JPS62238678A - Semiconductor light emitting device - Google Patents
Semiconductor light emitting deviceInfo
- Publication number
- JPS62238678A JPS62238678A JP8137386A JP8137386A JPS62238678A JP S62238678 A JPS62238678 A JP S62238678A JP 8137386 A JP8137386 A JP 8137386A JP 8137386 A JP8137386 A JP 8137386A JP S62238678 A JPS62238678 A JP S62238678A
- Authority
- JP
- Japan
- Prior art keywords
- film
- refractive index
- thickness
- dielectric film
- end surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 238000009826 distribution Methods 0.000 abstract description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 4
- 238000003776 cleavage reaction Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 230000007017 scission Effects 0.000 abstract description 3
- 229910000077 silane Inorganic materials 0.000 abstract description 3
- 229910021529 ammonia Inorganic materials 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 abstract 12
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 abstract 1
- 239000012788 optical film Substances 0.000 abstract 1
- 229920000136 polysorbate Polymers 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 description 10
- 239000010410 layer Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体発光装置、とくに半導体レーザの端面に保護膜、
あるいは高反射多層膜として誘電体膜を形成しているが
、誘電体膜がレーザ素子(本体)との間で剥離や、発泡
のないように、誘電体膜の屈折率を膜厚方向に変化させ
て内部応力を緩和した構造を提起する。[Detailed Description of the Invention] [Summary] A semiconductor light emitting device, especially a semiconductor laser, has a protective film on the end face.
Alternatively, a dielectric film is formed as a highly reflective multilayer film, but the refractive index of the dielectric film is changed in the film thickness direction to prevent the dielectric film from peeling or forming bubbles between it and the laser element (main body). In this way, we propose a structure in which internal stress is alleviated.
本発明は、端面に誘電体膜を形成してなる半導体発光装
置に関する。The present invention relates to a semiconductor light emitting device having a dielectric film formed on its end face.
半導体レーザは光通信分野の光源として用いられてお5
す、本発明は半導体レーザ端面に保護膜、高反射多層膜
として形成される誘電体膜に利用できる。Semiconductor lasers are used as light sources in the optical communications field.
The present invention can be applied to a dielectric film formed as a protective film or a high-reflection multilayer film on the end face of a semiconductor laser.
第3図は従来の半導体レーザの構造を説明する断面図で
ある。FIG. 3 is a cross-sectional view illustrating the structure of a conventional semiconductor laser.
図において、1はレーザ素子、2.3は保護膜で、光学
的膜厚λ/2 (λ:発振波長)をもつ誘電体膜である
。In the figure, 1 is a laser element, and 2.3 is a protective film, which is a dielectric film having an optical thickness of λ/2 (λ: oscillation wavelength).
保護膜は、厚さをλ/2に形成すると、レーザ素子の反
射率を変えることなく、酸化劣化を防止することができ
る。When the protective film is formed to have a thickness of λ/2, oxidative deterioration can be prevented without changing the reflectance of the laser element.
また、高出力レーザを得るために片端面に高反射多N膜
を用い、他端面に単層の反射膜を形成し、この端面より
発振光を出射するようにした構造もある。Furthermore, in order to obtain a high-output laser, there is also a structure in which a highly reflective multi-N film is used on one end face, a single-layer reflective film is formed on the other end face, and oscillation light is emitted from this end face.
保護膜は、物質固有の一定の屈折率を存する。The protective film has a certain refractive index specific to the substance.
保護膜はへき開面(レーザ端面)の劣化を防ぎ、レーザ
の長寿命化、安定した連続動作を可能にするはたらきを
する。The protective film prevents deterioration of the cleavage plane (laser end face), extends the life of the laser, and enables stable continuous operation.
また、保護膜、高反射多層膜をレーザの端面に形成する
のは、端面の反射率を誘電体の種類や、膜厚により制御
する場合もあるためである。Further, the reason why a protective film or a high-reflection multilayer film is formed on the end face of the laser is that the reflectance of the end face may be controlled by the type of dielectric material or the film thickness.
このような保護膜としての誘電体膜にはレーザ素子との
間で、歪の差が大きいものがある。そのため、製造工程
中で熱処理をすると膜に割れや、泡が発生しやすくなる
。Some dielectric films used as such protective films have a large strain difference between them and the laser element. Therefore, if heat treatment is performed during the manufacturing process, cracks and bubbles are likely to occur in the film.
この結果、レーザの熱的特性、動作条件、寿命に悪影響
をおよぼすことになる。As a result, the thermal characteristics, operating conditions, and lifetime of the laser are adversely affected.
上記問題点の解決は、発光装置の端面に誘電体膜を形成
してなり、該誘電体膜の屈折率を膜厚方向に変化させて
いる半導体発光装置により達成される。The above-mentioned problem can be solved by a semiconductor light-emitting device in which a dielectric film is formed on the end face of the light-emitting device, and the refractive index of the dielectric film is varied in the film thickness direction.
本発明は端面誘電体膜の屈折率を厚さ方向に変化させる
ことにより、端面誘電体膜とレーザ素子間の界面に発生
する内部応力を緩和するものである。The present invention alleviates internal stress generated at the interface between the end face dielectric film and the laser element by changing the refractive index of the end face dielectric film in the thickness direction.
例えば端面誘電体膜の厚さ方向の屈折率分布は、端面に
おけるレーザの屈折率n0より漸減して膜厚がλ/2で
通常の誘電体の屈折率nlになるように形成する。For example, the refractive index distribution in the thickness direction of the end face dielectric film is formed so that it gradually decreases from the refractive index n0 of the laser at the end face, and becomes the refractive index nl of a normal dielectric when the film thickness is λ/2.
このような、屈折率分布は誘電体膜の成膜時の組成調整
により行うことができる。Such a refractive index distribution can be achieved by adjusting the composition during film formation of the dielectric film.
第1図(1)、(2)はそれぞれ本発明の詳細な説明す
る断面図と屈折率の膜厚方向の分布図である。FIGS. 1(1) and 1(2) are a cross-sectional view and a refractive index distribution diagram in the film thickness direction, respectively, for explaining the present invention in detail.
第1図(1)において、1はレーザ素子で、InGaA
sP (屈折率no=3.34)レーザ素子である。In FIG. 1 (1), 1 is a laser element, which is made of InGaA
It is a sP (refractive index no=3.34) laser element.
4は保護膜で、レーザN1の端面に、屈折率に分布をも
つ誘電体膜としてSiN (通常成長による標準の屈
折率n1=1.49)膜を光学的膜厚λ/2の厚さに形
成する。4 is a protective film, and a SiN (normally grown standard refractive index n1 = 1.49) film is applied to the end face of the laser N1 as a dielectric film with a refractive index distribution to an optical thickness of λ/2. Form.
第1図(2)において、横軸にSiN膜の膜厚をとり、
レーザ素子の端面を0とし、Oよりλ/2の厚さまでの
屈折率の分布を示す。In Figure 1 (2), the thickness of the SiN film is plotted on the horizontal axis,
The end face of the laser element is assumed to be 0, and the refractive index distribution from O to a thickness of λ/2 is shown.
SiN膜の形成は通常の化学気相成長(CVD)法によ
り、原料ガスのシラン(SiH4)と、アンモニア(N
113)の比率を調節し、組成を制御してつぎのように
形成する。The SiN film is formed by the usual chemical vapor deposition (CVD) method using raw material gases of silane (SiH4) and ammonia (N
113) and the composition as follows.
膜厚がOのときは屈折率nはno=3.34となり、膜
厚の増加とともに屈折率nは漸減し、膜厚がλ/2のと
きは屈折率nはnl = 1.91となるように形成す
る。When the film thickness is O, the refractive index n is no = 3.34, and as the film thickness increases, the refractive index n gradually decreases, and when the film thickness is λ/2, the refractive index n is nl = 1.91. Form it like this.
このような保護膜を形成すれば、へき開面とSiN膜と
の間の歪の差が小さくなり、熱処理しても割れや泡の発
生を抑えることができる。If such a protective film is formed, the difference in strain between the cleavage plane and the SiN film will be reduced, and generation of cracks and bubbles can be suppressed even during heat treatment.
第2図(1)、(2)はそれぞれ本発明の他の実施例を
説明する断面図と屈折率の膜厚方向の分布図である。FIGS. 2(1) and 2(2) are a cross-sectional view and a refractive index distribution diagram in the film thickness direction, respectively, for explaining another embodiment of the present invention.
第1図と異なるところは、片端面に各層の厚さがλ/4
の多層膜が形成されていることである。The difference from Figure 1 is that the thickness of each layer on one end surface is λ/4.
A multilayer film is formed.
多層膜は、いずれも屈折率に分布をもつ誘電体膜として
SiN膜4と非晶質珪素(a−5t) (通常の成長に
よる標準屈折率nz=3.49)膜5の繰り返し層より
なる。The multilayer film consists of repeated layers of an SiN film 4 and an amorphous silicon (a-5t) (standard refractive index nz = 3.49 by normal growth) film 5, both of which are dielectric films with a refractive index distribution. .
SiN膜の形成は第1図の場合と同様である。The formation of the SiN film is similar to that shown in FIG.
a−Si膜の形成はCVD法により、原料ガスのSiH
4と、水素(H2)の比率を調節し、組成を制御してつ
ぎのように形成する。The a-Si film is formed by the CVD method using SiH as a raw material gas.
4 and hydrogen (H2) to control the composition as follows.
他端面は他の誘電体膜として二酸化珪素(SiO□)膜
6が形成される。On the other end surface, a silicon dioxide (SiO□) film 6 is formed as another dielectric film.
Si0g膜は、レーザ素子との間の結晶的ななじみはよ
く、従って歪の発生は少ないが、SiN膜より反射率が
小さい。Although the Si0g film has good crystal compatibility with the laser element and therefore produces less distortion, it has a lower reflectance than the SiN film.
第2図(2)において、横軸に多層膜の膜厚をとり、レ
ーザ素子の端面を0とし、厚さ方向の屈折率分布を示す
。In FIG. 2(2), the thickness of the multilayer film is plotted on the horizontal axis, the end face of the laser element is taken as 0, and the refractive index distribution in the thickness direction is shown.
第1層目のSiN膜は、膜厚が00ときは屈折率nはn
、=1.’91となり、膜厚の増加とともに屈折率nは
漸増し、膜厚がλ/4のときは屈折率nはrn=3.4
9となる。When the film thickness of the first layer SiN film is 00, the refractive index n is n
,=1. '91, and the refractive index n gradually increases as the film thickness increases, and when the film thickness is λ/4, the refractive index n is rn = 3.4
It becomes 9.
第2層目のa−Si膜は、多層膜合計の膜厚がλ/4の
ときは屈折率nは r+z=3.49となり、膜厚の増
加とともに屈折率nは漸減し、膜厚が2×λ/4のとき
は屈折率nはn1=1.91となる。For the second layer a-Si film, when the total film thickness of the multilayer film is λ/4, the refractive index n is r + z = 3.49, and as the film thickness increases, the refractive index n gradually decreases, and the film thickness increases. When 2×λ/4, the refractive index n is n1=1.91.
以下同様に、SiN膜とa−Si膜を交互に繰り返して
多層膜を形成する。Similarly, a multilayer film is formed by alternately repeating the SiN film and the a-Si film.
図中、実線で示されるのはこのようにして形成した多層
膜、破線で示されるのは従来例による多層膜である。In the figure, the solid line indicates the multilayer film formed in this way, and the broken line indicates the conventional multilayer film.
以上のように、単層膜、多層膜とも、歪の大きい膜であ
ればあるほど、屈折率に分布をあたえることは一層有効
となる。As described above, for both single-layer films and multi-layer films, the greater the strain on the film, the more effective it is to give a distribution to the refractive index.
以上詳細に説明したように本発明による半導体レーザで
は、端面誘電体膜とレーザ素子との間の歪の差が抑制さ
れ、割れや、発泡を抑えながら端面誘電体膜を形成でき
る。As described above in detail, in the semiconductor laser according to the present invention, the strain difference between the end face dielectric film and the laser element is suppressed, and the end face dielectric film can be formed while suppressing cracking and bubbling.
第1図(1)、(2)はそれぞれ本発明の詳細な説明す
る断面図と屈折率の膜厚方向の分布図、第2図(1)、
(2)はそれぞれ本発明の他の実施例を説明する断面図
と屈折率の膜厚方向の分布図、第3図は従来の半4体レ
ーザの構造を説明する断面図である。
図において、
1はレーザ素子で、InGaAsPレーザ素子、2.3
は従来例の誘電体膜、
4は屈折率に分布をもつ誘電体膜でSiN膜、5は屈折
率に分布をもつ誘電体膜でa−5i膜、6はSiO□膜
人沼明の寝Fff!、今1の断面図と屈首手会昂阻第1
圓
未〃刈呵の抱の実却牙1のjηシ圓上石打乎分i反第2
図Figures 1 (1) and (2) are a cross-sectional view and a distribution diagram of the refractive index in the film thickness direction, respectively, explaining the present invention in detail, and Figure 2 (1),
(2) is a cross-sectional view and a distribution diagram of the refractive index in the film thickness direction, respectively, for explaining another embodiment of the present invention, and FIG. 3 is a cross-sectional view for explaining the structure of a conventional half-four body laser. In the figure, 1 is a laser element, InGaAsP laser element, 2.3
4 is a dielectric film with a distribution of refractive index, which is a SiN film; 5 is a dielectric film with a distribution of refractive index, which is an a-5i film; and 6 is a SiO □ film, which is a SiN film. Fff! , the cross-sectional view of the first part and the first part of the curved neck
Enmi〃Kariani's embrace of the fruit and the ga 1 of the jηshi of the Enkami Ishiuchi part i anti-second
figure
Claims (1)
の屈折率を膜厚方向に変化させていることを特徴とする
半導体発光装置。1. A semiconductor light emitting device comprising a dielectric film formed on an end face of the light emitting device, the refractive index of the dielectric film changing in the film thickness direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8137386A JPS62238678A (en) | 1986-04-09 | 1986-04-09 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8137386A JPS62238678A (en) | 1986-04-09 | 1986-04-09 | Semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62238678A true JPS62238678A (en) | 1987-10-19 |
Family
ID=13744500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8137386A Pending JPS62238678A (en) | 1986-04-09 | 1986-04-09 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62238678A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450902A2 (en) * | 1990-04-02 | 1991-10-09 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
EP0469900A2 (en) * | 1990-08-01 | 1992-02-05 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
EP0684671A1 (en) * | 1994-05-04 | 1995-11-29 | Alcatel N.V. | Method for the preparation and passivation of the end mirrors of a high emissive power semiconductor laser and related laser device |
-
1986
- 1986-04-09 JP JP8137386A patent/JPS62238678A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450902A2 (en) * | 1990-04-02 | 1991-10-09 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
EP0469900A2 (en) * | 1990-08-01 | 1992-02-05 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
EP0684671A1 (en) * | 1994-05-04 | 1995-11-29 | Alcatel N.V. | Method for the preparation and passivation of the end mirrors of a high emissive power semiconductor laser and related laser device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4186725B2 (en) | Photoelectric conversion element | |
JP4832625B2 (en) | Asymmetric waveguide nitride laser diode structure, formation method and manufacturing method | |
EP0740377A1 (en) | Multilayer film structure and vertical cavity surface emitting lasers | |
JPH0750448A (en) | Semiconductor laser and manufacture thereof | |
US5841584A (en) | Dielectric multilayered reflector | |
JP2000076682A (en) | Surface emitting semiconductor laser and manufacture thereof | |
JP2000349398A (en) | Nitride semiconductor light emitting device and its manufacture | |
JPS62238678A (en) | Semiconductor light emitting device | |
JPH09326527A (en) | Semiconductor laser device | |
US20050281299A1 (en) | Semiconductor laser element and method of manufacturing the same | |
JPH08340156A (en) | Surface emitting type semiconductor laser | |
JP3522107B2 (en) | Semiconductor laser | |
JP2000196199A (en) | Nitride semiconductor laser element | |
JPH06252440A (en) | Semiconductor light emitting device | |
JPH0745910A (en) | Semiconductor laser | |
JPH10163577A (en) | Group iii nitride semiconductor laser element | |
JPS60113983A (en) | Semiconductor light-emitting device and manufacture thereof | |
JP3432912B2 (en) | Semiconductor laser | |
JPH1056200A (en) | Light emitting diode and its manufacture | |
JP2664389B2 (en) | Manufacturing method of semiconductor laser | |
JP4651002B2 (en) | Semiconductor light emitting device | |
JPH0432285A (en) | End face emission type semiconductor light emission element | |
JPH0677582A (en) | Surface emitting laser on silicon substrate | |
JPH01115191A (en) | Semiconductor laser and manufacture thereof | |
CN1759509A (en) | Method of fabricating semiconductor device |