JPS6223849B2 - - Google Patents

Info

Publication number
JPS6223849B2
JPS6223849B2 JP55177683A JP17768380A JPS6223849B2 JP S6223849 B2 JPS6223849 B2 JP S6223849B2 JP 55177683 A JP55177683 A JP 55177683A JP 17768380 A JP17768380 A JP 17768380A JP S6223849 B2 JPS6223849 B2 JP S6223849B2
Authority
JP
Japan
Prior art keywords
substrate
substrates
liquid crystal
adhesive
spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55177683A
Other languages
Japanese (ja)
Other versions
JPS57101815A (en
Inventor
Nobuyoshi Koshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP55177683A priority Critical patent/JPS57101815A/en
Publication of JPS57101815A publication Critical patent/JPS57101815A/en
Publication of JPS6223849B2 publication Critical patent/JPS6223849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Description

【発明の詳細な説明】 本発明は液晶などの液状表示媒体を用いた平板
状表示素子の製造方法、特に基板間間隔を均一に
した大型平板状表示素子の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a flat display element using a liquid display medium such as a liquid crystal, and particularly to a method for manufacturing a large flat display element in which the spacing between substrates is made uniform.

一般に、所定間隙をもたせて対向させた二枚の
基板を備えたセル内に液状表示媒体を封入した表
示素子の作製に当つては基板の間隔を素子全体に
わたつて均一にすることが基本的に重要である。
Generally, when manufacturing a display element in which a liquid display medium is sealed in a cell with two substrates facing each other with a predetermined gap between them, it is basic to make the spacing between the substrates uniform throughout the device. is important.

たとえば、液晶表示素子においては、対向する
両基板の内側に付設した電極間に電圧を印加した
とき液晶に生ずる光学的変化の時間応答性は、上
記基板間隔に大きく依存するので、この間隔が均
一に保持されないと、液晶の応答時間にバラツキ
が生じ、表示性能が大幅に低下してしまう。この
ため、寸法精度の高いスペーサを基板間に介在さ
せてセルを構成し、基板間隔の均一性を保つこと
が必要とされる。このようなスペーサ材として
は、グラスフアイバー等の繊維状のものやアルミ
ナ等の粉末が用いられる。セルを構成する方法と
しては、これらの微小スペーサを含む接着剤を基
板周縁部に塗布し圧力をかけながら接着剤を硬化
させる方法が一般的であるが(例えば特開昭48―
60598号)、大型基板の場合にはさらに基板面全体
にスペーサを散布しておくことによつて基板間隔
の均一化を図つている。しかし、特に大型基板で
は、これだけ基板間隔の均一なセルを得ることは
極めて困難であつた。それは従来の方法では基板
に圧力を均一に加えられなかつたことによる。す
なわち、基板に圧力を加える場合には従来金型や
プレスが用いられてきたが、それらの平面度や圧
力の精度には限界があるため、ガラス基板のそり
や曲がりなどが解消されないだけでなく、基板上
に散布したスペーサの効果も十分引き出すことが
できなかつたのである。
For example, in a liquid crystal display element, when a voltage is applied between electrodes attached to the inside of both opposing substrates, the time response of the optical change that occurs in the liquid crystal greatly depends on the spacing between the substrates, so this spacing is uniform. If this is not maintained, variations will occur in the response time of the liquid crystal, and display performance will be significantly reduced. Therefore, it is necessary to construct cells by interposing spacers with high dimensional accuracy between the substrates to maintain uniformity in the spacing between the substrates. As such a spacer material, a fibrous material such as glass fiber or a powder such as alumina is used. A common method for constructing cells is to apply an adhesive containing these minute spacers to the periphery of the substrate and harden the adhesive while applying pressure (for example, as described in Japanese Patent Application Laid-Open No. 1983-1989).
No. 60598), in the case of large substrates, spacers are further spread over the entire substrate surface to make the substrate spacing uniform. However, especially with large substrates, it has been extremely difficult to obtain cells with such uniform substrate spacing. This is because conventional methods were unable to apply pressure uniformly to the substrate. In other words, molds and presses have traditionally been used to apply pressure to the substrate, but since there are limits to their flatness and pressure accuracy, it is not only impossible to eliminate warping and bending of the glass substrate. However, the effect of the spacers dispersed on the substrate could not be fully exploited.

これらの欠点を解消すべく、基板に流体圧を加
える方法が開発されており、この方法は基板とな
じみ易い加圧体を流体圧で基板側に押圧するよう
にしたものであるが、加圧体を基板とほぼ同形に
しないと充分な効果が得られないし、また接着剤
を硬化するため基板を加熱することがむずかしか
つた。
In order to overcome these drawbacks, a method of applying fluid pressure to the substrate has been developed, and this method uses fluid pressure to press a pressurizing body that is easily compatible with the substrate against the substrate. A sufficient effect cannot be obtained unless the body is made almost the same shape as the substrate, and it is difficult to heat the substrate to harden the adhesive.

本発明は、このような従来法の問題点に着目し
てなされたもので、基板を接着する際、接着剤の
硬化する過程の少くとも終期において基板間の空
間内を減圧した状態で基板の接着を行うことによ
つて大気圧を利用して加圧しながら接着すること
により上記問題点を解決することを目的としてい
る。
The present invention has been made by focusing on the problems of the conventional method. When bonding substrates, the pressure in the space between the substrates is reduced at least at the final stage of the curing process of the adhesive. The purpose of the present invention is to solve the above-mentioned problems by performing adhesion while applying pressure using atmospheric pressure.

以下、本発明を図面に基づいて説明する。第1
図は液状表示媒体を用いた表示素子の例として、
大型液晶表示素子の要部断面を示したものであ
り、第2図は上基板の裏面側を示す底面図であ
る。構成を説明すると、1,2は大型ガラス
(100×200mm2程度)からなる基板で、各々の内面
には数字パターンなどの透明導電膜によつて形成
された電極3が被着され、その上に透明絶縁性の
液晶配向制御膜4が形成されている。前記上基板
1および下基板2の間にはその間隔を10μm程度
に保持するためのスペーサ5が設けられ、その周
縁がスペーサを含む接着剤6によつて封着され
る。この密閉間隙内に液晶7が注入口8より注入
され接着剤で封止される。
Hereinafter, the present invention will be explained based on the drawings. 1st
The figure shows an example of a display element using a liquid display medium.
It shows a cross section of a main part of a large liquid crystal display element, and FIG. 2 is a bottom view showing the back side of the upper substrate. To explain the structure, numerals 1 and 2 are large glass substrates (approximately 100 x 200 mm 2 ), and on the inner surface of each electrode 3 formed of a transparent conductive film such as a number pattern is adhered. A transparent insulating liquid crystal alignment control film 4 is formed thereon. A spacer 5 is provided between the upper substrate 1 and the lower substrate 2 to maintain a distance of about 10 μm, and the periphery of the spacer 5 is sealed with an adhesive 6 including the spacer. Liquid crystal 7 is injected into this sealed gap from injection port 8 and sealed with adhesive.

従来の素子製造方法によれば、前記上下基板
1,2のいずれかの内面上にスペーサ5を散布
し、他方の周縁部に接着剤6を塗布した後、両者
を重ね合わせ、金型またはプレスによつて加圧し
ながら全体の温度を上げ、接着剤を加熱硬化させ
る。
According to the conventional device manufacturing method, spacers 5 are spread on the inner surface of either of the upper and lower substrates 1, 2, and adhesive 6 is applied to the periphery of the other substrate, and then the two are overlapped and molded or pressed. The adhesive is heated and cured by raising the overall temperature while applying pressure.

これに対して本発明においては、前記上下基板
の重ね合わせまでを従来と同様に行つた後、まず
接着剤6の硬化温度より低い温度で周縁部を仮接
着する。次に、液晶注入口8を利用して基板間空
隙を油回転ポンプによつて排気し、内部を真空状
態にする。このとき素子内外に生ずる圧力差によ
つて、上下基板は約1Kg/cm2の圧力でそれぞれ圧
迫され、基板間隔はスペーサの径と等しい間隔で
強制的にほぼ完全に均一化される。素子をこの状
態に保つたまま、接着剤6の硬化温度まで加熱
し、硬化を完了させ本接着を行う。この後、素子
内の真空を破り工程を終える。
In contrast, in the present invention, after the upper and lower substrates are stacked in the same manner as in the conventional method, the peripheral edge portions are first temporarily bonded at a temperature lower than the curing temperature of the adhesive 6. Next, the gap between the substrates is evacuated by an oil rotary pump using the liquid crystal injection port 8 to bring the inside into a vacuum state. At this time, due to the pressure difference generated inside and outside the element, the upper and lower substrates are compressed with a pressure of approximately 1 kg/cm 2 , and the spacing between the substrates is forcibly made almost completely equal to the diameter of the spacer. While maintaining the element in this state, it is heated to the curing temperature of the adhesive 6 to complete curing and perform the main bonding. After this, the vacuum inside the device is broken and the process is completed.

このような方法は、基板間隔の均一化に極めて
有効であることが確認された。これは、基板に働
らく圧力が従来の金型やプレスでは得られない高
い均一性を有しており、均一な圧力下で圧着が行
われる結果、基板のそりや曲がりを最小限におさ
えた状態で素子が形成されるためと推察される。
また、本発明の方法では原理的に基板の大きさに
制限がなく、これも金型やプレスによる従来法に
はない特徴である。
It has been confirmed that such a method is extremely effective in making the substrate spacing uniform. This is because the pressure applied to the substrate is highly uniform, which cannot be achieved with conventional molds or presses, and as a result of crimping being performed under uniform pressure, warping and bending of the substrate is minimized. This is presumed to be because the element is formed in the state.
Furthermore, in the method of the present invention, there is no restriction on the size of the substrate in principle, which is also a feature not found in conventional methods using molds or presses.

以下に本発明を実施例により説明する。 The present invention will be explained below using examples.

実施例 上記方法によつて大型液晶表示素子を作製し
た。用いたガラス基板の大きさは100×200mm2、厚
さは1mmである。まず、第1図に示すように対向
配置する一方の基板、例えば上基板1に透明電極
3および液晶配向制御膜4を形成した表面に、直
径10μm、長さ約50μmの微小グラスフアイバー
を例えば網目間隔37μmの標準フイルムを用いて
1.5本/mm2の密度で散布する。他方の下基板周縁
部所定領域にエポキシ系接着剤を後述の液晶注入
口8の部分すなわち2mm位の幅を除いて印刷塗布
し、下基板2を前記上基板と対向配置して固定す
る。このような構成のセルを60℃で30分間熱し、
仮接着を行う。次に、液晶注入口8を排気口とし
て用いてセル内部を油回転ポンプによつて真空に
する。そのさい、排気管としてはシリコンゴム管
9を用い、排気口部分に接着剤によつて接着固定
した。この排気口と排気管の接続について詳しく
述べると、シリコンゴム管9は例えば外径4mm、
内径2mmのものを用い、第3図に示すようにその
端面から管の軸線に沿つて幅2mm弱、長さ10mmの
スリツトを切り、このスリツトに前記仮接着をし
た基板を挿入し、この際液晶注入口8がシリコン
ゴム管9の孔と相対するようにする。しかる後シ
リコンゴム管9と基板1,2との接触部分に接着
剤10を塗布する。
Example A large liquid crystal display element was manufactured by the above method. The size of the glass substrate used was 100×200 mm 2 and the thickness was 1 mm. First, as shown in FIG. 1, fine glass fibers with a diameter of 10 μm and a length of about 50 μm are placed in a mesh pattern on the surface of one substrate, for example, the upper substrate 1, on which the transparent electrode 3 and the liquid crystal alignment control film 4 are formed. Using a standard film with a spacing of 37μm
Spray at a density of 1.5 sticks/mm 2 . An epoxy adhesive is applied by printing to a predetermined area around the periphery of the other lower substrate, except for a portion of the liquid crystal injection port 8 (to be described later), that is, a width of about 2 mm, and the lower substrate 2 is placed facing and fixed to the upper substrate. Heat the cell configured like this at 60℃ for 30 minutes,
Perform temporary gluing. Next, using the liquid crystal inlet 8 as an exhaust port, the inside of the cell is evacuated by an oil rotary pump. At this time, a silicone rubber tube 9 was used as the exhaust pipe, and was fixed to the exhaust port portion with an adhesive. To explain in detail the connection between the exhaust port and the exhaust pipe, the silicone rubber pipe 9 has an outer diameter of 4 mm, for example.
Using a tube with an inner diameter of 2 mm, cut a slit with a width of just under 2 mm and a length of 10 mm from the end face along the axis of the tube as shown in Figure 3, and insert the temporarily bonded substrate into this slit. The liquid crystal injection port 8 is made to face the hole of the silicone rubber tube 9. Thereafter, an adhesive 10 is applied to the contact portions between the silicone rubber tube 9 and the substrates 1 and 2.

このようにシリコンゴム管9を接続してから数
分間排気した後シリコンゴム管9の端部分を封止
する。この状態では、基板間隔はグラスフアイバ
ーの直径に等しい10μmにほぼ完全に均一化され
ている。セル内部を真空状態に保つたまま、100
℃で1時間加熱し、基板周縁部の接着剤を硬化さ
せる。冷却後、セル内の真空を破り、排気管を取
り去る。真空を破るとともにガラス基板への圧力
効果が緩和されるため、基板間隔はセル中央部分
で若干増大するが、均一性は十分保たれている。
After connecting the silicone rubber tube 9 in this way, the end portion of the silicone rubber tube 9 is sealed after exhausting the air for several minutes. In this state, the spacing between the substrates is almost completely uniform to 10 μm, which is equal to the diameter of the glass fiber. While keeping the inside of the cell in a vacuum state,
C. for 1 hour to harden the adhesive on the peripheral edge of the substrate. After cooling, the vacuum inside the cell is broken and the exhaust pipe is removed. As the vacuum is broken and the pressure effect on the glass substrate is relaxed, the spacing between the substrates increases slightly in the center of the cell, but uniformity is maintained sufficiently.

基板間隔の均一性を定量的に検討するため、セ
ルの各点で基板間隔を測定し、その統計的バラツ
キを求めた。本実施例のセルについては、100ケ
所で基板間隔を測定したところ、その平均値<d
>は11.9μm、、標準偏差σは1.10μmであつ
た。なお金型による従来法で圧着した場合には、
<d>は13.5μm程度であり、またσの値を2.00
μm以下におさえることは困難であつた。本発明
により、基板間隔をスペーサの径に近い値に精度
よく制御できることがわかる。
In order to quantitatively examine the uniformity of the substrate spacing, the substrate spacing was measured at each point of the cell and its statistical variation was determined. Regarding the cell of this example, when the substrate spacing was measured at 100 locations, the average value < d
> was 11.9 μm, and the standard deviation σ was 1.10 μm. When crimping is done using the traditional method using a metal mold,
<d> is approximately 13.5μm, and the value of σ is 2.00
It was difficult to keep the thickness below μm. It can be seen that according to the present invention, the substrate spacing can be accurately controlled to a value close to the diameter of the spacer.

上記方法によつて作製した素子に液晶を注入し
たところ、応答時間は表示面積全体にわたつて均
一であつた。注入液晶にゲスト・ホスト形液晶を
用いた場合にも表示部の色むらは生じなかつた。
When liquid crystal was injected into the device manufactured by the above method, the response time was uniform over the entire display area. Even when a guest-host type liquid crystal was used as the injected liquid crystal, color unevenness did not occur in the display area.

なお、上記実施例においては、スペーサ材とし
て微小なグラスフアイバーを用いたが、本発明は
これに限定されるものではなく、液晶または液晶
配向に悪影響を与えず、表示部に肉眼で確認でき
ない同一径を有するものであればよい。
In the above example, a minute glass fiber was used as the spacer material, but the present invention is not limited to this. Any material having a diameter may be used.

また、スペーサの散布密度については、過剰に
なるとスペーサ同志の重なりが起こりやすく、ま
た過少になると、その効果がうすれ、いずれの場
合にも基板間隔の不均一の原因となるため、上記
実施例のように1.5本/mm2程度とするのが最適で
あつた。
Regarding the density of spacers, if the density is too high, the spacers tend to overlap each other, and if it is too low, the effect will be weakened, and in either case, it will cause uneven substrate spacing. Therefore, it was optimal to set the number to about 1.5 lines/mm 2 .

また、上記実施例においては、上下基板の間に
はグラスフアイバーのみを介在させたが、基板間
隔をより均一にするには、さらにセル中央部の微
小部分に接着剤を介在させた上で上記方法によつ
て圧着してもよい。セル内部を真空状態にして圧
着するさい、セル中央部では接着剤によつて上下
基板が強制的にグラスフアイバーの径のほぼ等し
い間隔に固定されるので、圧着後に真空を破つた
ときの基板間隔の均一性はさらに改善される。た
だし、この場合、表示品質に影響を与えないよう
に接着剤の面積はできるだけ小さくおさえる必要
がある。
In addition, in the above embodiment, only the glass fiber was interposed between the upper and lower substrates, but in order to make the substrate spacing more uniform, an adhesive was further interposed in a minute part at the center of the cell, and then It may be crimped by any method. When crimping is performed with the inside of the cell in a vacuum state, the upper and lower substrates are forcibly fixed at the center of the cell by adhesive at a distance that is approximately equal to the diameter of the glass fiber, so that when the vacuum is broken after crimping, the substrate spacing is The uniformity of is further improved. However, in this case, the area of the adhesive needs to be kept as small as possible so as not to affect display quality.

なお、セル内空間を減圧にする場合、塗布され
た接着剤が大気圧に耐えられる場合には接着剤が
硬化する過程の全期間において減圧しても良い。
しかし、エポキシ樹脂のように加熱して硬化させ
る段階で一段粘度が低くなる場合は、再び粘度が
高くなつてかたまつてから減圧し、完全に硬化す
るまで減圧状態を維持するようにする。
Note that when reducing the pressure in the cell interior space, if the applied adhesive can withstand atmospheric pressure, the pressure may be reduced during the entire period of the adhesive curing process.
However, if the viscosity is lowered by heating and curing, such as with an epoxy resin, the pressure should be reduced after the viscosity increases and hardens again, and the reduced pressure state should be maintained until the resin is completely cured.

また、上記実施例ではガラス基板を用いた場合
について述べたが、本発明によれば、たとえば高
耐熱性高分子膜を基板として用いて、曲げ可能な
平板表示素子を作製することも可能である。
Furthermore, although the above embodiments have described the case where a glass substrate is used, according to the present invention, it is also possible to fabricate a bendable flat panel display element using, for example, a highly heat-resistant polymer film as a substrate. .

さらに本発明は液晶以外の液状表示媒体を用い
たエレクトロクロミツク素子、フオトクロミツク
素子などの表示素子の作製にも適用することがで
きる。
Furthermore, the present invention can also be applied to the production of display elements such as electrochromic elements and photochromic elements using liquid display media other than liquid crystals.

例えば、エレクトロクロミツク素子と液晶とを
比較すると、エレクトロクロミツク素子は液晶の
代りに例えば電解質としてプロピレンカーボネー
トにLiClO4を入れたものを封入するとか、発色
させるための酸化タングステンの層が有るとかの
違いは有るが、構造的に大きな違いはエレクトロ
クロミツク素子には両基板の間に数μの穴が平行
に多数穿設された多孔質の板(厚さ0.2〜0.3mm)
が存在することである。したがつてこの場合には
各基板と多孔質板との間にスペーサを介装するこ
とによつて液晶素子と同様に製造することができ
る。
For example, when comparing an electrochromic device and a liquid crystal, an electrochromic device uses propylene carbonate containing LiClO 4 as an electrolyte instead of liquid crystal, or has a layer of tungsten oxide for color development. However, the major structural difference is that electrochromic devices are made of a porous plate (0.2 to 0.3 mm thick) with many holes of a few microns in parallel between both substrates.
exists. Therefore, in this case, by interposing a spacer between each substrate and the porous plate, it can be manufactured in the same manner as a liquid crystal element.

以上、詳細に説明したきたように、本発明によ
つてはじめて液状表示媒体を封入した平板表示素
子、特に大型平板表示素子の基板間隔均一化が可
能となつたのであつて、本発明によれば金型やプ
レスなどを必要とせずに表示特性が均一な任意の
大きさの平板表示素子を容易に再現性良く作製す
ることができるので、実用上の価値は極めて大き
い。
As described in detail above, the present invention has made it possible for the first time to make the substrate spacing uniform in a flat panel display element filled with a liquid display medium, especially in a large flat panel display element. The present invention has extremely great practical value because a flat panel display element of any size with uniform display characteristics can be easily produced with good reproducibility without the need for molds or presses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大型液晶表示素子の断面図、第2図は
上基板の裏面側を示す底面図、第3図はセルに排
気管を取付けた状態を示すためのセルと排気管の
部分断面図である。 1……上基板、2……下基板、3……透明電
極、4……液晶配向膜、5……スペーサ、6……
封着剤、7……液晶、8……液晶注入口、9……
シリコンゴム管、10……接着剤。
Figure 1 is a cross-sectional view of a large liquid crystal display element, Figure 2 is a bottom view showing the back side of the upper substrate, and Figure 3 is a partial cross-sectional view of the cell and exhaust pipe to show the state in which the exhaust pipe is attached to the cell. It is. DESCRIPTION OF SYMBOLS 1... Upper substrate, 2... Lower substrate, 3... Transparent electrode, 4... Liquid crystal alignment film, 5... Spacer, 6...
Sealing agent, 7...Liquid crystal, 8...Liquid crystal injection port, 9...
Silicone rubber tube, 10...Adhesive.

Claims (1)

【特許請求の範囲】[Claims] 1 二枚の基板をスペーサを介在させて向き合
せ、これら基板を加圧しながら周縁部を接着する
ことにより該基板間に空間を形成し、該空間内に
液状表示媒体を封入するようにした表示素子の製
造方法において、接着剤を硬化させる過程の少く
とも終了時期において前記空間内を減圧すること
により基板を加圧するようにしたことを特徴とす
る表示素子の製造方法。
1 A display in which two substrates are placed facing each other with a spacer interposed between them, and a space is formed between the substrates by bonding the peripheral edges while applying pressure to the substrates, and a liquid display medium is sealed within the space. 1. A method for manufacturing a display element, characterized in that the substrate is pressurized by reducing the pressure in the space at least at the end of the process of curing the adhesive.
JP55177683A 1980-12-16 1980-12-16 Production of display elemet Granted JPS57101815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55177683A JPS57101815A (en) 1980-12-16 1980-12-16 Production of display elemet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55177683A JPS57101815A (en) 1980-12-16 1980-12-16 Production of display elemet

Publications (2)

Publication Number Publication Date
JPS57101815A JPS57101815A (en) 1982-06-24
JPS6223849B2 true JPS6223849B2 (en) 1987-05-26

Family

ID=16035273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55177683A Granted JPS57101815A (en) 1980-12-16 1980-12-16 Production of display elemet

Country Status (1)

Country Link
JP (1) JPS57101815A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129817A (en) * 1985-12-02 1987-06-12 Stanley Electric Co Ltd Manufacture of liquid crystal display device
JP2504111B2 (en) * 1988-04-07 1996-06-05 凸版印刷株式会社 Liquid crystal panel manufacturing method
JP4613517B2 (en) * 2004-05-26 2011-01-19 ブラザー工業株式会社 Electrophoretic display device
JP4894374B2 (en) * 2006-06-28 2012-03-14 ダイキン工業株式会社 Indoor unit of air conditioner equipped with heat exchanger and heat exchanger

Also Published As

Publication number Publication date
JPS57101815A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
JP2957385B2 (en) Manufacturing method of ferroelectric liquid crystal device
JP2001337335A (en) Production method for liquid crystal display element
KR100360161B1 (en) Method for manufacturing liquid crystal cell
JPS6223849B2 (en)
JPH06160865A (en) Liquid crystal display element and its production
JPH01195421A (en) Manufacture of liquid crystal display device
JPH11281988A (en) Production of liquid crystal display element
JP2504111B2 (en) Liquid crystal panel manufacturing method
JPS63163423A (en) Manufacture of liquid crystal display device
JPS62267720A (en) Manufacture of liquid crystal element
JP2000002862A (en) Manufacture of liquid crystal display element
JP3653008B2 (en) Manufacturing method of liquid crystal display panel
JPH11194352A (en) Manufacture for liquid crystal display device
JPH095756A (en) Liquid crystal display device and its production
JP3632457B2 (en) Manufacturing method of liquid crystal device
JPH01114822A (en) Manufacture of liquid crystal display device
JP3383556B2 (en) Manufacturing method of liquid crystal display device
JP3347341B2 (en) Liquid crystal display manufacturing method
JPS62267721A (en) Manufacture of liquid crystal element
JPH0439651B2 (en)
JP3517947B2 (en) Liquid crystal display device and method of manufacturing the same
JPS59232315A (en) Production for liquid crystal display element
KR940009143B1 (en) Lcd
JPH11264985A (en) Manufacture of liquid crystal display element
JPS6237765B2 (en)