JPS62238310A - Production of reduced iron - Google Patents

Production of reduced iron

Info

Publication number
JPS62238310A
JPS62238310A JP7983386A JP7983386A JPS62238310A JP S62238310 A JPS62238310 A JP S62238310A JP 7983386 A JP7983386 A JP 7983386A JP 7983386 A JP7983386 A JP 7983386A JP S62238310 A JPS62238310 A JP S62238310A
Authority
JP
Japan
Prior art keywords
reduction furnace
iron
reduced
reduced iron
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7983386A
Other languages
Japanese (ja)
Inventor
Masanori Suzuki
正則 鈴木
Susumu Mitsuta
進 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7983386A priority Critical patent/JPS62238310A/en
Publication of JPS62238310A publication Critical patent/JPS62238310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the quantity of the heat to be supplied from the outside of the system and to reduce cost by withdrawing part of a fluid medium from the 2nd reduction furnace to reduce preliminarily reduced iron to metallic iron, separating carbonated lime therefrom and charging the same into the 1st reduction furnace. CONSTITUTION:The preliminarily reduced iron from the 1st reduction furnace as well as reducing gas and CaO are charged into the 2nd reduction furnace 2. Part of the fluid medium is withdrawn from the furnace and is magnetically separated to reduced iron and carbonated lime by a separator 5. The carbonated lime is charged together with iron ore, 2nd reduction furnace exhaust gas and oxygen into the 1st reduction furnace 1, by which the preliminary reduction of the iron ore, the regeneration of CaO of the carbonated lime and the replenishment of CaO by the supply of limestone are executed. The preliminarily reduced iron formed in such a manner is charged into the 2nd reduction furnace 2. The rate of utilization of the reducing gas is improved and the sulfur-component in the preliminarily reduced iron is decreased by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CaOを、川礫媒体として用いることに上り
、糸外から供給する熱量を低減または零とすることがで
き、しかも炭酸化された石灰をCaOに再生するための
再生炉を別に必要としない還元鉄の製造方法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses CaO as a gravel medium, reduces or eliminates the amount of heat supplied from outside the yarn, and furthermore, uses CaO as a carbonated material. The present invention relates to a method for producing reduced iron that does not require a separate regeneration furnace for regenerating lime into CaO.

〔従来の技術〕[Conventional technology]

流vJ層内で予備還元鉄を還元ガスにより還元する装置
において、予備娼元鉄の還元に必要な熱エネルギーを補
給する従来の方式は、第2還元炉に導入する還元ガスを
還元炉導入以前に別置のガス力11熱炉に導き、該加熱
炉において間接加熱により高温化した後、還元炉に導く
ものであった。
In a device that reduces pre-reduced iron with reducing gas in the flow VJ layer, the conventional method for replenishing the thermal energy necessary for reducing the pre-reduced raw iron is to reduce the reducing gas introduced into the second reduction furnace before the introduction of the reduction furnace. Then, the gas was introduced into a separate heating furnace, heated to a high temperature by indirect heating in the heating furnace, and then introduced into a reduction furnace.

また石炭と鉄鉱石とを同一流動層炉内で処理して、石炭
金ガス化し、そのガスにより予備還元鉄を還元する装置
において、予備還元鉄の還元およびイー1炭のガス化に
必安な−(ユネルギーを補給する従来の方式は、石炭の
燃焼熱を利用する方1人1.ケス)f保体4立子の加熱
を利用する方1人などが知ら、tl、ている。
In addition, in a device that processes coal and iron ore in the same fluidized bed furnace to gasify coal gold and reduce pre-reduced iron using the gas, it is essential for reducing pre-reduced iron and gasifying E-1 coal. - (The conventional method of replenishing energy is one person who uses the heat of combustion of coal.) One person who uses the heating of f carrier 4 stands etc. is known, tl,.

(#i明が解決しようとする問題点〕 しかしqiff者の方式でfよ、ガス加熱炉のチコーー
プ性能−4二、加熱温度は約1000°Cが限界であり
、還元に安する熱量f+11給のためには、化学量論的
に還元反応に利用される還元ガス量以上に多量の還元ガ
スを加熱する必要があった。したがってガス加熱炉設備
は容量的にかなり大規模なものとなり、またその運転に
多量の燃料を必要とするため、設備コスト、操業コスト
而から考えて非常に不利であった。
(Problems that #i is trying to solve) However, with the method of the qiffer, the Chicoop performance of the gas heating furnace is -42, the heating temperature is limited to about 1000°C, and the amount of heat that is cheap for reduction is f+11. In order to achieve this, it was necessary to heat a larger amount of reducing gas than the stoichiometric amount of reducing gas used in the reduction reaction.Therefore, the gas heating furnace equipment had to be quite large in terms of capacity, and Since a large amount of fuel is required for its operation, it is extremely disadvantageous in terms of equipment costs and operating costs.

また麦者の石炭の燃焼熱を利用する方法では、反応に要
する熱量補給のため、化学量論的に還元反応に利用され
る量販車の石炭を燃焼させる必要があり、原単位が高く
なる。また熱媒体粒子の顕熱を利用する方法では、反応
に要する熱量補給のためには、大量の熱媒体粒子を還元
炉と熱媒体粒子再熱炉間に循環させる必要があり、設備
的に大規模なものとなって経済的でないなどの問題点が
ある。
Furthermore, in the method of using the combustion heat of Mugiya's coal, in order to replenish the amount of heat required for the reaction, it is necessary to burn mass-produced coal, which is stoichiometrically used for the reduction reaction, resulting in a high unit consumption rate. In addition, in the method of utilizing the sensible heat of heat carrier particles, it is necessary to circulate a large amount of heat carrier particles between the reduction furnace and the heat carrier particle reheating furnace in order to replenish the amount of heat required for the reaction, which requires a large amount of equipment. There are problems such as being large-scale and uneconomical.

不発明者らは上記の問題点を解決するために、CaOの
炭酸化反応を第2還元炉内での反応の熱エネルギー補給
に利用する方法を既に開発している。
In order to solve the above problems, the inventors have already developed a method in which the carbonation reaction of CaO is used to replenish thermal energy for the reaction in the second reduction furnace.

この方法は、第2還元炉内で生成した炭酸化された石灰
を順次、第2還元炉から抜き出し、加熱、再生してCa
Oとし、再び第2a元炉へ循環するものであり、その加
熱、再生のため、第2還元炉とは別個に再生炉を設置す
るものである。
In this method, the carbonated lime produced in the second reduction furnace is sequentially extracted from the second reduction furnace, heated and regenerated, and the Ca
O and is circulated again to the No. 2a main furnace, and a regeneration furnace is installed separately from the second reduction furnace for heating and regeneration.

しかし再生炉を別個に設けた場合、再生炉本体ばかりで
ナク、それに付帯する送風設備、石炭供給設備、排ガス
処理設備などが必要であり、設備的に高価なものとなる
という問題点がある。
However, when a separate regeneration furnace is provided, the regeneration furnace itself requires additional equipment such as ventilation equipment, coal supply equipment, exhaust gas treatment equipment, etc., and there is a problem in that the equipment becomes expensive.

本発明は上記の諸点に鑑みなされたもので、糸外から供
給する熱量を低減または零とすることができ、上記の間
4点を解決した還元鉄の製造方法の提供を目的とするも
のである。
The present invention has been made in view of the above points, and aims to provide a method for manufacturing reduced iron that can reduce or eliminate the amount of heat supplied from outside the thread, and that solves the above four points. be.

〔問題点全解決するだめの手段および作用〕本圃の第1
の発明の方法は、第1図f:参照して説明すれば、鉄鉱
石を第1還元炉で予備還元し、第2趙元炉で金属鉄に還
元するh゛法において、第1還元炉1からの予m還元鉄
をcaof、主成分とする粒子とともに第2逮元炉2に
供給し、同時に第2遠冗炉2の下部から還元ガスを供給
して流動層4金形成し、第2還元炉2の流動層4内部で
CaOの炭酸化反応(CaO+ Co2→CaC○3)
を進行させて予備還元鉄の還元に必要な熱エネルギーを
供給するとともに、予備還元鉄を金属鉄に還元し、一方
、流動媒体の一部を抜き出し、還元鉄と炭j俊化された
石灰とに分離した後、炭酸化された石灰を=gl遠冗炉
1へ装入し、同時に第2還元炉2からの排ガスを第1還
元炉1の下部に供給して流lJJ層3を形成し、第1還
元炉1の流@層3内部で炭酸化された石灰を加熱・再生
してCaOとするとともに、鉄鉱石を予備還元鉄とし、
CaOf主成分とする粒子を予備還元鉄とともに第2還
元炉2に錨環し1更用することを特徴としている。
[Means and actions to solve all problems] First step in this field
The method of the invention will be described with reference to FIG. The pre-reduced iron is supplied to the second reduction reactor 2 together with particles mainly composed of caof, and at the same time, reducing gas is supplied from the lower part of the second enshrine reactor 2 to form a fluidized bed. Carbonation reaction of CaO inside the fluidized bed 4 of the furnace 2 (CaO+ Co2 → CaC○3)
to supply the thermal energy necessary for the reduction of the pre-reduced iron and reduce the pre-reduced iron to metallic iron.Meanwhile, a part of the fluid medium is extracted and the reduced iron and charcoal atomized lime and After separation, the carbonated lime is charged into the =GL Enja furnace 1, and at the same time, the exhaust gas from the second reduction furnace 2 is supplied to the lower part of the first reduction furnace 1 to form a flow IJJ layer 3. , heat and regenerate the carbonated lime inside the flow @ layer 3 of the first reduction furnace 1 to make CaO, and use the iron ore as pre-reduced iron,
It is characterized in that particles containing CaOf as a main component are anchored together with pre-reduced iron in the second reduction furnace 2 and used again.

第1の開明の方法において、第2は元炉2から抜き出し
た流動媒体の一部を磁気外4型分離機などの分離機5に
より、還元鉄と炭酸化された石灰に分点した改、炭酸化
された石灰を第1還元炉」に4人し、鉄鉱石を予備還元
する流動層3内においてms、再生してCaOとし、予
備還元鉄とともに第2嵯元炉2に循環し、使用する。6
はサイクロン、7は排ガス処理装置、8は補給石灰石供
給官、lOは酸素または空気供給省である。
In the method of the first invention, the second method is to separate a part of the fluidized medium extracted from the former furnace 2 into reduced iron and carbonated lime using a separator 5 such as a non-magnetic type 4 separator. Carbonated lime is placed in the first reduction furnace by four people, and is regenerated into CaO in the fluidized bed 3 that pre-reduces iron ore, which is then circulated together with the pre-reduced iron to the second Sakamoto furnace 2 for use. do. 6
is a cyclone, 7 is an exhaust gas treatment device, 8 is a supplementary limestone supply officer, and IO is an oxygen or air supply department.

また本願の第2の発明の方法は、第2図を3照して説明
すnば、鉄鉱石を第1還元炉で予備還元し、第2還元炉
で金属鉄に還元する方法において、第1還元炉lからの
予備還元鉄をCaoを主成分とする粒子とともに第2還
元炉2に供給し、かつ第2m元炉に石炭を供給し、同時
に第2a元炉の下部から酸素または酸素・スチームを供
給して流動層4を形成し、第2還元炉2の流動層4内部
でCaOの炭酸化反応(cao+c○2→CaC○3)
を進行させて予11m1t元鉄の還元および石炭のガス
化に必要な熱エネルギーを補給するとともに、予備還元
鉄を金属鉄に還元し、一方、流動媒体の一部を抜き出し
、(4)Q秩と炭酸化されたイi灰・チャ・−・イj炭
灰を主成分とするものとに分離した後、炭酸化された石
灰・チヤー・石炭灰を主成分とするものを第1還元炉l
へ装入し、同時に第2還元炉2からの排ガスを第1還元
炉1の下部に供給して流動層3全形成し、第1a元炉1
の流動層3内部で炭酸化された石灰を加熱・再生してC
aOとするとともに、鉄鉱石を予備還元鉄とし、CaO
を主成分とする粒子を予備還元鉄とともに第2遠尤炉2
に循環し使用することを特徴としている。
Further, the method of the second invention of the present application, which will be explained with reference to FIG. Preliminary reduced iron from the first reduction furnace 1 is supplied to the second reduction furnace 2 together with particles mainly composed of Cao, and coal is supplied to the 2m main furnace, and at the same time oxygen or oxygen gas is supplied from the lower part of the 2a main furnace. Steam is supplied to form a fluidized bed 4, and a carbonation reaction of CaO (cao+c○2→CaC○3) occurs inside the fluidized bed 4 of the second reduction furnace 2.
(4) Q After separating into those whose main components are carbonated lime, char, and coal ash, the materials whose main components are carbonated lime, char, and coal ash are transferred to the first reduction furnace. l
At the same time, the exhaust gas from the second reduction furnace 2 is supplied to the lower part of the first reduction furnace 1 to completely form the fluidized bed 3, and the first reduction furnace 1
The carbonated lime inside the fluidized bed 3 is heated and regenerated to produce C.
In addition to aO, iron ore is used as pre-reduced iron, and CaO
The particles mainly composed of
It is characterized by being recycled and used.

第2の発明の方法において、第2還元炉2から抜き出し
た流動媒体の一部を磁気分離型分離機などの分離l!!
5により、還元鉄と炭酸化された石灰・チーV−・石炭
灰を主成分とするものとに分湯1した後、炭酸化された
石灰・チヤー・石炭灰を主成分とするものを第1還元=
1に導入し、鉄鉱石を予備還元する流@層3内において
加熱、再生してCaOとし、予備還元鉄とともに第2還
元炉2に曲環し、使用する。
In the method of the second invention, a part of the fluidized medium extracted from the second reduction furnace 2 is separated using a magnetic separation type separator or the like. !
5, the reduced iron and the one mainly composed of carbonated lime, chia V-, and coal ash are divided into two parts. 1 return =
1, heated and regenerated in the stream @ layer 3 for pre-reduction of iron ore to form CaO, and then transferred to the second reduction furnace 2 together with pre-reduced iron for use.

上記のいずれの発明の方法に2いても、第1還元炉lか
ら排出され、サイクロン6にて除塵された排ガス中には
、多量の顕熱が含まれており、原料の予熱などにその熱
エネルギーを利用することが可能であるし、またCo、
H2などの有用成分を多量に残有しているため、そのま
ま燃料として用いたり、排ガス処理を行った後、化学合
成用原料として使用したり、また第2還元炉2への導入
ガスとして循環利用することも可能である。
Regardless of the method 2 of the invention described above, the flue gas discharged from the first reduction furnace 1 and dust removed by the cyclone 6 contains a large amount of sensible heat, and that heat is used for preheating the raw material, etc. It is possible to use energy, and Co,
Since it has a large amount of useful components such as H2 remaining, it can be used as fuel as it is, or after exhaust gas treatment, used as a raw material for chemical synthesis, or recycled as gas introduced into the second reduction furnace 2. It is also possible to do so.

〔実施例〕 以下、本発明の実施例について説明する。〔Example〕 Examples of the present invention will be described below.

実施例1 第1図に示すフローに従って、第2還元炉2へ予備還元
鉄金1100 ”Cで1286.54/h、組成がH2
:35%、H2O:3%、CO:57%、co、:5%
の還元ガスを25゛Cで122 L、2 Nrd/h 
、生石灰(CaO)を1100°Cで364.0 k(
j/h装入し、第2還元炉2を900’C。
Example 1 According to the flow shown in FIG.
: 35%, H2O: 3%, CO: 57%, co, : 5%
of reducing gas at 25°C, 122 L, 2 Nrd/h
, quicklime (CaO) was heated at 1100°C to 364.0 k (
J/h, and the second reduction furnace 2 was heated to 900'C.

5kQ/c浦Gで運転した。I drove at 5kQ/c Ura G.

一方、流動媒体のうち、1649.6に9/hを抜き出
し、磁気性I4型分4機5で還元鉄と炭酸化された石灰
とを分離した後、炭酸化された石灰を第1還元炉■へ尋
人した。第1還元・炉1へは前記の炭酸化された石灰の
他に、鉄鉱石を25′Cで1429.7にg/P′L、
組成がH2:28.4%、H2O: 14.7%、CO
:38.8%、Co2:18゜1%の第2還元炉排ガス
(H900’Cで1075.1π/11′l、酸素を2
5°Cで149.4 Nnt’/h装入し、第1還元炉
1を1100°C,5に9/dGで運転した。第1還元
炉内では、鉄鉱石の予備還元、炭酸化された石灰のCa
O再生、石灰石供給によるCaO補給を行い、生成した
予備還元鉄1286.5に9/hSCaO364,0/
c9/l、いずれも1100’Cで第2還元炉2へ装入
した。この結果、製品還元鉄1000A:g、/’hが
抜き出された。また第1還元炉1から排出される排ガス
の意は1221.2Ny&/hで、その組成はつぎの如
くであった。
On the other hand, from the fluidized medium, 9/h was extracted at 1649.6, and reduced iron and carbonated lime were separated using a magnetic I4 type machine 5, and then the carbonated lime was transferred to the first reducing furnace. I went to ■. In addition to the above-mentioned carbonated lime, iron ore was added to the first reduction furnace 1 at 25'C to 1429.7g/P'L.
Composition is H2: 28.4%, H2O: 14.7%, CO
: 38.8%, Co2: 18°1% second reduction furnace exhaust gas (1075.1π/11'l at H900'C, oxygen 2
149.4 Nnt'/h was charged at 5°C, and the first reduction furnace 1 was operated at 1100°C and 9/dG. In the first reduction furnace, iron ore is pre-reduced, carbonated lime is
After O regeneration and CaO replenishment by limestone supply, 9/hSCaO364,0/ is added to the generated preliminary reduced iron 1286.5.
c9/l, both were charged into the second reduction furnace 2 at 1100'C. As a result, a reduced iron product of 1000 A:g,/'h was extracted. Further, the exhaust gas discharged from the first reduction furnace 1 was 1221.2 Ny&/h, and its composition was as follows.

H24,8% H2OH,2% CO13,5% Co248.5% 実施例2 第2図に示すフローに従って、第2還元・炉2へ予備還
元鉄を1100’cで1286.5#/h、石炭を25
°Cで428.8に!//’h、酸素を25°Cで1.
37.8 Nm’/’rl、スチームをaOOoCで5
5kg/h 、生石灰(Car)を1100°Cで20
6/cq//h装入し、第2還元炉2を900°C15
kg/c4Gで運転した。
H24.8% H2OH, 2% CO13.5% Co248.5% Example 2 According to the flow shown in Fig. 2, pre-reduced iron was supplied to the second reduction furnace 2 at 1100'c at 1286.5#/h, coal 25
428.8 in °C! //'h, oxygen at 25°C 1.
37.8 Nm'/'rl, steam at aOOoC 5
5kg/h, quicklime (Car) at 1100°C for 20
6/cq//h and heated the second reduction furnace 2 to 900°C15
I drove at kg/c4G.

一方、流#J媒体のうち、1446.o#/hを抜き出
し、磁気分離型分離礪5で還元鉄と炭酸化された石灰・
チヤー・石炭灰を主成分とするものとを分離した後、炭
酸化された石灰・チヤー・石炭灰を主成分とするものを
第1還元炉1へ導入した。第1還元炉へはm記の炭酸化
された石灰・チヤー・石炭灰を主成分とするものの池に
、鉄鉱石を25°Cで1429.7 kg/h 、組成
がH2:25.6%、H2C:13.8%、CO: 4
1.7%、C02F19.4%の第2還元炉排ガスを9
00°Cで684.1Nゴ/h、酸素を25°Cで11
0.5Nd/h装入し、第1還元炉lを1100′c、
5 kg/d Gで運転した。第1還元炉内では、鉄鉱
石の予備還元、炭酸化された石灰のCaO再生、石灰石
供給によるCaO桶給を行い、生成した予媚フは元峡1
286.5kg/h 、 CaO200k?AIを、い
ずれも1100’Cで第2還元炉2へ装入した。この結
果、製品還元鉄1000に9/hが抜き出された。′I
:た第1還元炉1から排出される排ガスの量は819.
3 Nnl/”nで、その上l成はつざの如くであった
On the other hand, among stream #J media, 1446. o#/h is extracted and separated into reduced iron and carbonated lime in a magnetic separation type separation tank 5.
After separating the product mainly composed of char and coal ash, the product mainly composed of carbonated lime, char and coal ash was introduced into the first reduction furnace 1. To the first reduction furnace, 1429.7 kg/h of iron ore with a composition of H2:25.6% was placed at 25°C in a pond containing carbonated lime, char, and coal ash as main components. , H2C: 13.8%, CO: 4
1.7%, CO2F 19.4% second reduction furnace exhaust gas
684.1 N go/h at 00°C, 11 N at 25°C
0.5Nd/h was charged, and the first reduction furnace was heated to 1100'c.
It was operated at 5 kg/dG. In the first reduction furnace, preliminary reduction of iron ore, CaO regeneration of carbonated lime, and supply of CaO by limestone are carried out.
286.5kg/h, CaO200k? AI was charged into the second reduction furnace 2 at 1100'C. As a result, 9/h was extracted for 1000 reduced iron products. 'I
:The amount of exhaust gas discharged from the first reduction furnace 1 was 819.
3 Nnl/”n, and moreover, the formation was like Tsuza.

I(24,0% H2C28,5% Co   14.2% Co253.8% 〔発明の効果〕 本願の第1の発明はつぎのような効果を有している。I (24,0% H2C28.5% Co 14.2% Co253.8% 〔Effect of the invention〕 The first invention of the present application has the following effects.

(1)  還元反応に必要な熱エネルギーをCaOとC
O2との発熱反応により補給し得るため、外部加熱によ
り供給する熱量を低減、または零とすることが可能であ
る。
(1) The thermal energy required for the reduction reaction is converted into CaO and C.
Since it can be replenished through an exothermic reaction with O2, it is possible to reduce or eliminate the amount of heat supplied by external heating.

(2)  還元ガス利用率を低下させるCO2を流動層
内に2いて除去し得るため、還元ガス利用率を向上させ
、還元に必要な還元ガス量を少なくすることができる。
(2) Since CO2, which lowers the reducing gas utilization rate, can be removed in the fluidized bed, the reducing gas utilization rate can be improved and the amount of reducing gas required for reduction can be reduced.

(3)予備還元鉄中に含まれる硫黄分をCaSの形で1
余去可能なため、製品還元鉄中の硫黄分を低くし得るば
かりでなく、排ガスのリサイクル利用の場合に、特別の
脱硫設備を必要としない。
(3) The sulfur content contained in the pre-reduced iron is reduced to 1 in the form of CaS.
Because it can be used as a waste, not only can the sulfur content in the reduced iron product be lowered, but special desulfurization equipment is not required when exhaust gas is recycled.

(4)炭酸化された石灰の加熱、再生を第1還元炉で行
うことにより、再生炉設備を別個に設ける必要がなく、
設1Iil!費用が低減できる上、運転に必要な経費も
削減し得る。
(4) By heating and regenerating the carbonated lime in the first reduction furnace, there is no need to provide separate regeneration furnace equipment;
Set 1Iil! Not only can costs be reduced, but the expenses necessary for operation can also be reduced.

また本願の第2の発明はつぎのような効果を有している
Further, the second invention of the present application has the following effects.

(1)予備還元鉄の還元と同時に石炭のガス化が可能で
ある。
(1) It is possible to gasify coal at the same time as reducing pre-reduced iron.

(2)  Co、 H2による予備還元鉄の還元により
発生するCO2、H2Cを流動層内に共存する石炭によ
り、再びC01H2にすることができるため、原単位を
低下できる。
(2) Since the CO2 and H2C generated by the reduction of pre-reduced iron with Co and H2 can be converted back into CO1H2 by the coal coexisting in the fluidized bed, the basic unit can be reduced.

(3)  還元ガス生成および還元反応に必要な熱エネ
ルギーをCaOとCO2との発熱反応により補給し得る
ため、原単位を低下できる。
(3) Since the thermal energy required for reducing gas generation and reduction reaction can be supplied by the exothermic reaction between CaO and CO2, the unit consumption can be reduced.

(4)還元ガス利用率を低下させるCO2を流動層内に
2いて除去し得るため、還元ガス利用率を向上させ、原
単位を低下することができる。
(4) Since CO2, which lowers the reducing gas utilization rate, can be removed in the fluidized bed, the reducing gas utilization rate can be improved and the basic unit can be lowered.

(5)石炭、予備還元鉄中に含まれる硫黄分をCaSの
形で除去可能なため、製品還元鉄中の硫黄分を低くしう
るばかりでなく、排ガスのリサイクル利用の場合に、特
別の脱硫設備を必要としない。
(5) Since the sulfur content contained in coal and pre-reduced iron can be removed in the form of CaS, it is not only possible to lower the sulfur content in the product reduced iron, but also to use special desulfurization when recycling exhaust gas. No equipment required.

(6)予備還元鉄とチャー、生石灰を共存状態で流動化
することができるため、高温ガス還元で+n1題となる
金属鉄の焼結を防止し得る。
(6) Since pre-reduced iron, char, and quicklime can be fluidized in a coexisting state, sintering of metallic iron, which is a +n1 problem in high-temperature gas reduction, can be prevented.

(7)炭酸化された石灰の加熱、再生を第1還元炉で行
うことにより、再生炉設備を別個に設ける必要がなく、
設備費用が低減できる上、運転に必要な経費も削減し得
る。
(7) By heating and regenerating carbonated lime in the first reduction furnace, there is no need to separately provide regeneration furnace equipment;
Not only can equipment costs be reduced, but the costs necessary for operation can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の還元鉄の製造方法を実施する装置の一
例を示す説明図、第2図は本発明の他の例を示す説明図
である。 1・・・第1還元炉、2・・・第2還元炉、3.4・・
・流動層、5・・・分4磯、6・・・サイクロン、7・
・・排ガス処理装置、8・・・補給石灰石供給管、10
・・・酸素または空気供給管
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method for producing reduced iron of the present invention, and FIG. 2 is an explanatory diagram showing another example of the present invention. 1... First reduction furnace, 2... Second reduction furnace, 3.4...
・Fluidized bed, 5...minutes 4iso, 6...cyclone, 7.
...Exhaust gas treatment device, 8...Supplementary limestone supply pipe, 10
...Oxygen or air supply pipe

Claims (1)

【特許請求の範囲】 1 鉄鉱石を第1還元炉で予備還元し、第2還元炉で金
属鉄に還元する方法において、第1還元炉からの予備還
元鉄をCaOを主成分とする粒子とともに第2還元炉に
供給し、同時に第2還元炉の下部から還元ガスを供給し
て流動層を形成し、第2還元炉の流動層内部でCaOの
炭酸化反応を進行させて予備還元鉄の還元に必要な熱エ
ネルギーを補給するとともに、予備還元鉄を金属鉄に還
元し、一方、流動媒体の一部を抜き出し、還元鉄と炭酸
化された石灰とに分離した後、炭酸化された石灰を第1
還元炉へ装入し、同時に第2還元炉からの排ガスを第1
還元炉の下部に供給して流動層を形成し、第1還元炉の
流動層内部で炭酸化された石灰を加熱・再生してCaO
とするとともに、鉄鉱石を予備還元鉄とし、CaOを主
成分とする粒子を予備還元鉄とともに第2還元炉に循環
し使用することを特徴とする還元鉄の製造方法。 2 鉄鉱石を第1還元炉で予備還元し、第2還元炉で金
属鉄に還元する方法において、第1還元炉からの予備還
元鉄をCaOを主成分とする粒子とともに第2還元炉に
供給し、かつ第2還元炉に石炭を供給し、同時に第2還
元炉の下部から酸素または酸素・スチームを供給して流
動層を形成し、第2還元炉の流動層内部でCaOの炭酸
化反応を進行させて予備還元鉄の還元および石炭のガス
化に必要な熱エネルギーを補給するとともに、予備還元
鉄を金属鉄に還元し、一方、流動媒体の一部を抜き出し
、還元鉄と炭酸化された石灰・チヤー・石炭灰を主成分
とするものとに分離した後、炭酸化された石灰・チヤー
・石炭灰を主成分とするものを第1還元炉へ装入し、同
時に第2還元炉からの排ガスを第1還元炉の下部に供給
して流動層を形成し、第1還元炉の流動層内部で炭酸化
された石灰を加熱・再生してCaOとするとともに、鉄
鉱石を予備還元鉄とし、CaOを主成分とする粒子を予
備還元鉄とともに第2還元炉に循環し使用することを特
徴とする還元鉄の製造方法。
[Claims] 1. A method in which iron ore is pre-reduced in a first reduction furnace and reduced to metallic iron in a second reduction furnace, in which the pre-reduced iron from the first reduction furnace is combined with particles containing CaO as a main component. At the same time, a reducing gas is supplied from the lower part of the second reducing furnace to form a fluidized bed, and the carbonation reaction of CaO proceeds inside the fluidized bed of the second reducing furnace to produce pre-reduced iron. While replenishing the thermal energy necessary for reduction, the pre-reduced iron is reduced to metallic iron, while a part of the fluidized medium is extracted and separated into reduced iron and carbonated lime, and then carbonated lime is The first
At the same time, the exhaust gas from the second reduction furnace is transferred to the first reduction furnace.
CaO is supplied to the lower part of the reduction furnace to form a fluidized bed, and the carbonated lime is heated and regenerated inside the fluidized bed of the first reduction furnace.
A method for producing reduced iron, characterized in that iron ore is used as pre-reduced iron, and particles containing CaO as a main component are circulated together with the pre-reduced iron to a second reduction furnace for use. 2 In a method in which iron ore is pre-reduced in a first reduction furnace and reduced to metallic iron in a second reduction furnace, the pre-reduced iron from the first reduction furnace is supplied to the second reduction furnace together with particles whose main component is CaO. Then, coal is supplied to the second reduction furnace, and at the same time, oxygen or oxygen/steam is supplied from the lower part of the second reduction furnace to form a fluidized bed, and the carbonation reaction of CaO is carried out inside the fluidized bed of the second reduction furnace. In addition to replenishing the thermal energy necessary for reducing the pre-reduced iron and gasifying coal, the pre-reduced iron is reduced to metallic iron, while a part of the fluid medium is extracted and the reduced iron and carbonated After separating the carbonated lime, char, and coal ash into those whose main components are carbonated lime, char, and coal ash, the carbonated lime, char, and coal ash are charged into the first reduction furnace, and at the same time into the second reduction furnace. The exhaust gas is supplied to the lower part of the first reduction furnace to form a fluidized bed, and the carbonated lime inside the fluidized bed of the first reduction furnace is heated and regenerated into CaO, and the iron ore is pre-reduced. A method for producing reduced iron, characterized in that particles containing iron and CaO as a main component are circulated and used in a second reduction furnace together with preliminary reduced iron.
JP7983386A 1986-04-07 1986-04-07 Production of reduced iron Pending JPS62238310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7983386A JPS62238310A (en) 1986-04-07 1986-04-07 Production of reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7983386A JPS62238310A (en) 1986-04-07 1986-04-07 Production of reduced iron

Publications (1)

Publication Number Publication Date
JPS62238310A true JPS62238310A (en) 1987-10-19

Family

ID=13701209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7983386A Pending JPS62238310A (en) 1986-04-07 1986-04-07 Production of reduced iron

Country Status (1)

Country Link
JP (1) JPS62238310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326364A1 (en) * 2010-06-08 2012-12-27 C.V.G. Ferrominera Orinoco C.A. Process and equipment for the production of direct reduced iron and/or pig iron from iron ores having a high-phosphorus content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326364A1 (en) * 2010-06-08 2012-12-27 C.V.G. Ferrominera Orinoco C.A. Process and equipment for the production of direct reduced iron and/or pig iron from iron ores having a high-phosphorus content
US8673208B2 (en) * 2010-06-08 2014-03-18 C.V.G. Ferrominera Orinoco C.A. Process and equipment for the production of direct reduced iron and/or pig iron from iron ores having a high-phosphorus content

Similar Documents

Publication Publication Date Title
US5603748A (en) Process and apparatus for a direct reduction of iron oxide containing materials to form Fe3 C
US5064467A (en) Method and apparatus for the direct reduction of iron
US5674308A (en) Spouted bed circulating fluidized bed direct reduction system and method
JPH03503659A (en) Method and apparatus for reducing materials containing metal oxides
CN1045127A (en) The improvement of pre-reduced iron oxide
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
US5433767A (en) Direct reduction of iron oxide materials with solid carbonaceous reducing agents
JPS5838789A (en) Synthetic gas manufacture and manufacturing apparatus
US4094665A (en) Method for simultaneous combined production of electrical energy and crude iron
JPS61130412A (en) Production of iron melting substance and plant therefor
CN109680114B (en) System and method for gasifying pulverized coal and reducing iron ore in cooperation
JP2004518020A (en) Method and apparatus for producing pig iron or fluid primary iron from a charge containing iron ore
US2928730A (en) Iron ore reduction process
US3135598A (en) Rapid direct reduction method of iron oxide
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
US2919983A (en) Iron ore reduction process
US3364011A (en) Process for the production of iron by the direct reduction of iron oxide ore
JPS62238310A (en) Production of reduced iron
CN1046962C (en) Process for producing liquid raw iron or liquid steel base products and sponge iron and plant for implementing it
US4098604A (en) Method for reduction in a fluid bed of fine grained material containing iron oxide
US2692050A (en) Partial reduction of iron ore
CN1118009A (en) Method for production of sponge iron by using gas-making shaft furnace method of coal-base melting bed
US4330430A (en) Method for producing and regenerating a synthetic CO2 acceptor
US3019100A (en) Integrated process of ore reduction and gas generation
US3022156A (en) Process for reduction of iron orew