JPS62238530A - Optical modulation element - Google Patents

Optical modulation element

Info

Publication number
JPS62238530A
JPS62238530A JP61082923A JP8292386A JPS62238530A JP S62238530 A JPS62238530 A JP S62238530A JP 61082923 A JP61082923 A JP 61082923A JP 8292386 A JP8292386 A JP 8292386A JP S62238530 A JPS62238530 A JP S62238530A
Authority
JP
Japan
Prior art keywords
liquid crystal
diffraction grating
modulation element
orientation
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61082923A
Other languages
Japanese (ja)
Other versions
JPH0776814B2 (en
Inventor
Yasuyuki Watabe
渡部 泰之
Masato Yamanobe
山野辺 正人
Hajime Sakata
肇 坂田
Yukitoshi Okubo
大久保 幸俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61082923A priority Critical patent/JPH0776814B2/en
Publication of JPS62238530A publication Critical patent/JPS62238530A/en
Publication of JPH0776814B2 publication Critical patent/JPH0776814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the function relating to liquid crystal orientation by a diffraction grating and to improve an electrooptic characteristic and the temp. dependency thereof by subjecting the groove bottom part of the diffraction grating or the opposed surfaces of substrates to an orientation treatment to define the inclination direction of the molecules of a liquid crystal. CONSTITUTION:This optical modulation element has the plural transparent substrates 4, the diffraction grating 2 existing on at least one of the surfaces, which face each other, of the adjacent transparent substrates 4, the liquid crystal 1 disposed between the plural transparent substrates 4 and means for controlling the orientation condition of the liquid crystal 1. The diffraction grating 2 has the function to orient the liquid crystal 1. The groove bottom part of the diffraction grating 2 or the opposed surfaces of the substrates 4 are subjected to the orientation treatment, by which the inclination direction of the liquid crystal 1 molecules is defined. The groove bottom part of the diffraction grating 2 or the opposed surfaces of the substrates 4 are subjected to the orientation treatment in the above-mentioned manner in addition to the orientation control power by the diffraction grating 2, by which the display contrast particularly in the case of using the optical modulation element as a display element is improved and the uneven response and uneven display, etc., are prevented. The high display grade and responsiveness are thus obtd.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、光変調素子、特に液晶と回折格子とを組み合
わせて液晶の入射光に対する屈折率を変化せしめて、所
望の回折作用を入射光に(1ぼす素子で5表示素子や光
記録及び光通信等のデパイヌに好適な光変調素子に関す
る。
Detailed Description of the Invention Technical Field> The present invention combines a light modulation element, particularly a liquid crystal, and a diffraction grating to change the refractive index of the liquid crystal with respect to incident light, thereby imparting a desired diffraction effect to the incident light (1 The present invention relates to a light modulation element suitable for display elements, optical recording, optical communications, etc.

〈従来技術〉 従来から液晶と回折格子を組み合わせた光量1素−Lと
して、特公昭53−3928号公報やUSP4,251
,137等に於る表示素子やTTT変色フィルター素子
がある。これらで開示されている光変調素子は回折現象
を利用して装飾効果や色フィルター効果を得ているもの
であり I、Q板に形成したレリーフパターンを回折格
子として機能させている。
<Prior art> Conventionally, a liquid crystal and a diffraction grating are combined to produce a light quantity of 1 element-L, as disclosed in Japanese Patent Publication No. 53-3928 and USP 4,251.
, 137, etc., and TTT color changing filter elements. The light modulation elements disclosed in these publications utilize diffraction phenomena to obtain decorative effects and color filter effects, and the relief patterns formed on the I and Q plates function as diffraction gratings.

一方、USP3.787,110やUSP4.256,
787には回折格子同様の形状を備えた微細な規則正し
いレリーフパターンにより液晶が配向することが示され
ており1回折格子に所定の寸法と形状を与えることによ
り回折機能と液晶配向機能とを同時に満足させることも
従来の技術を鑑みると可能である。
On the other hand, USP3.787,110 and USP4.256,
787 shows that liquid crystals are aligned by a fine regular relief pattern with a shape similar to a diffraction grating, and by giving a single diffraction grating a predetermined size and shape, both the diffraction function and the liquid crystal alignment function can be simultaneously satisfied. It is also possible to do so in view of the conventional technology.

しかしながら、USP3,787,110やUSP4.
256.787等に於る如きレリーフパターンによる配
向規制力は、レリーフパターンの凹部での側面と底面に
囲まれた領域内でしか力を及ぼさない為、特公昭53−
3928号公報やUSP4,251,137丼の素子に
応用したとしても、電界に対して液晶分子の傾き方向が
不均一であり信頼性が乏しい、又、この種の素−r−を
表示素子として用いる場合に。
However, USP 3,787,110 and USP 4.
256.787 etc., the orientation regulating force exerted only within the area surrounded by the side and bottom surfaces of the concave portion of the relief pattern,
Even if it is applied to the device disclosed in No. 3928 or USP 4,251,137, the tilt direction of the liquid crystal molecules with respect to the electric field is uneven, resulting in poor reliability, and this type of device cannot be used as a display device. When used.

静的状態に於ては表示むらを生じ、動的状態に於ては応
答むらが生じるという欠点もある。即ち、液晶分子のプ
レティルトに関する規制力が存在しない為に、熱運動や
電界のエネルギーにより界面状態に依存して局所的に液
晶分子の向きが変わるという問題点を有していた。
It also has the disadvantage that display unevenness occurs in a static state, and response unevenness occurs in a dynamic state. That is, since there is no regulating force regarding the pretilt of liquid crystal molecules, there is a problem in that the orientation of liquid crystal molecules changes locally depending on the interface state due to thermal motion or electric field energy.

〈発明の概要〉 本発明の目的は、上記従来の問題点に鑑み、回折格子に
よる液晶配向に関する機能を向上させ、電気光学特性及
びその温度依存性をも改善した光変調素子を提供するこ
とにある。
<Summary of the Invention> In view of the above-mentioned conventional problems, an object of the present invention is to provide a light modulation element that improves the function related to liquid crystal alignment using a diffraction grating and also improves the electro-optic characteristics and its temperature dependence. be.

上記目的を達成する為に、本発明に係る光変調素子は、
複数の透明基板と隣接する透明基板の相対する少なくと
も一方の面に存する回折格子と該複数の透明基板間に配
した液晶と該液晶の配向状態を制御する手段とを有し、
前記回折格子が液晶の配向機能を備えた素子であって。
In order to achieve the above object, the light modulation element according to the present invention includes:
comprising a plurality of transparent substrates, a diffraction grating existing on at least one opposing surface of an adjacent transparent substrate, a liquid crystal disposed between the plurality of transparent substrates, and means for controlling an alignment state of the liquid crystal,
The diffraction grating is an element having a liquid crystal alignment function.

前記回折格子の溝底部又は対向する基板面に配向処理を
施すことにより前記液晶の分子の傾き方向を規定したこ
とを特徴としている。
The present invention is characterized in that the direction of inclination of the molecules of the liquid crystal is defined by applying alignment treatment to the bottom of the groove of the diffraction grating or to the opposing substrate surface.

尚、本発明の更なる特徴は以下に示す実施例より明らか
になるであろう。
Further features of the present invention will become clear from the Examples shown below.

更に1本発明に於ては、前記回折格子の形状に限定はな
く、後述する実施例で示す矩形状回折格子の他、三角波
状、正弦波状、非対称形状等各種形状の回折格子が適用
される。
Furthermore, in the present invention, there is no limitation to the shape of the diffraction grating, and in addition to the rectangular diffraction grating shown in the examples described later, diffraction gratings of various shapes such as triangular wave, sine wave, and asymmetric shapes are applicable. .

〈実施例〉 第1図は本発明に係る光変調素子の基本構成図を示し、
本光変調素子の機能説明図を兼ねている。図中、lは液
晶、2は使用波長に対して透明な物質から成る回折格子
、3は透明電極、4は透明光学部材から成る透明基板、
5は所定の偏光特性を有する入射光、6及び6′は入射
光5の互いに直交する偏光成分で、6は紙面垂直方向、
6′は紙面に平行な方向を示している。
<Example> FIG. 1 shows a basic configuration diagram of a light modulation element according to the present invention,
It also serves as a functional explanatory diagram of the present optical modulation element. In the figure, l is a liquid crystal, 2 is a diffraction grating made of a substance transparent to the wavelength used, 3 is a transparent electrode, 4 is a transparent substrate made of a transparent optical member,
5 is incident light having predetermined polarization characteristics, 6 and 6' are mutually orthogonal polarization components of incident light 5, 6 is in the direction perpendicular to the plane of the paper,
6' indicates a direction parallel to the plane of the paper.

本光変調素子は一対の透明基板4の対向する面上に透明
電極3を形成して、一対の透明基板4の−・方の透明’
11極3とに透明物質から成る矩形状の回折格子2を設
けており、屈折率可変物質1が回折格子2の溝部(四部
)に配され、透明電極3を介して電界を印加されること
によりその屈折率が可変となっている。
This light modulation element has transparent electrodes 3 formed on opposing surfaces of a pair of transparent substrates 4, and
A rectangular diffraction grating 2 made of a transparent material is provided at the 11 poles 3, the refractive index variable material 1 is placed in the grooves (four parts) of the diffraction grating 2, and an electric field is applied through the transparent electrode 3. Its refractive index is variable.

以下、第1図を用いて本光変調素子の変調原理を説明す
る。
Hereinafter, the modulation principle of the present optical modulation element will be explained using FIG.

ここで、電界印加により液晶lの配向状態を制御するこ
とで所定の回折作用を生じせしめるものとする。
Here, it is assumed that a predetermined diffraction effect is produced by controlling the alignment state of the liquid crystal I by applying an electric field.

第1図に示す如く電界が印加されていない静的状態に於
いて、液晶lは回折格子2の溝方向即ち紙面垂直方向に
配向され、ホモジニアス配向の状態を維持している。従
って、この静的状態の本光変調素子に入射する入射光5
の偏光成分6.6′の内、液晶1の配向方向と直交する
成分である偏光成分6′は液晶lの常屈折率noを感じ
、又、液晶lの配向方向と平行な成分である偏光成分6
は液晶lの異常屈折率neを感じる。ここで1回折格子
2を成す物質の屈折率をng、入射光5の波長を入1回
折格子2の厚ざをTとすれば、矩形状の回折格子の場合
、入射光5の偏光成分6.6′の夫々に対する零次透過
回折光の回折効率η0は、近似的に次の(1)式で表わ
せる。
As shown in FIG. 1, in a static state where no electric field is applied, the liquid crystal 1 is oriented in the direction of the grooves of the diffraction grating 2, that is, in the direction perpendicular to the plane of the paper, and maintains a homogeneous orientation. Therefore, the incident light 5 that enters the optical modulation element in this static state
Of the polarized light components 6.6', the polarized light component 6', which is a component perpendicular to the orientation direction of the liquid crystal 1, senses the ordinary refractive index no of the liquid crystal 1, and the polarized light component, which is a component parallel to the orientation direction of the liquid crystal 1, is Ingredient 6
senses the extraordinary refractive index ne of the liquid crystal l. Here, if the refractive index of the material forming one diffraction grating 2 is ng, the wavelength of the incident light 5 is input, and the thickness of the first diffraction grating 2 is T, then in the case of a rectangular diffraction grating, the polarization component of the incident light 5 is 6. The diffraction efficiency η0 of the zero-order transmitted diffracted light for each of .6′ can be approximately expressed by the following equation (1).

η0:’ (1+c o s (’二△旦]))・・・
(1)2人 但し、Δnは回折格子2の屈折率ngと液晶1の屈折率
neもしくはnoとの屈折率差を示しており、入射光5
の偏光成分6に対してはΔn= I ne−ng 1.
偏光成分6′に対してはΔn= I ng−no Iと
なる。
η0:' (1+cos ('2△dan]))...
(1) Two people However, Δn indicates the refractive index difference between the refractive index ng of the diffraction grating 2 and the refractive index ne or no of the liquid crystal 1, and the incident light 5
For polarization component 6 of Δn=I ne-ng 1.
For polarization component 6', Δn=I ng-no I.

従って (1)式からΔn=o即ちne=ng又はn(
、=ngの時に零次透過回折光の回折効率η0はη0=
lとなり、又。
Therefore, from equation (1), Δn=o, that is, ne=ng or n(
, =ng, the diffraction efficiency η0 of the zero-order transmitted diffracted light is η0=
It becomes l, and again.

Δn T = (m + 2 )入 (m=o、1,2.3.−−−) の時に回折効率η0はη0=Qとなる。Δn T = (m + 2) input (m=o, 1, 2.3.---) When , the diffraction efficiency η0 becomes η0=Q.

次に、透明電極3を介して液晶1に電界を印加する場合
、液晶1の配向方向(光学軸方向)が徐々に変化し、入
射光5に於る偏光成分6′は′電界印加に無関係に常時
液晶1の常屈折率n。
Next, when an electric field is applied to the liquid crystal 1 through the transparent electrode 3, the alignment direction (optical axis direction) of the liquid crystal 1 gradually changes, and the polarization component 6' of the incident light 5 is independent of the electric field application. is the ordinary refractive index n of the liquid crystal 1.

を感じ、偏光成分6は電界印加量に従って液晶lの異常
屈折率neと常屈折率noとが所定の比率で合成された
合成屈折率noを感じる。
The polarized light component 6 senses a composite refractive index no, which is a combination of the extraordinary refractive index ne and the ordinary refractive index no of the liquid crystal 1 at a predetermined ratio, according to the amount of applied electric field.

計うまでもなく、液晶1の配向方向の変化に伴なって合
成屈折率nQは変化する。更に電界印加量を強めると、
液晶1は基板4(透明電極3)に垂直に配向され、ホメ
オトロピック配向状態となる為に入射光5の偏光成分6
.6′は共に液晶の常屈折率noを感じ飽和する。
Needless to say, the composite refractive index nQ changes as the alignment direction of the liquid crystal 1 changes. If the applied electric field is further strengthened,
The liquid crystal 1 is aligned perpendicularly to the substrate 4 (transparent electrode 3), and in order to be in a homeotropic alignment state, the polarized light component 6 of the incident light 5 is
.. 6' both sense the ordinary refractive index no of the liquid crystal and become saturated.

尚、この状態に於ても入射光5は前記(1)式に従い変
調される。
Incidentally, even in this state, the incident light 5 is modulated according to equation (1) above.

第2図は本発明に係る光変調素子の一実施例を示す概略
斜視図で、第1図に示した基本構成を有する素子を1回
折格子の配列方向が互いに直交する様に重畳させた光変
調素子である。図中、¥pJ1図と同部材には同符番が
符してあり。
FIG. 2 is a schematic perspective view showing one embodiment of the light modulation element according to the present invention, in which light is produced by superimposing elements having the basic configuration shown in FIG. It is a modulation element. In the figure, the same parts as in the ¥pJ1 figure are labeled with the same numbers.

7はスペーサを成す透明基板で1両面に透明電極3が形
成されている。
Reference numeral 7 denotes a transparent substrate forming a spacer, and transparent electrodes 3 are formed on one surface of the transparent substrate.

第1図を用いて説明した様に、単一の回折格子2を用い
て光変調を行なう場合1例えば液晶lの配向状態を電界
等によりホモジニアス配向からホメオトロピック配向に
変化させた場合、第1図に於る入射光5の偏光成分6は
変調を受けるが、偏光成分6′は感じる屈折率が変化し
ない為に変調を受けず、入射光5がランダムな偏光特性
を有する時は実画に50%の光しか変調出来ないことに
なる。しかしながら、第2図に示す如き重畳した構成を
採ることにより、入射光5の夫々の偏光成分6.6′に
対して個々の回折格子2が独立して回折作用を及ぼし、
全ての偏光成分の光を変調可能にするものである。
As explained using FIG. 1, when optical modulation is performed using a single diffraction grating 2, for example, when the orientation state of the liquid crystal 1 is changed from homogeneous orientation to homeotropic orientation by an electric field, etc., the first In the figure, the polarization component 6 of the incident light 5 is modulated, but the polarization component 6' is not modulated because the perceived refractive index does not change, and when the incident light 5 has random polarization characteristics, it does not appear in the actual image. This means that only 50% of the light can be modulated. However, by adopting the superimposed configuration as shown in FIG. 2, each diffraction grating 2 independently exerts a diffraction effect on each polarization component 6,6' of the incident light 5,
This makes it possible to modulate light of all polarization components.

第1図及び第2図に示す様に、液晶1は回折格子2の溝
方向に配向されているが、従来の方式ではこの液晶1を
配向させている規制力は回折格子2の溝部(凹部)の側
壁による物理的な配向規制力のみであって、実際素子を
駆動する際には熱連動や電界のエネルギーによって、界
面状yF;などによって液晶分子の向きが変わり。
As shown in FIGS. 1 and 2, the liquid crystal 1 is oriented in the direction of the grooves of the diffraction grating 2. In the conventional system, the regulating force that orients the liquid crystal 1 is applied to the grooves (recesses) of the diffraction grating 2. ), and when actually driving the device, the orientation of liquid crystal molecules changes due to thermal interlocking, electric field energy, and interfacial conditions such as yF;.

表示素子として応用する際は表示や応答むらが生じ、信
頼性が乏しい。
When applied as a display element, uneven display and response occur, resulting in poor reliability.

しかしながら1本発明では、第1図及び第2図に示す如
き素子の回折格子2の底部又は対向する基板4 (3)
 、7の一方に液晶分子の傾き(チルト)方向を規定す
る配向処理を施し、各液晶分子の傾き方向を一定に保っ
ている。尚。
However, in the present invention, the bottom of the diffraction grating 2 or the opposing substrate 4 (3) of the device as shown in FIGS.
, 7 is subjected to alignment treatment to define the tilt direction of the liquid crystal molecules, thereby keeping the tilt direction of each liquid crystal molecule constant. still.

この配向処理としては−・般に知られているラビング処
理や5i02の斜方蒸着等が好適である。
Suitable examples of this orientation treatment include generally known rubbing treatment and oblique evaporation of 5i02.

第3図(A)、(B)、CC)は本発明に於る液晶分子
の傾きを規定する配向処理の効果を説明する為の模式図
で、第3図(A)は配向処理を施していない場合の界面
での液晶分子の状態、第3図(B)は配向処理を施した
場合の界面での液晶分子の状態、第3図(C)は配向処
理して傾きを規定した液晶分子の電界印加時の挙動をポ
す。
Figures 3 (A), (B), and CC) are schematic diagrams for explaining the effect of the alignment treatment that defines the tilt of liquid crystal molecules in the present invention, and Figure 3 (A) is a schematic diagram for explaining the effect of the alignment treatment that defines the tilt of the liquid crystal molecules. Figure 3 (B) shows the state of liquid crystal molecules at the interface without alignment treatment, and Figure 3 (C) shows the state of liquid crystal molecules at the interface with alignment treatment. The behavior of molecules when an electric field is applied is shown.

第3図(A)と(B)とを比較すれば解る様に、配向処
理が施されていない界面に於ては。
As can be seen by comparing FIGS. 3(A) and 3(B), at the interface where no alignment treatment has been performed.

液晶分子の傾き方向はランダムであり、電界等を印加し
て素子を駆動する際に前述の如き問題点が生じるだけで
なく、静的状態に於ても界面での液晶分子の乱れの為に
入射光が異常偏光を受け、表示性能が劣化する。一方、
配向処理を施した界面では、主として化学的な配向規制
力により液晶分子は均一な傾き、即ちプレティ2レト角
0を有して界面で整列した状態となる。
The tilt direction of the liquid crystal molecules is random, which not only causes the above-mentioned problems when driving the device by applying an electric field, but also causes problems due to the disorder of the liquid crystal molecules at the interface even in a static state. The incident light receives abnormal polarization and the display performance deteriorates. on the other hand,
At the interface that has been subjected to alignment treatment, the liquid crystal molecules are aligned at the interface with a uniform inclination, that is, a pret-2-reto angle of 0, mainly due to the chemical alignment regulating force.

従って、プし・ティルトの方向が揃っている為、静的状
態に於ても異常偏光等を生じることはなく、当然第3図
(C)に示す様に電界印加時の液晶分子の挙動は、夫々
の分子が一致して配向方向を変化させる。従って、従来
の如く回折格子でけで配向させているのに比べ、応答性
が良く表示むら等も生じない。
Therefore, since the tilt and tilt directions are aligned, no abnormal polarization occurs even in a static state, and as shown in Figure 3 (C), the behavior of liquid crystal molecules when an electric field is applied is , each molecule coincides and changes the orientation direction. Therefore, compared to the conventional orientation using only a diffraction grating, the response is better and display unevenness does not occur.

以下1本光変調素子の具体的実施例を簡単な作成法と共
に述べる。
A specific example of a single light modulation element will be described below along with a simple manufacturing method.

先ず、基板上に表示パターン状にパターンニングした透
明電極上に、厚さ1.5gm、ピッチ1.5gmの回折
格子をやはり表示パターン形状で作成した。
First, a diffraction grating having a thickness of 1.5 gm and a pitch of 1.5 gm was also formed in the shape of a display pattern on a transparent electrode patterned on a substrate in the shape of a display pattern.

一方、この回折格子を有する基板と貼り合わせるべき対
向基板の基板面上に透明電極を形成後、透明Iπ極りに
ポリイミド配向膜を設け1回折格子の溝方向と液晶分子
のチルト方向とが同一方向になる様にラビング処理によ
る配向処理を施した。そして1以上の方法で作製した2
枚の透明基板を密nさせて液晶を封入し、第1図に示す
如き光変調素子を作成した。
On the other hand, after forming a transparent electrode on the substrate surface of the counter substrate to be bonded to the substrate having this diffraction grating, a polyimide alignment film is provided at the transparent Iπ pole so that the groove direction of one diffraction grating and the tilt direction of liquid crystal molecules are the same. Orientation treatment was performed by rubbing treatment so that the film was oriented in the same direction. and 2 produced by one or more methods.
A light modulation element as shown in FIG. 1 was fabricated by placing two transparent substrates tightly together and encapsulating a liquid crystal therein.

本実施例に於る光変調素子では、液晶が所定の方向にプ
レティルトを持つと共に1回折格子の溝方向にディレク
タ(配向方向)を備えた所謂ホモジニアス配向をしてい
る。
In the light modulation element of this embodiment, the liquid crystal has a pretilt in a predetermined direction and has a so-called homogeneous alignment with a director (alignment direction) in the groove direction of one diffraction grating.

従って、電界印加のON 、OFFにより液晶分子は一
様巨つ迅速にその向きを変化させ、高速応答させること
が出来る。又、低温時に於る電界OFF時の液晶分子の
再配列時間が短縮され、本光変調素子の表示色を規定す
る屈折率の温度依存性も改善された。又、温度による色
変動も減少した。
Therefore, by turning on and off the application of an electric field, the liquid crystal molecules uniformly and rapidly change their orientation, making it possible to respond at high speed. In addition, the time required for rearrangement of liquid crystal molecules when the electric field is turned off at low temperatures is shortened, and the temperature dependence of the refractive index, which defines the displayed color of the present light modulation element, is also improved. Also, color variations due to temperature were reduced.

更に、対向基板と回折格子上部との間に空隙が存在し、
この空隙に液晶分子が存在していても、液晶分子が乱れ
ることはなく、電界や温度に対する信頼性が得られると
共に表示むらや表示の遅れを小さく出来1表示品位及び
信頼性を向上させることが可能である。
Furthermore, a gap exists between the opposing substrate and the upper part of the diffraction grating,
Even if liquid crystal molecules exist in this gap, the liquid crystal molecules will not be disturbed, and reliability against electric fields and temperatures can be obtained, as well as display unevenness and display delay can be reduced. 1 Display quality and reliability can be improved. It is possible.

尚1本実施例に於て、基板に対する配向処理法としてラ
ビング法を使用しているが1例えばイオンビー11 ブ
ラズーf等の異方性エツチングやS i02の斜め基若
を用いることも出来、良い。言うまでもなく逆に回折格
子を有する基板面に配向処理を上述の如き方法を用いて
行なっても構わない。
In this embodiment, a rubbing method is used as the orientation treatment method for the substrate, but it is also possible to use anisotropic etching such as IonBee 11 Blaze F or diagonal etching of Si02. Needless to say, on the contrary, the orientation treatment may be performed on the substrate surface having the diffraction grating using the above-mentioned method.

以下、−ヒ記実施例とは異なる配向規制力を生じせしめ
る実施例に関して述べる。
Hereinafter, an example will be described in which an orientation regulating force different from that in the example described in -A is generated.

と記実施例に於る回折格子を形成すべき基板の対向基板
に配向剤としてオクタデシルトリエトキシシランの0.
5 w t%エタノール溶液をスピンコードにより塗布
し、100″Cで1時間熱処理を施した後回折格子の溝
方向と液晶分子のチルト方向とが一致するようにラビン
グ処理を行ないヒ記実施例同様の方法で光変調素子を作
成した。この配向処理により該配向基板表面の液晶分子
は回折格子の厚さ方向、即ち基板面にに、l して垂直
方向に配向され、静的状態に於て所謂ハイブリッド配向
を示す。即ち変化はホメオトロピック状態からホモジニ
アス状態へ移行する分子配列をとり、界面に於る液晶分
子の傾きを規定出来た。
In this example, 0.00% of octadecyltriethoxysilane was applied as an alignment agent to the substrate opposite to the substrate on which the diffraction grating was to be formed.
A 5 wt% ethanol solution was applied using a spin cord, heat treated at 100''C for 1 hour, and then rubbed so that the groove direction of the diffraction grating and the tilt direction of the liquid crystal molecules matched, and the same procedure as in Example 5 was performed. A light modulation element was fabricated using the method described above. Through this alignment treatment, the liquid crystal molecules on the surface of the alignment substrate were aligned in the thickness direction of the diffraction grating, that is, in the direction perpendicular to the substrate surface, and in a static state. This shows a so-called hybrid orientation, in which the molecular alignment changes from a homeotropic state to a homogeneous state, and the tilt of the liquid crystal molecules at the interface can be defined.

尚、前述の実施例に於いては、透過型の光変調素子を示
しているが1例えば一方の基板に光反射膜を施して反射
型の素子とすることも可能である。但し、反射型の場合
、素子内に於る回折光の挙動が複雑となる為、設計や実
際の表示素子等の応用面を考慮すると、*発明では透過
型の光変調素子を構成するのが好ましい。この場合、当
然の事ながら、回折格子、液晶及び基板等は使用波長に
対して透過性を有する部材を用いる。
In the above embodiments, a transmissive light modulation element is shown, but it is also possible to form a reflective element by applying a light reflecting film to one of the substrates, for example. However, in the case of a reflective type, the behavior of diffracted light within the element is complicated, so when considering the design and application aspects of actual display elements, *In the invention, it is difficult to configure a transmissive type light modulation element. preferable. In this case, as a matter of course, the diffraction grating, liquid crystal, substrate, etc. are made of members that are transparent to the wavelength used.

〈発明の効果〉 以ト1本発明に係る光変調素子は1回折格子による配向
規制力に加え1回折格子の溝底部又は対向する基板面に
配向処理を施すことで、特に表示素子として用いる場合
の表示コントラストを向、L:させ、応答むらや表示む
ら等を防止して高い表示品位と応答性を得ることが出来
る光変調素子である。
<Effects of the Invention> (1) The light modulation element according to the present invention is particularly advantageous when used as a display element by performing alignment treatment on the groove bottom of the first diffraction grating or on the opposing substrate surface in addition to the alignment regulating force provided by the first diffraction grating. This is a light modulation element that can increase the display contrast of L: to prevent uneven response, display unevenness, etc., and obtain high display quality and responsiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光変調素子の変調原理図。 第2図は本発明に係る光変調素子の一実施例を示す概略
斜視図。 第3図(A)、(B)、(C)は本発明に於る配向処理
の効果を示す説明図。 1 −−−−一 液晶又は液晶分子 2 −−−−一 回折格子 3 −−−−一 透明電極 4 −−−−一 透明基板 5 −−−−一 入射光
FIG. 1 is a diagram showing the modulation principle of the light modulation element according to the present invention. FIG. 2 is a schematic perspective view showing one embodiment of a light modulation element according to the present invention. FIGS. 3(A), 3(B), and 3(C) are explanatory diagrams showing the effects of the alignment treatment in the present invention. 1 -----1 Liquid crystal or liquid crystal molecules 2 -----1 Diffraction grating 3 -----1 Transparent electrode 4 -----1 Transparent substrate 5 -----1 Incident light

Claims (1)

【特許請求の範囲】 (1)複数の基板と隣接する基板の相対する少なくとも
一方の面に存する回折格子と該複数の基板間に配した液
晶と該液晶の配向状態を制御する手段とを有し、前記回
折格子が液晶の配向機能を備えた素子であって、 前記回折格子の溝底部又は対向する基板面に配向処理を
施すことにより前記液晶の分子の傾き方向を規定した光
変調素子。 (2)前記液晶分子が前記回折格子の厚さ方向に傾いて
おり、液晶分子のデイレクタの基板面への射影が前記回
折格子の溝方向に略々平行となる様に液晶を配向させた
特許請求の範囲第 (1)項記載の光変調素子。 (3)前記基板と前記液晶とが使用波長に対して透明で
ある特許請求の範囲第(1)項記載の光変調素子。 (4)前記液晶が静的状態に於て前記対向する基板面に
垂直に配向される特許請求の範囲第 (1)項記載の光変調素子。
[Scope of Claims] (1) A diffraction grating existing on at least one opposing surface of a plurality of substrates and an adjacent substrate, a liquid crystal disposed between the plurality of substrates, and means for controlling the alignment state of the liquid crystal. The light modulation element is an element in which the diffraction grating has a liquid crystal alignment function, and the direction of inclination of the liquid crystal molecules is defined by applying an alignment treatment to the bottom of the groove of the diffraction grating or the opposing substrate surface. (2) A patent in which the liquid crystal is oriented such that the liquid crystal molecules are tilted in the thickness direction of the diffraction grating, and the projection of the liquid crystal molecules onto the substrate surface of the director is approximately parallel to the groove direction of the diffraction grating. A light modulation element according to claim (1). (3) The light modulation element according to claim (1), wherein the substrate and the liquid crystal are transparent to the wavelength used. (4) The light modulation element according to claim (1), wherein the liquid crystal is oriented perpendicularly to the opposing substrate surfaces in a static state.
JP61082923A 1986-04-09 1986-04-09 Light modulator Expired - Fee Related JPH0776814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61082923A JPH0776814B2 (en) 1986-04-09 1986-04-09 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082923A JPH0776814B2 (en) 1986-04-09 1986-04-09 Light modulator

Publications (2)

Publication Number Publication Date
JPS62238530A true JPS62238530A (en) 1987-10-19
JPH0776814B2 JPH0776814B2 (en) 1995-08-16

Family

ID=13787756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082923A Expired - Fee Related JPH0776814B2 (en) 1986-04-09 1986-04-09 Light modulator

Country Status (1)

Country Link
JP (1) JPH0776814B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238521A (en) * 1986-04-10 1987-10-19 Canon Inc Optical modulator
JP2005321705A (en) * 2004-05-11 2005-11-17 Nippon Hoso Kyokai <Nhk> Liquid crystal optical modulator and liquid crystal display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182921A (en) * 1984-09-28 1986-04-26 Sumitomo Light Metal Ind Ltd Manufacture of extrudate made of powdered material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182921A (en) * 1984-09-28 1986-04-26 Sumitomo Light Metal Ind Ltd Manufacture of extrudate made of powdered material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238521A (en) * 1986-04-10 1987-10-19 Canon Inc Optical modulator
JP2005321705A (en) * 2004-05-11 2005-11-17 Nippon Hoso Kyokai <Nhk> Liquid crystal optical modulator and liquid crystal display device
JP4512415B2 (en) * 2004-05-11 2010-07-28 日本放送協会 Liquid crystal light modulator and liquid crystal display device

Also Published As

Publication number Publication date
JPH0776814B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US5825448A (en) Reflective optically active diffractive device
US4878742A (en) Liquid crystal optical modulator
US5638201A (en) Optically active diffractive device
US8294860B2 (en) Liquid crystal display device
US4586791A (en) Optical modulation element with surface parallel and unidirectional alignment of LC
US20020047968A1 (en) Liquid crystal display device
JPH06324337A (en) Liquid crystal display device
US5526147A (en) Polymer dispersed liquid crystal projector with diffraction gratings along liquid crystal electrodes, a variable diaphragm, and an anamorphic lens
JPS62238530A (en) Optical modulation element
JPH02190825A (en) Liquid crystal electro-optical element
JP4031658B2 (en) Liquid crystal display
JP3203331B2 (en) Reflective liquid crystal display
KR100431052B1 (en) Liquid Crystal Displays with Multi-Domains Effect Formed by Surface Gratings
JPS62238528A (en) Optical modulation element
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JP3951622B2 (en) Manufacturing method of liquid crystal device
JP3231910B2 (en) Liquid crystal display device
JPH09297304A (en) Reflection type liquid crystal display element and its production
JPS62235926A (en) Optical modulation element
JPH0527091B2 (en)
JP2517589B2 (en) Light modulation element
JPH02304526A (en) Liquid crystal display element
JPS62237424A (en) Light modulating element
JPS63281130A (en) Optical modulator
JP2629544B2 (en) Liquid crystal element and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees