film or a high-reflection multilayer film on the end face of a semiconductor laser.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体レーザの構造を説明する断面図で
ある。
FIG. 3 is a cross-sectional view illustrating the structure of a conventional semiconductor laser.

図において、1はレーザ素子、2.3は保護膜で、光学
的膜厚λ/2 (λ:発振波長)をもつ誘電体膜である
In the figure, 1 is a laser element, and 2.3 is a protective film, which is a dielectric film having an optical thickness of λ/2 (λ: oscillation wavelength).

保護膜は、厚さをλ/2に形成すると、レーザ素子の反
射率を変えることなく、酸化劣化を防止することができ
る。
When the protective film is formed to have a thickness of λ/2, oxidative deterioration can be prevented without changing the reflectance of the laser element.

また、高出力レーザを得るために片端面に高反射多N膜
を用い、他端面に単層の反射膜を形成し、この端面より
発振光を出射するようにした構造もある。
Furthermore, in order to obtain a high-output laser, there is also a structure in which a highly reflective multi-N film is used on one end face, a single-layer reflective film is formed on the other end face, and oscillation light is emitted from this end face.

保護膜は、物質固有の一定の屈折率を存する。The protective film has a certain refractive index specific to the substance.

保護膜はへき開面(レーザ端面)の劣化を防ぎ、レーザ
の長寿命化、安定した連続動作を可能にするはたらきを
する。
The protective film prevents deterioration of the cleavage plane (laser end face), extends the life of the laser, and enables stable continuous operation.

また、保護膜、高反射多層膜をレーザの端面に形成する
のは、端面の反射率を誘電体の種類や、膜厚により制御
する場合もあるためである。
Further, the reason why a protective film or a high-reflection multilayer film is formed on the end face of the laser is that the reflectance of the end face may be controlled by the type of dielectric material or the film thickness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような保護膜としての誘電体膜にはレーザ素子との
間で、歪の差が大きいものがある。そのため、製造工程
中で熱処理をすると膜に割れや、泡が発生しやすくなる
Some dielectric films used as such protective films have a large strain difference between them and the laser element. Therefore, if heat treatment is performed during the manufacturing process, cracks and bubbles are likely to occur in the film.

この結果、レーザの熱的特性、動作条件、寿命に悪影響
をおよぼすことになる。
As a result, the thermal characteristics, operating conditions, and lifetime of the laser are adversely affected.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、発光装置の端面に誘電体膜を形成
してなり、該誘電体膜の屈折率を膜厚方向に変化させて
いる半導体発光装置により達成される。
The above-mentioned problem can be solved by a semiconductor light-emitting device in which a dielectric film is formed on the end face of the light-emitting device, and the refractive index of the dielectric film is varied in the film thickness direction.

〔作用〕[Effect]

本発明は端面誘電体膜の屈折率を厚さ方向に変化させる
ことにより、端面誘電体膜とレーザ素子間の界面に発生
する内部応力を緩和するものである。
The present invention alleviates internal stress generated at the interface between the end face dielectric film and the laser element by changing the refractive index of the end face dielectric film in the thickness direction.

例えば端面誘電体膜の厚さ方向の屈折率分布は、端面に
おけるレーザの屈折率n0より漸減して膜厚がλ/2で
通常の誘電体の屈折率nlになるように形成する。
For example, the refractive index distribution in the thickness direction of the end face dielectric film is formed so that it gradually decreases from the refractive index n0 of the laser at the end face, and becomes the refractive index nl of a normal dielectric when the film thickness is λ/2.

このような、屈折率分布は誘電体膜の成膜時の組成調整
により行うことができる。
Such a refractive index distribution can be achieved by adjusting the composition during film formation of the dielectric film.

〔実施例〕〔Example〕

第1図(1)、(2)はそれぞれ本発明の詳細な説明す
る断面図と屈折率の膜厚方向の分布図である。
FIGS. 1(1) and 1(2) are a cross-sectional view and a refractive index distribution diagram in the film thickness direction, respectively, for explaining the present invention in detail.

第1図(1)において、1はレーザ素子で、InGaA
sP  (屈折率no=3.34)レーザ素子である。
In FIG. 1 (1), 1 is a laser element, which is made of InGaA
It is a sP (refractive index no=3.34) laser element.

4は保護膜で、レーザN1の端面に、屈折率に分布をも
つ誘電体膜としてSiN  (通常成長による標準の屈
折率n1=1.49)膜を光学的膜厚λ/2の厚さに形
成する。
4 is a protective film, and a SiN (normally grown standard refractive index n1 = 1.49) film is applied to the end face of the laser N1 as a dielectric film with a refractive index distribution to an optical thickness of λ/2. Form.

第1図(2)において、横軸にSiN膜の膜厚をとり、
レーザ素子の端面を0とし、Oよりλ/2の厚さまでの
屈折率の分布を示す。
In Figure 1 (2), the thickness of the SiN film is plotted on the horizontal axis,
The end face of the laser element is assumed to be 0, and the refractive index distribution from O to a thickness of λ/2 is shown.

SiN膜の形成は通常の化学気相成長(CVD)法によ
り、原料ガスのシラン(SiH4)と、アンモニア(N
113)の比率を調節し、組成を制御してつぎのように
形成する。
The SiN film is formed by the usual chemical vapor deposition (CVD) method using raw material gases of silane (SiH4) and ammonia (N
113) and the composition as follows.

膜厚がOのときは屈折率nはno=3.34となり、膜
厚の増加とともに屈折率nは漸減し、膜厚がλ/2のと
きは屈折率nはnl = 1.91となるように形成す
る。
When the film thickness is O, the refractive index n is no = 3.34, and as the film thickness increases, the refractive index n gradually decreases, and when the film thickness is λ/2, the refractive index n is nl = 1.91. Form it like this.

このような保護膜を形成すれば、へき開面とSiN膜と
の間の歪の差が小さくなり、熱処理しても割れや泡の発
生を抑えることができる。
If such a protective film is formed, the difference in strain between the cleavage plane and the SiN film will be reduced, and generation of cracks and bubbles can be suppressed even during heat treatment.

第2図(1)、(2)はそれぞれ本発明の他の実施例を
説明する断面図と屈折率の膜厚方向の分布図である。
FIGS. 2(1) and 2(2) are a cross-sectional view and a refractive index distribution diagram in the film thickness direction, respectively, for explaining another embodiment of the present invention.

第1図と異なるところは、片端面に各層の厚さがλ/4
の多層膜が形成されていることである。
The difference from Figure 1 is that the thickness of each layer on one end surface is λ/4.
A multilayer film is formed.

多層膜は、いずれも屈折率に分布をもつ誘電体膜として
SiN膜4と非晶質珪素(a−5t) (通常の成長に
よる標準屈折率nz=3.49)膜5の繰り返し層より
なる。
The multilayer film consists of repeated layers of an SiN film 4 and an amorphous silicon (a-5t) (standard refractive index nz = 3.49 by normal growth) film 5, both of which are dielectric films with a refractive index distribution. .

SiN膜の形成は第1図の場合と同様である。The formation of the SiN film is similar to that shown in FIG.

a−Si膜の形成はCVD法により、原料ガスのSiH
4と、水素(H2)の比率を調節し、組成を制御してつ
ぎのように形成する。
The a-Si film is formed by the CVD method using SiH as a raw material gas.
4 and hydrogen (H2) to control the composition as follows.

他端面は他の誘電体膜として二酸化珪素(SiO□)膜
6が形成される。
On the other end surface, a silicon dioxide (SiO□) film 6 is formed as another dielectric film.

Si0g膜は、レーザ素子との間の結晶的ななじみはよ
く、従って歪の発生は少ないが、SiN膜より反射率が
小さい。
Although the Si0g film has good crystal compatibility with the laser element and therefore produces less distortion, it has a lower reflectance than the SiN film.

第2図(2)において、横軸に多層膜の膜厚をとり、レ
ーザ素子の端面を0とし、厚さ方向の屈折率分布を示す
In FIG. 2(2), the thickness of the multilayer film is plotted on the horizontal axis, the end face of the laser element is taken as 0, and the refractive index distribution in the thickness direction is shown.

第1層目のSiN膜は、膜厚が00ときは屈折率nはn
、=1.’91となり、膜厚の増加とともに屈折率nは
漸増し、膜厚がλ/4のときは屈折率nはrn=3.4
9となる。
When the film thickness of the first layer SiN film is 00, the refractive index n is n
,=1. '91, and the refractive index n gradually increases as the film thickness increases, and when the film thickness is λ/4, the refractive index n is rn = 3.4
It becomes 9.

第2層目のa−Si膜は、多層膜合計の膜厚がλ/4の
ときは屈折率nは r+z=3.49となり、膜厚の増
加とともに屈折率nは漸減し、膜厚が2×λ/4のとき
は屈折率nはn1=1.91となる。
For the second layer a-Si film, when the total film thickness of the multilayer film is λ/4, the refractive index n is r + z = 3.49, and as the film thickness increases, the refractive index n gradually decreases, and the film thickness increases. When 2×λ/4, the refractive index n is n1=1.91.

以下同様に、SiN膜とa−Si膜を交互に繰り返して
多層膜を形成する。
Similarly, a multilayer film is formed by alternately repeating the SiN film and the a-Si film.

図中、実線で示されるのはこのようにして形成した多層
膜、破線で示されるのは従来例による多層膜である。
In the figure, the solid line indicates the multilayer film formed in this way, and the broken line indicates the conventional multilayer film.

以上のように、単層膜、多層膜とも、歪の大きい膜であ
ればあるほど、屈折率に分布をあたえることは一層有効
となる。
As described above, for both single-layer films and multi-layer films, the greater the strain on the film, the more effective it is to give a distribution to the refractive index.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明による半導体レーザで
は、端面誘電体膜とレーザ素子との間の歪の差が抑制さ
れ、割れや、発泡を抑えながら端面誘電体膜を形成でき
る。
As described above in detail, in the semiconductor laser according to the present invention, the strain difference between the end face dielectric film and the laser element is suppressed, and the end face dielectric film can be formed while suppressing cracking and bubbling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)、(2)はそれぞれ本発明の詳細な説明す
る断面図と屈折率の膜厚方向の分布図、第2図(1)、
(2)はそれぞれ本発明の他の実施例を説明する断面図
と屈折率の膜厚方向の分布図、第3図は従来の半4体レ
ーザの構造を説明する断面図である。 図において、 1はレーザ素子で、InGaAsPレーザ素子、2.3
は従来例の誘電体膜、 4は屈折率に分布をもつ誘電体膜でSiN膜、5は屈折
率に分布をもつ誘電体膜でa−5i膜、6はSiO□膜 人沼明の寝Fff!、今1の断面図と屈首手会昂阻第1
 圓 未〃刈呵の抱の実却牙1のjηシ圓上石打乎分i反第2
Figures 1 (1) and (2) are a cross-sectional view and a distribution diagram of the refractive index in the film thickness direction, respectively, explaining the present invention in detail, and Figure 2 (1),
(2) is a cross-sectional view and a distribution diagram of the refractive index in the film thickness direction, respectively, for explaining another embodiment of the present invention, and FIG. 3 is a cross-sectional view for explaining the structure of a conventional half-four body laser. In the figure, 1 is a laser element, InGaAsP laser element, 2.3
4 is a dielectric film with a distribution of refractive index, which is a SiN film; 5 is a dielectric film with a distribution of refractive index, which is an a-5i film; and 6 is a SiO □ film, which is a SiN film. Fff! , the cross-sectional view of the first part and the first part of the curved neck
Enmi〃Kariani's embrace of the fruit and the ga 1 of the jηshi of the Enkami Ishiuchi part i anti-second
figure

Claims (1)

【特許請求の範囲】[Claims] 発光装置の端面に誘電体膜を形成してなり、該誘電体膜
の屈折率を膜厚方向に変化させていることを特徴とする
半導体発光装置。
1. A semiconductor light emitting device comprising a dielectric film formed on an end face of the light emitting device, the refractive index of the dielectric film changing in the film thickness direction.
JP8137386A 1986-04-09 1986-04-09 Semiconductor light emitting device Pending JPS62238678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8137386A JPS62238678A (en) 1986-04-09 1986-04-09 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8137386A JPS62238678A (en) 1986-04-09 1986-04-09 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS62238678A true JPS62238678A (en) 1987-10-19

Family

ID=13744500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8137386A Pending JPS62238678A (en) 1986-04-09 1986-04-09 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS62238678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
EP0469900A2 (en) * 1990-08-01 1992-02-05 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
EP0684671A1 (en) * 1994-05-04 1995-11-29 Alcatel N.V. Method for the preparation and passivation of the end mirrors of a high emissive power semiconductor laser and related laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
EP0469900A2 (en) * 1990-08-01 1992-02-05 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
EP0684671A1 (en) * 1994-05-04 1995-11-29 Alcatel N.V. Method for the preparation and passivation of the end mirrors of a high emissive power semiconductor laser and related laser device

Similar Documents

Publication Publication Date Title
WO2003085790A1 (en) Semiconductor laser device
JP4832625B2 (en) Asymmetric waveguide nitride laser diode structure, formation method and manufacturing method
JP4186725B2 (en) Photoelectric conversion element
EP0740377A1 (en) Multilayer film structure and vertical cavity surface emitting lasers
US5841584A (en) Dielectric multilayered reflector
JP2870486B2 (en) Semiconductor laser device
JP2000349398A (en) Nitride semiconductor light emitting device and its manufacture
JPS62238678A (en) Semiconductor light emitting device
US20050281299A1 (en) Semiconductor laser element and method of manufacturing the same
JP4748545B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
JP3522107B2 (en) Semiconductor laser
JP3329753B2 (en) Nitride semiconductor laser device
JPH06252440A (en) Semiconductor light emitting device
JPH10163577A (en) Group iii nitride semiconductor laser element
JPS60113983A (en) Semiconductor light-emitting device and manufacture thereof
JP3432912B2 (en) Semiconductor laser
JPH1056200A (en) Light emitting diode and its manufacture
JPH11121865A (en) Surface emission laser and its manufacture
JP2664389B2 (en) Manufacturing method of semiconductor laser
JP4651002B2 (en) Semiconductor light emitting device
JPH0432285A (en) End face emission type semiconductor light emission element
JPH0677582A (en) Surface emitting laser on silicon substrate
JPH01115191A (en) Semiconductor laser and manufacture thereof
CN1759509A (en) Method of fabricating semiconductor device
JP3339049B2 (en) Nitride semiconductor laser device