JPS6223744B2 - - Google Patents

Info

Publication number
JPS6223744B2
JPS6223744B2 JP54034021A JP3402179A JPS6223744B2 JP S6223744 B2 JPS6223744 B2 JP S6223744B2 JP 54034021 A JP54034021 A JP 54034021A JP 3402179 A JP3402179 A JP 3402179A JP S6223744 B2 JPS6223744 B2 JP S6223744B2
Authority
JP
Japan
Prior art keywords
reaction
ketone
ketazine
hydrazine sulfate
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54034021A
Other languages
Japanese (ja)
Other versions
JPS55127354A (en
Inventor
Tomya Itsushiki
Tetsuo Tomita
Mitsuo Abe
Yoshuki Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3402179A priority Critical patent/JPS55127354A/en
Publication of JPS55127354A publication Critical patent/JPS55127354A/en
Publication of JPS6223744B2 publication Critical patent/JPS6223744B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は中性硫酸ヒドラジンとケトンとを反応
させることによつて用いたケトンに対応するケタ
ジンの製造法であり、水により容易に加水分解で
きるケタジンを製造するものである。ケタジンは
加水分解することにより水加ヒドラジンが得られ
ることから、ヒドラジン製造の中間体として有用
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for producing ketazine corresponding to the ketone used by reacting neutral hydrazine sulfate with a ketone, which produces ketazine that can be easily hydrolyzed with water. be. Ketazine is useful as an intermediate for the production of hydrazine because hydrated hydrazine can be obtained by hydrolysis.

ケタジンの製造方法としては水加ヒドラジンと
ケトンとの反応、アンモニアと塩素又は次亜塩素
酸ナトリウムとケトンとの反応、およびアンモニ
アと過酸化水素とケトンとの反応が公知である
が、中性硫酸ヒドラジンとケトンとの反応による
方法は知られていない。しかもこの技術を達成す
ることにより、従来ベンゾフエノンアジン類は鉱
酸でしか加水分解できなかつたものを、結果的に
水だけで加水分解する技術を確立することにな
る。つまり、下記反応式(1)は例えばCompt
rend.169巻(1919)239頁,反応式(2)は例えば米
国特許第2870206号公報、反応式(3)は本願発明者
らの他の出願、反応式(4)は本出願にかかるもので
あり、反応式(5)は例えば特公昭50―25920号公報
であり、これらを組合わせることにより、アンモ
ニアと空気(実質は酸素)とから副生物を生ずる
ことなしに水加ヒドラジンの製造が行なえること
となり、工業的に極めて有用な技術であることが
明らかである。
Known methods for producing ketazine include the reaction between hydrated hydrazine and a ketone, the reaction between ammonia and chlorine or sodium hypochlorite and a ketone, and the reaction between ammonia, hydrogen peroxide and a ketone. A method based on the reaction of hydrazine and ketone is not known. Furthermore, by achieving this technology, we have established a technology that can hydrolyze benzophenoneazines, which could previously only be hydrolyzed using mineral acids, using only water. In other words, the reaction formula (1) below is, for example, Compt
rend. vol. 169 (1919) p. 239, Reaction formula (2) is from US Patent No. 2870206, Reaction formula (3) is from another application by the present inventors, Reaction formula (4) is related to the present application. The reaction formula (5) is, for example, in Japanese Patent Publication No. 50-25920, and by combining these, hydrazine hydrate can be produced from ammonia and air (actually oxygen) without producing by-products. It is clear that this technology is extremely useful industrially.

2(C6H52C=O+2NH3 →2(C6H52C=NH+2H2O …(1) 2(C6H52C=NH+1/2O2 →(C6H52C=N−N=C(C6H52+H2O …(2) (C6H52C=N−N =C(C6H52+N2H4・H2SO4+2H2O →2(C6H52C=O+(N2H42・H2SO4 …(3) 本発明者らは、上記のような目的達成のために
鋭意研究した結果、本発明を完成させるに至つ
た。
2(C 6 H 5 ) 2 C=O+2NH 3 →2(C 6 H 5 ) 2 C=NH+2H 2 O …(1) 2(C 6 H 5 ) 2 C=NH+1/2O 2 →(C 6 H 5 ) 2 C=N−N=C(C 6 H 5 ) 2 +H 2 O …(2) (C 6 H 5 ) 2 C=N−N =C(C 6 H 5 ) 2 +N 2 H 4・H 2 SO 4 +2H 2 O →2(C 6 H 5 ) 2 C=O+(N 2 H 4 ) 2・H 2 SO 4 …(3) The present inventors have completed the present invention as a result of intensive research to achieve the above objectives.

すなわち、本発明は中性硫酸ヒドラジンと一般
式R1−CO−R2(式中R1及びR2は同一でも異なつ
ていてもよく、それぞれ炭素数1〜6個の直鎖ア
ルキル基、炭素数3〜6個の分枝鎖アルキル基も
しくはシクロアルキル基、あるいはR1及びR2
一緒になつて炭素数3〜8の直鎖状もしくは分枝
鎖アルキレン基を形成したものを表わすか、また
は上記アルキル基もしくはアルキレン基の水素原
子が反応媒質中で安定な基で置換された置換アル
キル基もしくは置換アルキレン基を表わす。)で
表わされるケトンとを反応させて対応するケタジ
ンを製造することを特徴とするケタジンの製造
法。
That is, the present invention relates to neutral hydrazine sulfate and a linear alkyl group with the general formula R 1 -CO-R 2 (wherein R 1 and R 2 may be the same or different, each having 1 to 6 carbon atoms, Represents a branched alkyl group or cycloalkyl group having 3 to 6 carbon atoms, or a linear or branched alkylene group in which R 1 and R 2 are taken together to form a linear or branched alkylene group having 3 to 8 carbon atoms. , or a substituted alkyl group or substituted alkylene group in which the hydrogen atom of the alkyl group or alkylene group is substituted with a group that is stable in the reaction medium.) to produce the corresponding ketazine. A method for producing ketazine, characterized by:

前記に於て置換アルキル基もしくは置換アルキ
レン基の置換基すなわち反応媒質中で安定な基と
は例えば、クロロ,ブロモ,フルオロ,メトキ
シ,ヒドロキシ基などである。
In the above, the substituent of the substituted alkyl group or substituted alkylene group, that is, the group stable in the reaction medium, includes, for example, chloro, bromo, fluoro, methoxy, hydroxy group, and the like.

本発明にて使用され得るケトンを例示すれば、
アセトン,メチルエチルケトン,メチルプロピル
ケトン,ジエチルケトン,メチルイソプロピルケ
トン,メチルブチルケトン、メチルイソブチルケ
トン、シクロヘキサノン等である。
Examples of ketones that can be used in the present invention are:
These include acetone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclohexanone, and the like.

本発明におけるケトンの使用量は中性硫酸ヒド
ラジン1モルに対して任意のモル数を使用するこ
とが出来るが、一般には0.1〜100倍モル使用する
ことが好ましく、更に好ましくは1〜50倍モルで
ある。尚、使用量とは、反応系全体に存在させた
ケトンの合計量である。
The amount of ketone used in the present invention can be any number of moles per mole of neutral hydrazine sulfate, but it is generally preferred to use 0.1 to 100 times the mole, and more preferably 1 to 50 times the mole. It is. Note that the amount used is the total amount of ketone present in the entire reaction system.

本発明に於て中性硫酸ヒドラジンは固体状態に
てケトンと反応させてもよく、又水溶液の状態に
てケトンと反応させてもよい。水溶液の場合には
中性硫酸ヒドラジンの濃度は特に規定されない。
更にその系に無機塩類が存在してもよい。ここで
無機塩類とは例えば硫酸ヒドラジン、硫酸ナトリ
ウム、硫酸アンモニウム、硫酸アルミニウム、硫
酸マグネシウム、塩化ナトリウム、塩化カルシウ
ム、塩化リチウム、塩化カリウム、塩化アンモニ
ウム等であるが特にこれらに限定されるものでは
ない。尚、無機塩類が存在するとある種のケトン
又はケタジンの水に対する溶解度が減少し有機層
と水層の分離が容易になりやすい場合もある。
In the present invention, neutral hydrazine sulfate may be reacted with a ketone in a solid state, or may be reacted with a ketone in an aqueous solution state. In the case of an aqueous solution, the concentration of neutral hydrazine sulfate is not particularly defined.
Furthermore, inorganic salts may be present in the system. Here, the inorganic salts include, for example, hydrazine sulfate, sodium sulfate, ammonium sulfate, aluminum sulfate, magnesium sulfate, sodium chloride, calcium chloride, lithium chloride, potassium chloride, ammonium chloride, etc., but are not particularly limited to these. Note that the presence of inorganic salts may reduce the solubility of certain ketones or ketazine in water, making it easier to separate the organic layer and the aqueous layer.

本発明に於て中性硫酸ヒドラジンにケトンを作
用させる際に、ケトン及びケタジンを良く溶かし
水に対して難溶性の有機溶媒を使用してもよい。
ここで溶媒とは例えばペンタン、ヘキサン、ヘプ
タン、デカン、シクロヘキサン、シクロオクタ
ン、メチルシクロヘキサン、ベンゼン、トルエ
ン、キシレン、プレイドクメン、メシチレン、ジ
クロルメタン、クロロホルム、四塩化炭素、エチ
レンジクロリド、テトラクロルエチレン、クロロ
ベンゼン、ジイソプロピルエーテル、アニソール
等が挙げられる。尚、反応時には溶媒を使用せ
ず、反応終了後、溶媒を加えてももちろんよい。
In the present invention, when a ketone is allowed to act on neutral hydrazine sulfate, an organic solvent that is sparingly soluble in water may be used to dissolve the ketone and ketazine well.
Examples of solvents include pentane, hexane, heptane, decane, cyclohexane, cyclooctane, methylcyclohexane, benzene, toluene, xylene, plaidocumene, mesitylene, dichloromethane, chloroform, carbon tetrachloride, ethylene dichloride, tetrachloroethylene, chlorobenzene, Examples include diisopropyl ether and anisole. Incidentally, it is also possible, of course, to add the solvent after the reaction is completed without using a solvent during the reaction.

又、中性硫酸ヒドラジンとして本発明では前記
反応(3)に於いて単離したものをケトンに作用させ
る必要は必ずしもなく、ベンゾフエノンアジン類
を酸性硫酸ヒドラジンと水とより加水分解する際
に前記の本発明のケトンを存在させ生成した中性
硫酸ヒドラジンから直ちにケタジンを生成させる
ような場合も含んでいる。
In addition, in the present invention, it is not necessary to use the neutral hydrazine sulfate isolated in the reaction (3) above to act on the ketone. This also includes cases where ketazine is immediately produced from neutral hydrazine sulfate produced in the presence of the ketone of the present invention.

反応温度は、通常は0〜150℃の範囲が好まし
く、更に好ましくは20〜100℃の範囲である。
尚、高温側で行なう場合には加圧にすることが望
ましいこともある。
The reaction temperature is usually preferably in the range of 0 to 150°C, more preferably in the range of 20 to 100°C.
In addition, when carrying out the process at a high temperature, it may be desirable to apply pressure.

反応時間は、反応系のケトンの種類、ケトン及
び中性硫酸ヒドラジンの組成、反応温度、操作方
法などにより異なるが、通常1分〜10時間の範囲
であり適宜選択すればよい。
The reaction time varies depending on the type of ketone in the reaction system, the composition of the ketone and neutral hydrazine sulfate, the reaction temperature, the operating method, etc., but is usually in the range of 1 minute to 10 hours and may be selected as appropriate.

以上のようにして本発明は実施されるが、具体
的な操作方法との関連で好ましい方法の例をさら
に説明する。
Although the present invention is carried out as described above, examples of preferred methods will be further explained in relation to specific operating methods.

回分操作の場合には、反応槽に中性硫酸ヒドラ
ジン水溶液とケトン及び溶媒とを組成比が好まし
い範囲となるようにして仕込み、温度0〜100℃
で撹拌しながら1〜240分間反応させる。反応終
了後の液は、たゞちに有機層と水層とに相分離す
るものであり、相分離した水層中には温度が低い
時には生成酸性硫酸ヒドラジンが析出する。中性
硫酸ヒドラジンの反応率は例えば、有機層のケタ
ジンを定量するか又は水層のヒドラジン含量より
求めることが出来る。水層は前記反応式(3)の反応
に繰返し用いることが出来る。有機層はそのまゝ
又はケトンと溶媒を留去して公知方法にて加水分
解すれば水加ヒドラジンが得られる。
In the case of batch operation, a neutral hydrazine sulfate aqueous solution, a ketone, and a solvent are charged into a reaction tank so that the composition ratio is within a preferable range, and the temperature is 0 to 100°C.
Allow to react for 1 to 240 minutes while stirring. The liquid after the reaction is immediately phase-separated into an organic layer and an aqueous layer, and when the temperature is low, the produced acidic hydrazine sulfate is precipitated in the phase-separated aqueous layer. The reaction rate of neutral hydrazine sulfate can be determined, for example, by quantifying ketazine in the organic layer or from the hydrazine content in the aqueous layer. The aqueous layer can be used repeatedly in the reaction of reaction formula (3). Hydrazine hydrate can be obtained from the organic layer as it is or by distilling off the ketone and solvent and hydrolyzing it by a known method.

連続操作の場合は、回分反応装置や並流多段反
応装置、好ましくは向流多段反応装置を用いて反
応を行なう。例えば単一槽反応装置を用いた場合
は、反応開始時には回分操作によつて所定の反応
率に達した反応液を反応槽に仕込んでおくか、又
は中性硫酸ヒドラジン水溶液、ケトン溶液のみか
両者の混合物を仕込み、次いで溶液を0〜100℃
にして、中性硫酸ヒドラジン水溶液及びケトン溶
液をそれぞれポンプを用いて連続的に反応槽へ送
液する。送液量は中性硫酸ヒドラジンとケトンが
所定のモル比を保ち、且、所定の液滞留時間が得
られるように、流量の調節を行なう。1槽当りの
滞留時間が5〜240分間になるように流量を調節
する。反応液は抜き出され、水層と有機層とを分
離する。後の操作は回分操作の時と同様である。
In the case of continuous operation, the reaction is carried out using a batch reactor, a cocurrent multistage reactor, preferably a countercurrent multistage reactor. For example, when a single tank reactor is used, at the start of the reaction, the reaction solution that has reached a predetermined reaction rate is charged into the reaction tank by batch operation, or only the neutral hydrazine sulfate aqueous solution, ketone solution, or both. and then heat the solution to 0-100℃.
Then, the neutral hydrazine sulfate aqueous solution and the ketone solution are continuously fed to the reaction tank using pumps, respectively. The flow rate is adjusted so that a predetermined molar ratio of neutral hydrazine sulfate and ketone is maintained and a predetermined residence time is obtained. Adjust the flow rate so that the residence time per tank is 5 to 240 minutes. The reaction solution is extracted and separated into an aqueous layer and an organic layer. The subsequent operations are similar to those for batch operations.

以上のような操作によつて、通常数分〜数時間
で定常状態が達成され、それ以後は長期に安定運
転をすることが出来る。
By the above operations, a steady state is usually achieved within several minutes to several hours, and stable operation can be maintained for a long period of time thereafter.

抜き出された反応液は二層に分離し、分離状態
も極めて良い。反応液の処理は回分操作と同様に
して行なう。
The extracted reaction liquid was separated into two layers, and the separation state was very good. The reaction solution is treated in the same manner as in the batch operation.

以上のような本発明の方法は、定量的に反応が
出来、ケトンのアルドール縮合などの副反応も起
りにくく、且、ケトン、ケタジン、及び硫酸ヒド
ラジンの回収も極めて容易であり、実施にあたつ
ての操作ロスも極めて小さいものである。本発明
で得られるケタジンは加圧下、水だけで加水分解
され容易にヒドラジン水加物となる。
The method of the present invention as described above allows quantitative reaction, is less likely to cause side reactions such as aldol condensation of ketones, and is extremely easy to recover ketones, ketazine, and hydrazine sulfate. The operational loss is also extremely small. Ketazine obtained in the present invention is hydrolyzed only with water under pressure and easily becomes hydrazine hydrate.

以下、実施例により本発明を更に具体的に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 撹拌器、温度計、還流冷却器を備えた100mlの
四つ口フラスコに中性硫酸ヒドラジン5.0g
(0.0308モル)とメチルエチルケトン45.0g
(0.6240モル)を仕込み、還流温度(79℃)にて
5分間反応させた。反応終了後有機層についてガ
スクロマトグラフイーにてメチルエチルケトン及
びメチルエチルケタジンを定量してメチルエチル
ケタジンの収率を求めると中性硫酸ヒドラジン基
準にて80.0%であつた。又、水層のヒドラジンの
定量値からも同値であつた。
Example 1 5.0 g of neutral hydrazine sulfate in a 100 ml four-necked flask equipped with a stirrer, thermometer, and reflux condenser.
(0.0308 mol) and methyl ethyl ketone 45.0 g
(0.6240 mol) was charged and reacted for 5 minutes at reflux temperature (79°C). After the reaction was completed, methyl ethyl ketone and methyl ethyl ketazine were determined in the organic layer by gas chromatography to determine the yield of methyl ethyl ketazine, which was 80.0% based on neutral hydrazine sulfate. Moreover, the quantitative value of hydrazine in the aqueous layer also showed the same value.

比較例 1 酸性硫酸ヒドラジン5.0g(0.038モル)とメチ
ルエチルケトン45.0g(0.624モル)を実施例1
と同様の条件で反応させた。
Comparative Example 1 5.0 g (0.038 mol) of acidic hydrazine sulfate and 45.0 g (0.624 mol) of methyl ethyl ketone were added to Example 1.
The reaction was carried out under the same conditions.

メチルエチルケタジンの生成は痕跡にすぎなか
つた。
There was only trace formation of methyl ethyl ketazine.

実施例 2 実施例1と同様のフラスコに10.54%濃度の中
性硫酸ヒドラジン水溶液15.0g〔(N2H42
H2SO4 9.75ミリモル〕とメチルエチルケトン3.5
g(48.53ミリモル)とトルエン10.0gを仕込み
4℃と冷却しながら5分間反応させる。撹拌を止
ると直ちに二層に分離するので、有機層を分液す
るとメチルエチルケタジンが得られる。中性硫酸
ヒドラジン基準のケタジン収率は64.5%であつ
た。
Example 2 Into the same flask as in Example 1, 15.0 g of a 10.54% neutral hydrazine sulfate aqueous solution [(N 2 H 4 ) 2 .
H 2 SO 4 9.75 mmol] and methyl ethyl ketone 3.5
(48.53 mmol) and 10.0 g of toluene and reacted for 5 minutes while cooling to 4°C. As soon as stirring is stopped, the mixture separates into two layers, and when the organic layer is separated, methyl ethyl ketazine is obtained. The yield of ketazine was 64.5% based on neutral hydrazine sulfate.

実施例 3 実施例1と同様のフラスコに10.54%濃度の中
性硫酸ヒドラジン水溶液6.0g(3.90ミリモル)
とメチルエチルケトン14.1g(195.51ミリモル)
とトルエン40gを仕込み、室温(27℃)にて5分
間反応させた。撹拌を止めると直ちに二層に分離
するので有機層を分液しメチルエチルケタジンを
得た。中性硫酸ヒドラジン基準のケタジン収率は
98.5%であつた。
Example 3 Into the same flask as in Example 1, 6.0 g (3.90 mmol) of a 10.54% neutral hydrazine sulfate aqueous solution was added.
and methyl ethyl ketone 14.1 g (195.51 mmol)
and 40 g of toluene were charged and reacted for 5 minutes at room temperature (27°C). When stirring was stopped, the mixture immediately separated into two layers, so the organic layer was separated to obtain methyl ethyl ketazine. The yield of ketazine based on neutral hydrazine sulfate is
It was 98.5%.

実施例 4 実施例1と同様のフラスコに10.54%濃度の中
性硫酸ヒドラジン水溶液30.0g(9.75ミリモル)
とメチルイソブチルケトン9.8g(97.8ミリモ
ル)とキシレン20.0gを仕込み、還流温度(94
℃)にて2時間反応させた。撹拌を止めると直ち
に二層に分離するので、有機層を分液しメチルイ
ソブチルケタジンを得た。中性硫酸ヒドラジン基
準のケタジン収率は66.9%であつた。
Example 4 In a flask similar to Example 1, 30.0 g (9.75 mmol) of a 10.54% neutral hydrazine sulfate aqueous solution was added.
, 9.8 g (97.8 mmol) of methyl isobutyl ketone, and 20.0 g of xylene were prepared, and the mixture was heated to reflux temperature (94 mmol).
℃) for 2 hours. When the stirring was stopped, the mixture immediately separated into two layers, so the organic layer was separated to obtain methyl isobutyl ketazine. The yield of ketazine was 66.9% based on neutral hydrazine sulfate.

実施例 5 円筒形をした内容積1のガラス製容器と蓋と
からなるセパレート式の反応器を用いた。蓋の部
分にある口にそれぞれメチルエチルケトンのトル
エン溶液と中性硫酸ヒドラジン水溶液の送液ライ
ンを別の二つの口には冷却器と熱電対のさや管と
を取り付け、蓋の中心にある口からスターラーを
通して撹拌翼を挿入した。又、反応器の壁面に4
枚のテフロン製の邪魔板を取り付けて効果的に混
合が行なわれるようにした。反応器の底面に近い
部分に反応液の抜き口をもうけ、この抜き口から
ガラス管を挿入し、管の長さを調節する事によつ
て、反応器内の液滞留量を所定量に保つようにし
た。
Example 5 A separate reactor consisting of a cylindrical glass container with an internal volume of 1 and a lid was used. A liquid supply line for a toluene solution of methyl ethyl ketone and a neutral hydrazine sulfuric acid aqueous solution are attached to the opening in the lid, and a cooler and a thermocouple sheath tube are attached to the other two openings, and a stirrer is attached to the opening in the center of the lid. A stirring blade was inserted through the tube. Also, on the wall of the reactor,
Two Teflon baffles were installed to ensure effective mixing. A reaction liquid outlet is provided near the bottom of the reactor, a glass tube is inserted through this outlet, and the length of the tube is adjusted to maintain the amount of liquid retained in the reactor. I did it like that.

抜き出し口の挿入管の長さを調節して、液滞留
量が500mlになるようにしておいてから、メチル
エチルケトン25.9wt%、トルエン74.1wt%の組成
の溶液360gと濃度10.54wt%の中性硫酸ヒドラジ
ン水溶液80gを仕込み、室温(27℃)にて10分間
回分反応を行なつた後、全く同じ組成のメチルエ
チルケトンのトルエン溶液を342g/Hr、濃度
10.54wt%の中性硫酸ヒドラジン水溶液を94g/
Hrの流量でそれぞれプランジヤー式ポンプで供
給を開始した。
Adjust the length of the insertion tube at the extraction port so that the amount of liquid retained is 500ml, then add 360g of a solution with a composition of 25.9wt% methyl ethyl ketone and 74.1wt% toluene and neutral sulfuric acid with a concentration of 10.54wt%. After charging 80 g of hydrazine aqueous solution and carrying out a batch reaction for 10 minutes at room temperature (27°C), 342 g/Hr of a toluene solution of methyl ethyl ketone with the exact same composition was added.
94g/10.54wt% neutral hydrazine sulfate aqueous solution
Supply was started using a plunger pump at a flow rate of Hr.

オーバーフロー液は、分液槽にためて上層の有
機層はオーバーフローにて、下層の水層は一定時
間毎に底部のコツクを開いて各々抜き出すように
した。
The overflow liquid was stored in a separating tank, and the upper organic layer was extracted from the overflow, and the lower aqueous layer was extracted at regular intervals by opening the pot at the bottom.

約30分間後に定常状態に達してから、100時間
の連続反応を行ない、次の結果が得られた。反応
温度室温(27℃)、液の平均滞留時間1時間でメ
チルエチルケタジンは毎時7gの割合で得られ、
平均ケタジン収率は中性硫酸ヒドラジン基準で
81.0%であつた。
After reaching a steady state after about 30 minutes, continuous reaction was carried out for 100 hours, and the following results were obtained. Methyl ethyl ketazine was obtained at a rate of 7 g per hour at a reaction temperature of room temperature (27°C) and an average residence time of 1 hour.
Average ketazine yield is based on neutral hydrazine sulfate.
It was 81.0%.

得られたメチルエチルケタジン溶液を公知の加
水分解方法により加水分解したところ定量的に水
加ヒドラジンが得られた。又ヒドラジンの硫酸塩
水溶液はそのままベンゾフエノンアジンの加水分
解に用いうるものであつた。
When the obtained methyl ethyl ketazine solution was hydrolyzed by a known hydrolysis method, hydrated hydrazine was quantitatively obtained. In addition, the hydrazine sulfate aqueous solution could be used as it was for the hydrolysis of benzophenone azine.

実施例 6 実施例1と同様の反応フラスコにベンゾフエノ
ンアジン1.8g(0.005モル)とメチルエチルケト
ン18.1g(0.25モル)と酸性硫酸ヒドラジン1.3g
(0.01モル)と水9.0gとを仕込み、還流温度(74
℃)にて5時間作用させたところ、メチルエチル
ケタジンが収率20%で得られた。他の生成物とし
ては、GC―MSよりメチルエチルケトンベンゾフ
エノンアジンが同定された。
Example 6 In a reaction flask similar to Example 1, 1.8 g (0.005 mol) of benzophenone azine, 18.1 g (0.25 mol) of methyl ethyl ketone, and 1.3 g of acidic hydrazine sulfate were added.
(0.01 mol) and 9.0 g of water were prepared, and the reflux temperature (74
℃) for 5 hours, methyl ethyl ketazine was obtained in a yield of 20%. As another product, methyl ethyl ketone benzophenone azine was identified by GC-MS.

Claims (1)

【特許請求の範囲】 中性硫酸ヒドラジンと一般式R1−CO−R2 (式中、R1及びR2は同一でも異なつてもよ
く、それぞれ炭素数1〜6個の直鎖アルキル基、
炭素数3〜6個の分子鎖アルキルもしくはシクロ
アルキル基、あるいはR1およびR2が一緒になつ
て炭素数3〜8の直鎖状もしくは分枝鎖状アルキ
レン基を形成したものを表わすか、または上記ア
ルキル基もしくはアルキレン基の水素原子が反応
媒質中で安定な基で置換された置換アルキル基も
しくは置換アルキレン基を表わす。) で表わされるケトンとを反応させて対応するケタ
ジンを製造することを特徴とするケタジンの製造
法。
[Claims] Neutral hydrazine sulfate and general formula R 1 -CO-R 2 (wherein R 1 and R 2 may be the same or different, each having a straight chain alkyl group having 1 to 6 carbon atoms,
Represents a molecular chain alkyl or cycloalkyl group having 3 to 6 carbon atoms, or one in which R 1 and R 2 are taken together to form a linear or branched alkylene group having 3 to 8 carbon atoms; Alternatively, it represents a substituted alkyl group or substituted alkylene group in which the hydrogen atom of the alkyl group or alkylene group is substituted with a group that is stable in the reaction medium. ) A method for producing ketazine, which comprises reacting with a ketone represented by the formula to produce the corresponding ketazine.
JP3402179A 1979-03-23 1979-03-23 Preparation of ketazine Granted JPS55127354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3402179A JPS55127354A (en) 1979-03-23 1979-03-23 Preparation of ketazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3402179A JPS55127354A (en) 1979-03-23 1979-03-23 Preparation of ketazine

Publications (2)

Publication Number Publication Date
JPS55127354A JPS55127354A (en) 1980-10-02
JPS6223744B2 true JPS6223744B2 (en) 1987-05-25

Family

ID=12402719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3402179A Granted JPS55127354A (en) 1979-03-23 1979-03-23 Preparation of ketazine

Country Status (1)

Country Link
JP (1) JPS55127354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381523A (en) * 2017-09-07 2017-11-24 盐城顺恒化工有限公司 A kind of preparation method of hydrazine sulfate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030816A (en) * 1973-07-16 1975-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030816A (en) * 1973-07-16 1975-03-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381523A (en) * 2017-09-07 2017-11-24 盐城顺恒化工有限公司 A kind of preparation method of hydrazine sulfate

Also Published As

Publication number Publication date
JPS55127354A (en) 1980-10-02

Similar Documents

Publication Publication Date Title
JP4450881B2 (en) Process for producing 5,5'-bi-1H-tetrazole salt
US4922030A (en) Method of preparing halogenated nitroalcohols
JPS6223744B2 (en)
US4331820A (en) Cis-6-undecene-1-chloride and a method for the preparation thereof
JPS5851950B2 (en) Method for producing 2-hydrocarbylthioaldoxime
JPS6212211B2 (en)
US5043489A (en) Method of preparing monohalogenated nitroalkanes
US5393921A (en) Process for synthesizing O-substituted oxime compounds and conversion to the corresponding O-substituted hydroxylamine
JPS6312048B2 (en)
EP1399415B1 (en) Method for making 2,2,4,4-tetramethyl-3-pentanone oxime and hydroxylammonium salts
JP2004504287A (en) Method for producing bicyclic 1,3-diketone
EP0037588A1 (en) Method of preparing furfuryl alcohols
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JP2870707B2 (en) Method for producing 3-butenenitrile
US7122676B2 (en) Process for the preparation of 5,5′-bi-1H-tetrazolediammonium salts using hydrazine hydrate and dicyan as starting materials
US4508695A (en) Process for preparing hydrazines
SU1625866A1 (en) Method of producing 5-chloropentanoic acid
SU328573A1 (en) METHOD OF OBTAINING ASYMS
KR101090539B1 (en) - - method for the synthesis of exocyclic derivatives of cycloalkyl-hydrazines and exocyclic derivatives of heterocycloalkyl-hydrazines
JPH023648A (en) Production of oximes
US5292945A (en) Process for preparing α-chloro-α-oximino-4-hydroxyacetophenone
US20070185351A1 (en) Method for the continuous synthesis of monoalkyl-hydrazines with a functionalised alkyl group
JPS6030663B2 (en) Production method of tertiary alkyl hypohalite
SU212847A1 (en) METHOD FOR PRODUCING HYDRAZINE OR HYDRAZING HYDRATE,
JPH03291262A (en) Preparation of symmetrical azodinitriledicarboxylic acid from keto acid