JPS62237460A - Preparation of electrophotographic sensitive body - Google Patents

Preparation of electrophotographic sensitive body

Info

Publication number
JPS62237460A
JPS62237460A JP8167486A JP8167486A JPS62237460A JP S62237460 A JPS62237460 A JP S62237460A JP 8167486 A JP8167486 A JP 8167486A JP 8167486 A JP8167486 A JP 8167486A JP S62237460 A JPS62237460 A JP S62237460A
Authority
JP
Japan
Prior art keywords
substrate
glow discharge
vacuum
gas
gaseous mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8167486A
Other languages
Japanese (ja)
Inventor
Masahide Takano
正秀 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8167486A priority Critical patent/JPS62237460A/en
Publication of JPS62237460A publication Critical patent/JPS62237460A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce defects and to improve adhesion of a photoconductive layer to a substrate by using an Al substrate as a negative electrode, subjecting the substrate to glow discharge in the atmosphere of a gaseous mixture consisting of inert gas and oxygen, then adhering the photoconductive layer successively to the surface of the substrate by vacuum deposition. CONSTITUTION:After evacuating the inside of a vacuum layer 1 through an exhaust value 6, a specified amt. of gaseous mixture is introduced into the vacuum vessel 1 by flowing out each gas adjusting the flow rate of each gas from each gas bomb 10 by means of each bomb valve 9 to a specified mixing ration and mixing both gases and adjusting further the flow rate with a flow rate control valve 8. The pressure of the gaseous mixture in the vacuum layer 1 is adjusted to a specified pressure using an exhaust valve 6, and glow discharge is generated by applying a high electric voltage between a substrate 3, e.g., the revolving and rotating negative electrode and a positive electrode 5. After proceeding the glow discharge for a specified time, the introduction of the gaseous mixture is stopped and the inside of the vacuum vessel 1 is evacuated through an exhaust valve 6. Then, Se is vacuum-deposited on the surface of the sub strate by heating an evaporating source 11 to obtain thus a photographic sensitive body.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、アルミニウムまたはその合金からなる基体上
に、例えばセレンまたはその合金からなる光導電層を真
空蒸着する電子写真用感光体の製造方法に関し、詳しく
は基体の表面処理に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing an electrophotographic photoreceptor, in which a photoconductive layer made of, for example, selenium or an alloy thereof is vacuum-deposited on a substrate made of aluminum or an alloy thereof. In particular, it relates to surface treatment of a substrate.

〔従来技術とその問題点〕[Prior art and its problems]

そのような電子写真用感光体く以下単に感光体とも称す
る)の製造において、真空蒸着される基体の表面には光
導電層の性質、すなわち感光体の特性に影響をおよぼす
ような異物の付着、汚染の無いこと、また、基体と光導
電層との密着性が十分に高いことが必要である。そのた
め基体には、表面を研削加工後粗面化加工が施され、さ
らに一連の表面清浄化処理が施される。一般的な表面清
浄化処理としては、脱脂、エツチング、水洗および乾燥
の工程を含んでいる。このような清浄化工程を経た基体
は、次に真空蒸着槽内に移送され、その上に光導電層が
真空蒸着されて感光体となる。
In the production of such electrophotographic photoreceptors (hereinafter also simply referred to as photoreceptors), the surface of the substrate to be vacuum-deposited is subject to adhesion of foreign matter that may affect the properties of the photoconductive layer, that is, the characteristics of the photoreceptor. It is necessary that there is no contamination and that the adhesion between the substrate and the photoconductive layer is sufficiently high. For this reason, the surface of the base body is subjected to a surface roughening process after being ground, and is further subjected to a series of surface cleaning processes. Common surface cleaning treatments include degreasing, etching, rinsing, and drying steps. The substrate that has undergone such a cleaning process is then transferred into a vacuum deposition tank, and a photoconductive layer is vacuum deposited thereon to form a photoreceptor.

しかし、このような感光体の製造方法にはいくつかの問
題点がある。第一に基体の清浄化処理が湿式であるため
じみが残るなど微細な残留汚れがあること、第二に基体
の移送中に周囲の水やガスの吸着、はこり、塵埃などの
付着により表面が汚染され易いことなどがある。このよ
うに基体表面が汚染されたままで真空蒸着が行われると
、基体と光導電層としての蒸着膜の密着性が悪くなり、
膜の剥離が生じやすくなる。また、吸着水や吸着ガスの
蒸着時の脱離により膜質に乱れが生じ、さらに異物とそ
のまわりには蒸発物がはじかれて基体と蒸着膜との界面
に空洞が生じたり、異物のために蒸着膜に凹凸状の欠陥
が生じたりして、感光体の画像特性に悪影響をおよぼす
However, there are several problems with this method of manufacturing a photoreceptor. Firstly, because the substrate is cleaned using a wet method, there may be minute residual stains such as stains.Secondly, during the transfer of the substrate, there may be adsorption of surrounding water or gas, or the adhesion of flakes or dust to the surface. may be easily contaminated. If vacuum evaporation is performed with the substrate surface contaminated in this way, the adhesion between the substrate and the deposited film as a photoconductive layer will deteriorate.
Peeling of the film is likely to occur. In addition, the film quality is disturbed due to desorption of adsorbed water and adsorbed gas during vapor deposition, and furthermore, foreign matter and the evaporated matter around it are repelled, creating cavities at the interface between the substrate and the deposited film. Uneven defects may occur in the deposited film, which adversely affects the image characteristics of the photoreceptor.

このような問題点を解決するために、基体を真空槽内に
配置して光導電層の蒸着を行う直前に、基体を陰極とし
たグロー放電を行うことにより基体表面を清浄化す方法
が知られている。この方法によると、前述の方法に比べ
て微細な残留汚れや異物の除去能力が大きく、吸着水や
吸着ガスも放出され、しかもすぐ続いて蒸着が行われる
ので基体表面が再汚染されることもほとんどなく有利で
あるが、この方法では残留汚れや異物の除去効率が悪く
清浄化処理に長時間要すること、また、蒸着膜の基体へ
の密着性が十分に向上しないという欠点がある。
In order to solve these problems, a method is known in which the substrate surface is cleaned by performing glow discharge using the substrate as a cathode immediately before placing the substrate in a vacuum chamber and depositing a photoconductive layer. ing. This method has a greater ability to remove fine residual dirt and foreign matter than the above-mentioned method, and also releases adsorbed water and adsorbed gas.Moreover, since vapor deposition immediately follows, there is no risk of re-contamination of the substrate surface. Although this method is advantageous because it has almost no residual dirt or foreign matter, it has disadvantages in that the removal efficiency of residual dirt and foreign matter is poor, and the cleaning process takes a long time, and the adhesion of the deposited film to the substrate is not sufficiently improved.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点を除き、基体表面の残留汚れや異
物を効率良く除去して欠陥の少ない光導電層を形成する
ことができ、かつ、基体と光導電層との密着性の優れた
電子写真用感光体の製造方法を提供することを目的とす
る。
The present invention eliminates the above-mentioned drawbacks, can efficiently remove residual dirt and foreign matter on the surface of a substrate, form a photoconductive layer with few defects, and has excellent adhesion between the substrate and the photoconductive layer. An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor.

〔発明の要点〕[Key points of the invention]

本発明の目的は、真空槽内を真空に排気し、次いで槽内
に不活性ガスと酸素との混合ガスを導入し、所定のガス
圧とガス流量で流しつつ、槽内に配置されたアルミニウ
ムまたはその合金からなる基体を陰極とし、対向配置さ
れた陽極との間でグロー放電を発生させて所定時間継続
させた後、槽内を真空に排気し、槽内に設置された蒸発
源を加熱して前記基体表面に光導電層を真空蒸着するこ
とによって達成される。
The object of the present invention is to evacuate the inside of the vacuum chamber, then introduce a mixed gas of inert gas and oxygen into the chamber, and while flowing it at a predetermined gas pressure and gas flow rate, Alternatively, a substrate made of the alloy is used as a cathode, and after generating a glow discharge between it and an anode placed opposite to each other for a predetermined period of time, the inside of the tank is evacuated to a vacuum, and the evaporation source installed inside the tank is heated. This is achieved by vacuum depositing a photoconductive layer on the surface of the substrate.

不活性ガスとしてはアルゴン(^r)を用いると好適で
ある。また、グロー放電は1. OX 10−’Tor
rから2Torr、望ましくはO,1Torrから0.
7Torrの圧力範囲のガス雰囲気中で行われ、印加電
圧は200■〜600■の範囲にあると有効である。
Argon (^r) is preferably used as the inert gas. Also, glow discharge is 1. OX 10-'Tor
r to 2 Torr, preferably O, 1 Torr to 0.
The test is carried out in a gas atmosphere with a pressure range of 7 Torr, and it is effective that the applied voltage is in the range of 200 to 600 μ.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の製造方法を実施できる真空蒸着槽の一
例の概念的構成図である。
FIG. 1 is a conceptual diagram of an example of a vacuum deposition tank in which the manufacturing method of the present invention can be practiced.

第1図において、複数個の円筒状アルミニウムの基体3
は真空槽l内に設けられた複数個の支持軸2(図では6
個の場合が例示されている)に嵌着されており、支持軸
2は中心軸のまわりに矢印Bのように回転する回転板4
に中心軸と同心円周上に等間隔に取りつけられており、
かつ、それぞれ矢印Aのように回転し得る。従って、基
体3は支持軸2に嵌着された状態で矢印Aのように自転
しながら全体として矢印Bのように公転することになる
。陽極5は支持軸群の公転軌道から所定の間隔をおいて
回転板4の中心軸に平行に配置されており、この陽極5
と支持軸2従って基体3との間に高圧電源7が接続され
ている。真空槽1は排気バルブ6を介して排気装置(図
示はしてない)に連結されている。ガスボンベ10がそ
れぞれのボンベバルブ9と流量調節バルブ8を経て真空
槽lに連結されている。11は蒸着材料例えばセレンを
充填された蒸発源である。
In FIG. 1, a plurality of cylindrical aluminum substrates 3
is a plurality of support shafts 2 (6 in the figure) provided in the vacuum chamber l.
), and the support shaft 2 is a rotary plate 4 that rotates around the central axis in the direction of arrow B.
are mounted at equal intervals on a circumference concentric with the central axis,
Moreover, they can each rotate as shown by arrow A. Therefore, while the base body 3 is fitted onto the support shaft 2, it rotates on its own axis as shown by arrow A and revolves as shown by arrow B as a whole. The anode 5 is arranged parallel to the central axis of the rotating plate 4 at a predetermined distance from the orbit of the support shaft group.
A high voltage power source 7 is connected between the support shaft 2 and the base 3. The vacuum chamber 1 is connected to an exhaust device (not shown) via an exhaust valve 6. Gas cylinders 10 are connected to a vacuum chamber l via respective cylinder valves 9 and flow control valves 8. Reference numeral 11 denotes an evaporation source filled with evaporation material such as selenium.

排気バルブ6を介して真空槽1内を真空に排気し、次い
でガスボンベ10からそれぞれのガスを所定のガス混合
比になるようにそれぞれのボンベバルブ9で調整して流
出させ混合させて流量調節バルブ8で流量を調節して所
定量の混合ガスを真空槽l内に導入する。排気バルブ6
で調整して真空槽1内の混合ガス圧を所定圧にし、自公
転している陰極としての基体3と陽極5との間に高圧電
源7より高電圧を印加してグロー放電を発生させる。
The inside of the vacuum chamber 1 is evacuated through the exhaust valve 6, and then the respective gases from the gas cylinders 10 are adjusted with the respective cylinder valves 9 so as to have a predetermined gas mixture ratio, and the gases are flowed out and mixed, and then the flow rate adjustment valve is operated. At step 8, the flow rate is adjusted to introduce a predetermined amount of the mixed gas into the vacuum chamber l. Exhaust valve 6
The pressure of the mixed gas in the vacuum chamber 1 is adjusted to a predetermined pressure, and a high voltage is applied from a high voltage power source 7 between the base body 3 as a cathode and the anode 5 which are rotating and rotating to generate a glow discharge.

所定時間グロー放電を行った後、混合ガスの導入を中止
し、真空槽l内を排気バルブ6を介して真空にし蒸発源
11を加熱してセレンを基体3の表面に真空蒸着して感
光体とする。
After performing glow discharge for a predetermined period of time, the introduction of the mixed gas is stopped, the inside of the vacuum chamber 1 is evacuated via the exhaust valve 6, the evaporation source 11 is heated, and selenium is vacuum evaporated onto the surface of the substrate 3 to form a photoreceptor. shall be.

以下、具体的な実施例について説明する。Specific examples will be described below.

実施例1゜ アルミニウムからなる基体の表面に指紋を付着させ、雰
囲気を次のように変えてグロー放電処理を行った。
Example 1 Fingerprints were attached to the surface of a substrate made of aluminum, and a glow discharge treatment was performed under the following atmosphere.

雰囲気■ アルゴン(Ar)と酸素(口2)を容量比で
3:1に混合したガス。
Atmosphere ■ A gas containing argon (Ar) and oxygen (port 2) mixed at a volume ratio of 3:1.

雰囲気■ Arと0□を容量比で1:3に混合したガス
Atmosphere ■ A gas containing Ar and 0□ mixed in a volume ratio of 1:3.

雰囲気■ 窒素(N、)と酸素(02)を容量比で3=
1に混合したガス。
Atmosphere■ Nitrogen (N, ) and oxygen (02) in a volume ratio of 3=
Gas mixed with 1.

雰囲気IV  N、と0.を容量比で1:3に混合した
ガス。
Atmosphere IV N, and 0. Gas mixed in a volume ratio of 1:3.

電極間距離は5 cmとし、放電電流は0.5A一定と
し、ガス圧はQ、 5Torrとした。これらの雰囲気
中でそれぞれ15分間のグロー放電処理を行った後、指
紋付着部を金属顕微鏡で観察した。その結果、雰囲気■
においては指紋が完全に除去されていたが、他の三つの
雰囲気においては除去されきっていなかった。Arと0
2との容量混合比3:1近辺の混合ガス雰囲気でのグロ
ー放電処理が異物の除去性能が最良であることが判る。
The distance between the electrodes was 5 cm, the discharge current was constant at 0.5 A, and the gas pressure was Q, 5 Torr. After glow discharge treatment was performed for 15 minutes in each of these atmospheres, the fingerprint-attached area was observed using a metallurgical microscope. As a result, the atmosphere
Fingerprints were completely removed in the three atmospheres, but were not completely removed in the other three atmospheres. Ar and 0
It can be seen that glow discharge treatment in a mixed gas atmosphere with a capacity mixing ratio of around 3:1 with 2:1 has the best foreign material removal performance.

実施例2゜ アルミニウムからなる基体の表面に機械油を付着させ、
実施例1に準じてグロー放電処理を行い、その後、油付
着部を同じく金属顕微鏡で観察した。
Example 2 Machine oil was applied to the surface of a base made of aluminum,
Glow discharge treatment was performed according to Example 1, and then the oil-attached portion was similarly observed using a metallurgical microscope.

その結果、雰囲気■においては油が完全には除去されな
かったが、その他の三つの雰囲気でのグローX電処理で
は油を完全に除去することができた。
As a result, oil was not completely removed in atmosphere ①, but oil could be completely removed in glow-X electric treatment in the other three atmospheres.

実施例3゜ 雰囲気を実施例1の雰囲気■とし、実施例1と同一条件
すなわちガス圧0.5Torr 、放電電流0.5Aで
アルミニウム基体にグロー放電処理を15分間施し、そ
の後、引き続いて槽内を2 X 10−’Torr以上
の高真空にして基体表面にセレンを真空蒸着し膜厚約1
μmの、蒸着膜を形成し試料1とした。同様にして、雰
囲気を実施例1の雰囲気■、m、rvと変えて同一条件
でグロー放電処理、セレン蒸着を行い試料2,3.4を
作製した。また、比較のために、雰囲気を単に0.5T
orrの真空にしてガスを導入せずに空気中でグロー放
電を行ったもの、および、グロー放電処理を行わなかっ
たものも同様にセレン蒸着を行い比較試料1,2とした
。これらについてセレン蒸着膜と基体との密着性を粘着
テープによる剥離テストで調査した。その結果を第1表
に示す。
Example 3゜The atmosphere was changed to atmosphere ① of Example 1, and glow discharge treatment was applied to the aluminum substrate for 15 minutes under the same conditions as Example 1, that is, gas pressure of 0.5 Torr and discharge current of 0.5 A, and then the aluminum substrate was subsequently treated in the tank. Selenium is vacuum evaporated onto the substrate surface under a high vacuum of 2 x 10-'Torr or more to a film thickness of approximately 1
A vapor-deposited film having a thickness of μm was formed and designated as Sample 1. Similarly, Samples 2 and 3.4 were prepared by performing glow discharge treatment and selenium vapor deposition under the same conditions except that the atmosphere was changed to atmospheres (1), (m), and (rv) of Example 1. Also, for comparison, the atmosphere was simply set to 0.5T.
Comparative samples 1 and 2 were obtained by similarly performing selenium vapor deposition on those in which glow discharge was performed in the air without introducing a gas under a vacuum of orr, and those in which no glow discharge treatment was performed. The adhesion between the selenium-deposited film and the substrate was investigated using a peel test using adhesive tape. The results are shown in Table 1.

第  1  表 表中ABCDEは密着性の程度を示し、Aは密着性が非
常に強かったことを示し、Eは密着性が弱かったことを
示す。
In Table 1, ABCDE indicates the degree of adhesion, A indicates that the adhesion was very strong, and E indicates that the adhesion was weak.

第1表より酸素の多い雰囲気でのグロー放電処理により
密着性が大幅に向上することが判る。
It can be seen from Table 1 that the adhesiveness is significantly improved by glow discharge treatment in an oxygen-rich atmosphere.

実施例4゜ 次に、アルミニウム基体の表面に油1.指紋、はこりを
付着させ、Ar+Q2(容量比3:1)の雰囲気。
Example 4 Next, oil 1. Atmosphere of Ar+Q2 (capacitance ratio 3:1) with fingerprints and chips attached.

ガス圧0.5Torr 、放電電流0.5Aで15分間
のグロー放電処理を施した後、空気を入れることなしに
雰囲気を2 X 10−’Torr以上の真空にして、
基体表面にセレンを膜厚約55μmに真空蒸着して感光
体とした。また、比較のためにグロー放電処理だけを行
わず、その他は同様にして比較例の感光体を作製した。
After performing glow discharge treatment for 15 minutes at a gas pressure of 0.5 Torr and a discharge current of 0.5 A, the atmosphere was made into a vacuum of 2 x 10-'Torr or more without introducing air.
A photoreceptor was prepared by vacuum-depositing selenium on the surface of the substrate to a thickness of about 55 μm. Further, for comparison, a photoconductor of a comparative example was produced in the same manner except that the glow discharge treatment was not performed.

これらの感光体について、乾式普通紙複写機により画像
出しを行ったところ、実施例の感光体においては油、指
紋、はこりによる画像不良はまったく現れなかったのに
対し、比較例の感光体においては、油付着の部分は全面
画像不良となり、指紋、はこりによる画像不良も発生し
た。八「+0□雰囲気中でのグロー放電により基体表面
の異物、汚染が除去され、その結果、感光体の画像特性
が向上したことは明らかである。
When these photoconductors were imaged using a dry-type plain paper copying machine, no image defects due to oil, fingerprints, or dust appeared on the photoconductors of the examples, whereas no image defects appeared on the photoconductors of the comparative examples. In this case, the entire image was defective in areas with oil adhesion, and image defects due to fingerprints and smudges also occurred. It is clear that foreign matter and contamination on the surface of the substrate were removed by glow discharge in an atmosphere of 8"+0□, and as a result, the image characteristics of the photoreceptor were improved.

本実施例にふいては、グロー放電処理の条件として、ガ
ス圧0.5Torrとしたが1. OX 1O−2To
rrから27’orrの範囲のガス圧において実施例と
同じような効果が得られ、特に0.1Torrから0.
7Torrの圧力範囲が放電も安定していて好適であっ
た。また、印加電圧についても200■〜600■の範
囲で安定した放電が得られて有効であった。グロー放電
の電極間距離は3cI11から10cmの範囲が適して
いた。
In this example, the gas pressure was set to 0.5 Torr as the condition for the glow discharge treatment. OX 1O-2To
Effects similar to those of the example are obtained at gas pressures in the range of 27'torr to 27'orr, especially at gas pressures in the range of 0.1Torr to 0.1Torr.
The pressure range of 7 Torr was suitable because the discharge was stable. Furthermore, stable discharge was obtained within the applied voltage range of 200 to 600 .ANG., which was effective. A suitable distance between the electrodes for glow discharge was in the range of 3cI11 to 10cm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アルミニウム基体を陰極とし、不活性
ガスと酸素との混合ガス雰囲気中でグロー放電処理を行
った後、引き続いて基体表面に光導電層を真空蒸着して
感光体とする。不活性ガスと酸素との混合ガスの雰囲気
とすることにより、基体表面からの異物、汚染の除去が
非常に効率良く行われるようになり、しかも、基体と蒸
着膜の密着性も飛躍的に向上し、表面欠陥の極めて少な
い。
According to the present invention, an aluminum substrate is used as a cathode, and after a glow discharge treatment is performed in an atmosphere of a mixed gas of an inert gas and oxygen, a photoconductive layer is subsequently vacuum-deposited on the surface of the substrate to obtain a photoreceptor. By creating an atmosphere of a mixed gas of inert gas and oxygen, foreign matter and contamination from the substrate surface can be removed very efficiently, and the adhesion between the substrate and the deposited film has also been dramatically improved. However, there are very few surface defects.

基体からの剥離が生じない光導電層を有する、優れた画
像特性の感光体が得られる。
A photoreceptor having excellent image properties and having a photoconductive layer that does not peel off from the substrate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の!81!造方法を実施できる真空蒸着
装置の一例の概念的構成図である。 1 真空槽、2 支持軸、3 基体、5 陽極、7 高
圧電源、8 流量調節バルブ、9・ ボンベバルブ、1
0  ガスボンベ、11  蒸発源。
Figure 1 shows the features of the present invention! 81! 1 is a conceptual configuration diagram of an example of a vacuum evaporation apparatus that can carry out the manufacturing method. 1 Vacuum chamber, 2 Support shaft, 3 Base, 5 Anode, 7 High voltage power supply, 8 Flow rate adjustment valve, 9. Cylinder valve, 1
0 gas cylinder, 11 evaporation source.

Claims (1)

【特許請求の範囲】 1)真空槽内を真空に排気し、次いで該真空槽内に不活
性ガスと酸素との混合ガスを導入し、所定のガス圧とガ
ス流量で流しつつ、前記真空槽内に配置されたアルミニ
ウムまたはアルミニウム合金からなる基体を陰極とし、
対向配置された陽極との間でグロー放電を発生させて所
定時間継続させた後、前記真空槽内を真空に排気し、該
真空槽内に設置された蒸発源を加熱して前記基体表面に
光導電層を真空蒸着することを特徴とする電子写真用感
光体の製造方法。 2)特許請求の範囲第1項記載の方法において、不活性
ガスがアルゴン(Ar)であることを特徴とする電子写
真用感光体の製造方法。 3)特許請求の範囲第1項記載の方法において、グロー
放電を1.0×10^−^2Torrから2Torrの
圧力範囲において発生させることを特徴とする電子写真
用感光体の製造方法。 4)特許請求の範囲第1項記載の方法において、グロー
放電を0.1Torrから0.7Torrの圧力範囲に
おいて発生させることを特徴とする電子写真用感光体の
製造方法。 5)特許請求の範囲第1項記載の方法において、グロー
放電のために陽極と陰極間に200V〜600Vの範囲
の電圧を印加することを特徴とする電子写真用感光体の
製造方法。
[Claims] 1) The inside of the vacuum chamber is evacuated, and then a mixed gas of inert gas and oxygen is introduced into the vacuum chamber, and while flowing at a predetermined gas pressure and gas flow rate, the vacuum chamber is evacuated. A substrate made of aluminum or aluminum alloy disposed inside is used as a cathode,
After generating a glow discharge between the anodes disposed opposite each other and continuing for a predetermined time, the vacuum chamber is evacuated, and an evaporation source installed in the vacuum chamber is heated to cause a glow discharge to occur on the surface of the substrate. A method for producing an electrophotographic photoreceptor, which comprises vacuum-depositing a photoconductive layer. 2) A method for manufacturing an electrophotographic photoreceptor according to claim 1, wherein the inert gas is argon (Ar). 3) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that glow discharge is generated in a pressure range of 1.0 x 10^-^2 Torr to 2 Torr. 4) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that glow discharge is generated in a pressure range of 0.1 Torr to 0.7 Torr. 5) A method for producing an electrophotographic photoreceptor according to claim 1, characterized in that a voltage in the range of 200 V to 600 V is applied between the anode and the cathode for glow discharge.
JP8167486A 1986-04-09 1986-04-09 Preparation of electrophotographic sensitive body Pending JPS62237460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8167486A JPS62237460A (en) 1986-04-09 1986-04-09 Preparation of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8167486A JPS62237460A (en) 1986-04-09 1986-04-09 Preparation of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62237460A true JPS62237460A (en) 1987-10-17

Family

ID=13752894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8167486A Pending JPS62237460A (en) 1986-04-09 1986-04-09 Preparation of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62237460A (en)

Similar Documents

Publication Publication Date Title
EP0717127B1 (en) Plasma processing method and apparatus
JPS63301051A (en) Manufacture of photosensitive body
US20020029818A1 (en) Vacuum processing methods
JP3644556B2 (en) Deposition equipment
JPS62237460A (en) Preparation of electrophotographic sensitive body
JPS58202535A (en) Film forming device
JP4068817B2 (en) Method for producing diamond film and diamond film
JPH0542507B2 (en)
EP0674335B1 (en) Plasma processing method and plasma processing apparatus
JPH02228035A (en) Method and device for vacuum treatment
JPS62235465A (en) Production of electrophotographic sensitive body
JP2003201565A (en) Apparatus and method for forming deposit film
JP3374402B2 (en) Tape traveling roller and method of manufacturing the same
CN220166262U (en) Vacuum coating equipment
JP2765569B2 (en) Method for manufacturing semiconductor device
JPS61264350A (en) Electrophotographic sensitive body
JP3305654B2 (en) Plasma CVD apparatus and recording medium
JPH0277579A (en) Method for cleaning deposited film forming device
JPS62254158A (en) Production of electrophotographic sensitive body
JPS6119778A (en) Preparation of amorphous semiconductive membrane
JPH0360177B2 (en)
JPS61141144A (en) Cleaning structure in wafer processing device
JPH02166729A (en) Metal depositing method
JPS61189648A (en) Semiconductor device manufacturing equipment
JP3100888B2 (en) Vacuum deposition equipment