JPS62237411A - Automatic focusing device - Google Patents
Automatic focusing deviceInfo
- Publication number
- JPS62237411A JPS62237411A JP8014886A JP8014886A JPS62237411A JP S62237411 A JPS62237411 A JP S62237411A JP 8014886 A JP8014886 A JP 8014886A JP 8014886 A JP8014886 A JP 8014886A JP S62237411 A JPS62237411 A JP S62237411A
- Authority
- JP
- Japan
- Prior art keywords
- light
- section
- integral value
- circuit
- integration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010354 integration Effects 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用外If)
本発明は、例えばカメラのアクティブ方式の自動合焦装
置に関し、特に、測距情報の誤差を取り除い念ものに関
する。DETAILED DESCRIPTION OF THE INVENTION (If not for industrial use) The present invention relates to, for example, an active type automatic focusing device for a camera, and particularly to a method for eliminating errors in distance measurement information.
(従来技術)
被写体に光を投射してその反射光を受光することによっ
て、被写体までの距離を決定するいわゆるアクティブ方
式の自動合焦装置においては、従来、特開昭57−44
809号や特開昭59−201007号のように、受光
光量が所定のレベルになるまで9分する積分回路を受光
素子の出力側に設け、これKよって光量不足を補い、精
度の良い距離ti[を得るようにしてい念が、積分回路
自体のオフセットずれや、ノイズ量によって測距結果は
影響を受けるので、誤測距を避けるためには高精度のオ
フセット調整を必要としていた。また、環境1度変化に
よる抵抗体等の物性変化によるオフセットの変化は避は
難いので、測距精度はこれらの変化を考慮に入れた程度
のものであり、従来のシステムはこの程度の精度で満足
せざるを得ないものであった口
この様なシステムの1例として、特開昭59−2010
07号において行われている同期検波方式を簡単に説明
する。第3図はこの同期検波方式のシステム図であり、
発光部LEDにより特定周波数で変調して発光された光
の被写体による反射光″!4:2分割素子で受光し、そ
の両端からの出力電流を電流−電圧変換器1.1′で電
圧に変換する。この信号を符号20.20’のカップリ
ング用コンデンサによって直流分をカットする。符号3
0.30′は交流増幅器で、これによって変調周波数付
近の成分を十分に増幅した後、次段の同期検波回路2.
2′に信号を供給する。同期噴液回路2.2′では、発
光部LEDの変調と同期してアナログスイッチ50.6
0.50’、60′を交互に切り換えることによって、
信号のマイナス成分を反転器40.40′で反転させて
同期検波を行っている。(Prior Art) In the so-called active type automatic focusing device that determines the distance to the subject by projecting light onto the subject and receiving the reflected light, there has been a conventional method disclosed in Japanese Patent Laid-Open No. 57-44.
As in No. 809 and JP-A No. 59-201007, an integrating circuit is provided on the output side of the light receiving element that divides the amount of received light into nine parts until it reaches a predetermined level. However, since the distance measurement results are affected by the offset deviation of the integrating circuit itself and the amount of noise, highly accurate offset adjustment is required to avoid erroneous distance measurements. In addition, it is difficult to avoid offset changes due to changes in the physical properties of resistors, etc. due to a 1 degree change in the environment, so the distance measurement accuracy only takes these changes into consideration, and conventional systems cannot achieve this level of accuracy. An example of such a system that had no choice but to be satisfied with is the Japanese Unexamined Patent Publication No. 59-2010.
The synchronous detection method used in No. 07 will be briefly explained. Figure 3 is a system diagram of this synchronous detection method.
The light emitted by the light emitting unit LED modulated at a specific frequency is reflected by the subject.''!The light is received by the 4:2 split element, and the output current from both ends is converted into voltage by the current-voltage converter 1.1'. The direct current component of this signal is cut by the coupling capacitor marked 20 and 20'.
0.30' is an AC amplifier, which sufficiently amplifies the components near the modulation frequency, and then transmits them to the next stage synchronous detection circuit 2.
2'. In the synchronous liquid injection circuit 2.2', the analog switch 50.6 is activated in synchronization with the modulation of the light emitting part LED.
By alternately switching between 0.50' and 60',
Negative components of the signal are inverted by inverters 40 and 40' to perform synchronous detection.
この様なシステムの問題点を説明する友めに、これを更
に説明すると、従来の赤外光を投射するアクティブ方式
の自動合焦装置においては、受光側で受けた反射光量を
受光素子の出力側に設けた積分回路を用いて積分し、そ
の積分時間を反射光量に応じて変化させることによって
、この反射光量を測定可能なレベルまで積分することを
行っていた。For those who want to explain the problems of such a system, to explain this further, in conventional active automatic focusing devices that project infrared light, the amount of reflected light received on the light receiving side is used as the output of the light receiving element. The amount of reflected light was integrated to a measurable level by integrating using an integrating circuit provided on the side and changing the integration time according to the amount of reflected light.
この様な従来の積分方式のシステム図を第4図に示す。A system diagram of such a conventional integral method is shown in FIG.
第4図において、投光レンズを介して投光系が発光した
特定周波数で変調した光の反射光を受光レンズを通して
受光素子で受け、符号1.1′のI −V変換回路で電
圧に変換し、符号2.2の検波回路で上記特定周波数に
同期して同期検波を行って、信号成分のみを符号3゜3
′の積分回路で積分する。その積分値vA%vBを加算
器回路40で加算してvA−)−vBを作る。この直を
積分時間コントロール回路50で監視しておき、測距可
能な所定のレベルになる様に積分時間を決定し、これに
よって、積分回路3.3′を制御する。そして東に、次
回の積分を行わせる。これを繰り返すことによって常に
v、+vBを所定レベルにして測距を行っている。なお
、測距情報は受光素子の両端から得られる電圧vA、V
Bt−処理することによって得られる(詳しいことは、
例えば特開昭57−44809号、特開昭59−201
007号参照)。In Figure 4, the reflected light of the light modulated at a specific frequency emitted by the light emitting system via the light projecting lens is received by the light receiving element through the light receiving lens, and converted into voltage by the I-V conversion circuit 1.1'. Then, the detection circuit with reference numeral 2.2 performs synchronous detection in synchronization with the above-mentioned specific frequency, and detects only the signal component with reference numeral 3゜3.
′ is integrated using the integrator circuit. The integrated value vA%vB is added by an adder circuit 40 to produce vA-)-vB. The integral time control circuit 50 monitors this time, determines the integral time so that it reaches a predetermined level that allows distance measurement, and controls the integral circuit 3.3' accordingly. Then let East do the next integration. By repeating this, distance measurement is always performed with v and +vB at predetermined levels. Note that the distance measurement information is based on the voltages vA and V obtained from both ends of the light receiving element.
Obtained by Bt-treatment (for details, see
For example, JP-A-57-44809, JP-A-59-201
(See No. 007).
第5図に各部の波形を示す。第4図の嵌なシステムにお
いては、14!時において比較的長い積分時間で積分波
形のオフセット調整を行い、第5図の■の出力波形の様
に無信号時に出力波形がゼロになるようにして測距を行
う。FIG. 5 shows the waveforms of each part. In the fitted system shown in Figure 4, 14! When there is no signal, the offset of the integral waveform is adjusted using a relatively long integration time, and distance measurement is performed so that the output waveform becomes zero when there is no signal, as shown in the output waveform shown in (■) in FIG.
しかしながら、このシステムは次の様な問題点がある(
第5図■参照)。However, this system has the following problems (
(See Figure 5■).
0 調整時に高精度の調整を要する。0 High precision adjustment is required during adjustment.
〇 −変調整した後、オフセットがずれた場合は、その
システムはずれ量だけのバイアスが測距t[にのり、正
確な測距情報が得られない。- If the offset deviates after the adjustment, the system will be biased by the amount of deviation on the distance measurement t[, and accurate distance measurement information will not be obtained.
0 外光の中に赤外光が多い場合など検波回路だけでは
ノイズ光を取り去れない場合は、このノイズ光によって
積分出力にバイアスかの9、測距情報が不lE涌になる
口
0 積分時間が長くなると微小なオフセットずれでも大
きなずれ電になり、反射光量が少ない時は、不正確な測
距情報となってしまう。0 If the noise light cannot be removed by the detection circuit alone, such as when there is a lot of infrared light in the outside light, the noise light may bias the integral output and the distance measurement information will be lost. If the time is long, even a small offset shift will result in a large shift charge, and if the amount of reflected light is small, the distance measurement information will be inaccurate.
0 環境温度変化による構成素子の物性変化に起因する
オフセットずhは避けられず、使用幅量範囲が制限され
るとともに、精度も不充分となる。また、この範囲を広
げるにFi温度依存性のない高価な部品を飲用するか、
測距回路とは別に温間補正回路を設ける必要がある。0 Offsets due to changes in the physical properties of constituent elements due to changes in environmental temperature are unavoidable, which limits the usable width range and results in insufficient accuracy. In addition, to expand this range, it is necessary to use expensive parts that are not dependent on Fi temperature.
It is necessary to provide a warm correction circuit separately from the distance measurement circuit.
(発明が解決しようとする問題点)
本発明の目的は、上記した従来の自動合焦装置の問題点
を解決1.て、アクティブ方式の自動合焦装置において
、調整不充分によるオフセットずれ、ノイズ光、あるい
は、環境温度変化等によって避けられないオフセット変
化等による測距情報の誤Nを取9除くシステムを低コス
トで簡嗅な構成により実現することである◎(問題点を
解決するための手段)
本発明の自動合焦装置は、特定周波数で変調した光を発
光する発光部と、前記光をスポット光として被写体上に
投光する投光光学系と、前記スポット光の被写体からの
反射光を光点位置検出素子上に入射させる受光光学系と
、前記光点位置検出素子の出力信号を前記特定周波数に
同期して検波する検波部と、この検波部の出力を積分す
る積分部と、この積分部の出力を演算して前記被写体ま
での距離に対応した測距情報を出力する演算部と、この
演算部からの測距情報に基づいて合焦光学系の駆動を制
御する制御部とを備えたものであって、前記発光部にお
いて発光と無発光とを特定周期でくり返し、無発光時の
前記積分部の積分値によって発光時の前記積分部の積分
値を補正する回路を前記積分部と前記演算部の間に介在
させ、補正された積分直に基づいて測距情報を得るもの
である。(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems of the conventional automatic focusing device. Therefore, we have developed a low-cost system that eliminates errors in distance measurement information caused by offset shifts due to insufficient adjustment, noise light, or offset changes that are unavoidable due to environmental temperature changes, etc. in active type automatic focusing devices. (Means for solving the problem) The automatic focusing device of the present invention includes a light-emitting section that emits light modulated at a specific frequency, and a light-emitting section that emits light modulated at a specific frequency, and uses the light as a spot light to focus on a subject. a light projecting optical system that projects light upward; a light receiving optical system that makes reflected light from the subject of the spot light enter a light spot position detection element; and an output signal of the light spot position detection element that is synchronized with the specific frequency. a detection section that detects the detected signal; an integration section that integrates the output of the detection section; a calculation section that calculates the output of the integration section and outputs ranging information corresponding to the distance to the subject; and this calculation section. and a control section that controls the driving of the focusing optical system based on distance measurement information from the light emitting section, the light emitting section repeats light emission and non-emission at a specific period, and the integrating section when no light is emitted. A circuit for correcting the integral value of the integrating section during light emission using the integral value of is interposed between the integrating section and the calculating section, and distance measurement information is obtained based on the corrected integral value.
前記光点位置検出素子として2個の出力信号を出力する
ものを用いる場合、それぞれの出力信号について検波部
と積分部とを備え、無発光時のそれぞれの積分部の積分
[直によって発光時のそれぞれの積分値を補正するよう
にすると良いO
また、前記積分直を補正する回路は、無発光時の前記積
分直を保持する回路と発光時の前記積分部の積分値から
前記保持した積分値を減算する回路とを備えるようにす
ると良い。When using a device that outputs two output signals as the light spot position detection element, it is provided with a detection section and an integration section for each output signal, and the integration of each integration section when no light is emitted [by direct] It is preferable to correct each integral valueO.In addition, the circuit for correcting the integral direct is a circuit that maintains the integral direct when no light is emitted, and the integral value obtained from the integrated value of the integral section when light is emitted. It is preferable to include a circuit for subtracting .
(実施例)
次に、本発明の詳細な説明する。第1図はこの自動合焦
装置の要部を示すシステム図であり、投光レンズを介し
て発光部LEDが発光し大枠定周波数で変調された赤外
光の様な光を被写体上にスポット光として投光し、この
反射光を受光レンズを通して光点位置検出素子PSDで
受光する。PSDHlこの上に入射する光点のPSD長
手方向の位置によってその両端の電険から出力する電流
が変化するものが代表的なもので、この2つの電流の関
係からPSD上の光スポットの位置を検出し、三角測量
の原理により被写体の測距を行うことができるものであ
る。PSDの2出力をl−V変換器1.1′により電流
電圧変換し、演技回路2.2′、積分回路3.3′を通
して信号電圧vA、VBを得る。補正回路4〜8.4′
〜8′のアナログスイッチ4.4′をOFFにし、アナ
ログスイッチ5.5′をONにして、これらの信号7人
、VBをアナログスイッチ5.5′、減算器8.8′を
経て、オフセットずれ等の補正を行っていない信号7人
、vBを補正回路の出力端子より得る。これらの信号を
A/D変換器(IW示なし)を通してアナログ直からデ
ジタル直に変換した後、1図示していない論理回路モジ
くけマイクロコンピュータによってPSD上の受光光量
に相当するVA+VBの演算を行い、v人−4−vBの
値を監視し、積分時間及び投光系の発光間隔を制(財)
する。(Example) Next, the present invention will be explained in detail. Figure 1 is a system diagram showing the main parts of this automatic focusing device.The light emitting unit LED emits light through a projecting lens, and a large area of light such as infrared light modulated at a constant frequency is spotted on the subject. The reflected light is emitted as light, and the reflected light is received by the light spot position detection element PSD through the light receiving lens. PSDHl A typical example is one in which the current output from the electric currents at both ends changes depending on the position of the light spot incident on the PSD in the longitudinal direction of the PSD, and the position of the light spot on the PSD can be determined from the relationship between these two currents. It is possible to detect the object and measure the distance to the object using the principle of triangulation. The two outputs of the PSD are converted into current and voltage by an l-V converter 1.1', and signal voltages vA and VB are obtained through an acting circuit 2.2' and an integrating circuit 3.3'. Correction circuit 4-8.4'
~8' analog switch 4.4' is turned OFF, analog switch 5.5' is turned ON, and these seven signals, VB, are passed through analog switch 5.5' and subtractor 8.8', and then offset The signal 7, vB, which has not been corrected for deviations, etc., is obtained from the output terminal of the correction circuit. After converting these signals directly from analog to digital through an A/D converter (IW not shown), a logic circuit module microcomputer (not shown) calculates VA + VB corresponding to the amount of light received on the PSD. , monitors the value of v people - 4 - vB and controls the integration time and the light emitting interval of the light projection system.
do.
すなわち、1回の発光は、発光及び光量制御回路(図示
なし)を通して、パルス制御によって積分時間に相当す
る時間だけ、特定周波数で変調した光を発光する。この
積分時間及び発光時間を制御するためのパルス数はマイ
クロコンピュータ等で制御する口例えば、PSDの受光
光量が減少したとすると、VA+VBのrfiは小さく
なる。この時は、vA+VBの咳が正確な測距が行える
範囲になるまで(所定の第1基準直以上になるまで)積
分時間及び発光パル数を増加させて(発光時間を延ばし
て) 、VA+VBを大きくするようにする。逆に、P
SDの受光光量が増加して、vA+VBの喧が大きくな
った場合、同様にVA+VBの値が正確な測距が行える
範囲になるまで(所定の第2基準以下になるまで)積分
時間及び発光パルス数を減少きせて(発光時間を短縮1
2て) 、 vA+vBの喧を小さくするようにする。That is, in one light emission, light modulated at a specific frequency is emitted by pulse control through a light emission and light amount control circuit (not shown) for a time corresponding to the integration time. The number of pulses for controlling the integration time and the light emission time is controlled by a microcomputer or the like. For example, if the amount of light received by the PSD decreases, the rfi of VA+VB becomes smaller. At this time, increase the integration time and the number of light emitting pulses (extend the light emitting time) until the cough of vA + VB is within the range where accurate distance measurement can be performed (until it exceeds the predetermined first reference value), and then increase the value of VA + VB. Try to make it bigger. On the contrary, P
When the amount of light received by the SD increases and the value of vA+VB becomes larger, the integration time and emission pulse are similarly adjusted until the value of VA+VB falls within the range that allows accurate distance measurement (until it falls below a predetermined second standard). Reduce the number (reduce the light emission time 1)
2) Try to reduce the noise of vA+vB.
この様にして通常の積分時間割−及び発光量制量が行わ
れる。以上の点までは従来技術と同様である。In this way, the normal integration time schedule and light emission amount control are performed. The above points are similar to the conventional technology.
本発明においては、この様にして発光パルス数、すなわ
ち、積分時間が決定された後、第2図に各部の波形を示
す様に、1f5h光部LEDを無発光としてその積分時
間だけPSDからの出力を積分回路3.3で積分し、そ
の時の回路の調整不充分によるオフセットずれ、ノイズ
光:あるいは、環境温度変化等によるオフセット変化等
による積分1直Vム。ff vBoffを得、この直
をアナログスイッチ5.5’1OFFにし、アナログス
イッチ4.4′をONにすることによってホールドコン
デンサ6.6’1C1fi持させておく。In the present invention, after the number of light emitting pulses, that is, the integral time is determined in this way, the 1f5h light part LED is set to non-emitting light, and after the integral time is determined, as shown in the waveform of each part in FIG. The output is integrated by the integrating circuit 3.3, and there is an offset shift due to insufficient adjustment of the circuit at that time, noise light: or an offset change due to environmental temperature changes, etc. ff vBoff is obtained, the analog switch 5.5'1 is turned OFF, and the analog switch 4.4' is turned ON to hold the hold capacitor 6.6'1C1fi.
次に、アナログスイッチ4.4′をOFFにし、アナロ
グスイッチ5.5′をONにして、前回と同じ積分時間
だけ発光部LEDを発光させて積分し、この積分M V
A、 VBとホールドコンデンサ6.6′に保持されて
いる積分(m vAOf f −”Bo f fとの差
vA= vA VAoff 、 VB = VB−V
Boll f 減’pi器8.8′よシ得る。これらの
補正は号4、■−を従来のものと同様に処理して測距f
ilを得、との測距情報によp合焦レンズの駆動を制御
すれば、測距情報に影響するオフセットtを常に精度良
く補正することができる。Next, turn off the analog switch 4.4', turn on the analog switch 5.5', and make the light emitting part LED emit light for the same integration time as the previous time to perform integration.
Difference between A, VB and the integral held in the hold capacitor 6.6' (m vAOf f - "Bof f vA = vA VAoff, VB = VB - V
Boll f reduction 'pi device 8.8' is obtained. These corrections are made by processing No. 4, ■- in the same way as the conventional ones, and adjusting the distance measurement f.
By controlling the drive of the p focusing lens based on the distance measurement information such as il, it is possible to always accurately correct the offset t that affects the distance measurement information.
本発明の無発光時の積分を通常の発光時の積分と並行し
て行みという考え方は、上記実施例に限定されることな
く、種々の変形が可能であるO
(発明の幼果ン
本発明の方式の従来方式に対応る長F51rを列記する
と、
〇 −変調整しt後、オフセットがずれた場合でも、自
動的にオフセットずれを補正しているので、正確な測距
情報が得られる。The concept of performing the integration during no light emission in the present invention in parallel with the integration during normal light emission is not limited to the above embodiments, and can be modified in various ways. Listing the length F51r corresponding to the conventional method of the invention: 〇 - Even if the offset deviates after the adjustment, accurate distance measurement information can be obtained because the offset deviation is automatically corrected. .
0 外光の中に赤外光が多い場合などで、演技回路で暇
り切れない外光によるノイズなどの補正も可能である。0 In cases where there is a lot of infrared light in the outside light, it is also possible to correct noise caused by outside light that the performance circuit cannot take advantage of.
0 環境温度変化に強いシステムを構成できる。0 It is possible to configure a system that is resistant to environmental temperature changes.
OA/D変換をし念後に補正する方式より広い範囲のオ
フセット調整が可能である。Offset adjustment can be made in a wider range than in a method in which OA/D conversion is performed and then corrected.
以上の様にして、部用温度範囲の広い高精度の自動合焦
装置を高価な部品、高度の調整を用いることなく実現で
きる。In the manner described above, a highly accurate automatic focusing device with a wide temperature range can be realized without using expensive parts or high-level adjustments.
第1図は本発明の1実施例の要部を示すシステム図、第
2図は第1図の自動合焦装置の各部の波形図、第3図、
第4因は従来のアクティブ方式の自動合焦装置の要部の
システム図、第5図は第4図の自動合焦装置の谷部の波
形図である。
1、l/:]−V変換器 2.2’:l*波回路3.3
′:積分回路 4.4′、5.5′:アナログスイッチ
6.6′:ホールドコンデンサ7.7′:バッファ−
8,8′:減算器特許出願人 小西六写真工業株式
会仕出願人代理人 弁匪士 佐 藤 文 男(ほか
2名)
第 3(121
投光レンズ
革 4 図
予備発光
第 5 図FIG. 1 is a system diagram showing the main parts of an embodiment of the present invention, FIG. 2 is a waveform diagram of each part of the automatic focusing device shown in FIG. 1, and FIG.
The fourth factor is a system diagram of the main parts of a conventional active type automatic focusing device, and FIG. 5 is a waveform diagram of the trough of the automatic focusing device shown in FIG. 1, l/:]-V converter 2.2': l* wave circuit 3.3
': Integrating circuit 4.4', 5.5': Analog switch 6.6': Hold capacitor 7.7': Buffer
8, 8': Subtractor patent applicant Roku Konishi Photo Industry Co., Ltd. Applicant's agent Fumi Sato (and 2 others) No. 3 (121 Light projection lens leather 4 Figure Preliminary light emission Figure 5
Claims (3)
記光をスポット光として被写体上に投光する投光光学系
と、前記スポット光の被写体からの反射光を光点位置検
出素子上に入射させる受光光学系と、前記光点位置検出
素子の出力信号を前記特定周波数に同期して検波する検
波部と、該検波部の出力を積分する積分部と、該積分部
の出力を演算して前記被写体までの距離に対応した測距
情報を出力する演算部と、該演算部からの測距情報に基
づいて合焦光学系の駆動を制御する制御部とを備えた自
動合焦装置において、前記発光部において発光と無発光
を特定周期でくり返し、無発光時の前記積分部の積分値
によつて発光時の前記積分部の積分値を補正する回路を
前記積分部と前記演算部の間に介在させ、補正された積
分値に基づいて測距情報を得ることを特徴とする自動合
焦装置。(1) A light emitting unit that emits light modulated at a specific frequency, a light projection optical system that projects the light onto a subject as a spot light, and a light spot position detection element that emits light reflected from the subject of the spot light. a detection unit that detects the output signal of the light spot position detection element in synchronization with the specific frequency; an integration unit that integrates the output of the detection unit; and a calculation of the output of the integration unit. an automatic focusing device comprising: a calculation section that outputs distance measurement information corresponding to the distance to the subject; and a control section that controls driving of a focusing optical system based on the distance measurement information from the calculation section. In the above, the integrating section and the calculating section include a circuit that repeats light emission and non-emission in the light emitting section at a specific period and corrects the integral value of the integrating section when the light is emitted by the integral value of the integrating section when the light is not emitted. What is claimed is: 1. An automatic focusing device that obtains ranging information based on a corrected integral value.
出素子は出力信号を2個有するものであり、それぞれの
出力信号について前記検波部及び前記積分部を備え、前
記無発光時のそれぞれの積分部の積分値によつて発光時
のそれぞれの積分部の積分値を補正することを特徴とす
る自動合焦装置。(2) In claim 1, the light spot position detection element has two output signals, and includes the detection section and the integration section for each output signal, and for each output signal when no light is emitted. An automatic focusing device characterized in that the integral value of each integral part at the time of light emission is corrected by the integral value of the integral part.
積分値を補正する回路は無発光時の前記積分部の積分値
を保持する回路と発光時の前記積分部の積分値から前記
保持した積分値を減算する回路とを備えていることを特
徴とする自動合焦装置。(3) In claim 1 or 2, the circuit for correcting the integral value includes a circuit for holding the integral value of the integrating section when no light is emitted, and a circuit that holds the integral value of the integrating section when no light is emitted. An automatic focusing device comprising: a circuit for subtracting a held integral value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8014886A JPS62237411A (en) | 1986-04-09 | 1986-04-09 | Automatic focusing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8014886A JPS62237411A (en) | 1986-04-09 | 1986-04-09 | Automatic focusing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62237411A true JPS62237411A (en) | 1987-10-17 |
Family
ID=13710198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8014886A Pending JPS62237411A (en) | 1986-04-09 | 1986-04-09 | Automatic focusing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62237411A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253126A (en) * | 1989-03-27 | 1990-10-11 | Kuraray Co Ltd | Device and method for detecting wavelength of light |
JPH05300042A (en) * | 1991-03-11 | 1993-11-12 | Mitsubishi Electric Corp | Photoelectric conversion circuit |
EP0616194A1 (en) * | 1993-03-19 | 1994-09-21 | Hamamatsu Photonics K.K. | Solid state image pickup device |
-
1986
- 1986-04-09 JP JP8014886A patent/JPS62237411A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253126A (en) * | 1989-03-27 | 1990-10-11 | Kuraray Co Ltd | Device and method for detecting wavelength of light |
JPH05300042A (en) * | 1991-03-11 | 1993-11-12 | Mitsubishi Electric Corp | Photoelectric conversion circuit |
EP0616194A1 (en) * | 1993-03-19 | 1994-09-21 | Hamamatsu Photonics K.K. | Solid state image pickup device |
US5424530A (en) * | 1993-03-19 | 1995-06-13 | Hamamatsu Photonics K.K. | Solid image pickup device having dual integrator |
US5684295A (en) * | 1993-03-19 | 1997-11-04 | Hamamatsu Photonics K.K. | Solid state image pickup device having dual integrator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4983033A (en) | Automatic range finder for camera | |
JPH06235634A (en) | Range-finding device | |
US5905576A (en) | Optical displacement measurement device and optical displacement measurement system | |
US4533241A (en) | Distance measuring device and automatic focusing system using same | |
JPS636802B2 (en) | ||
JPS62237411A (en) | Automatic focusing device | |
JP3051032B2 (en) | Distance measuring device | |
US4938588A (en) | Distance detecting apparatus | |
JPH0313565B2 (en) | ||
US11199439B2 (en) | Photodetector device and optical encoder device | |
US6452664B2 (en) | Rangefinder apparatus | |
JP3661278B2 (en) | Optical displacement measuring device | |
JPS62238509A (en) | Automatic focusing device | |
JP3269320B2 (en) | Optical displacement sensor | |
US20220050207A1 (en) | Light projecting device, tof sensor provided with same and distance image generator | |
JP3302050B2 (en) | Distance measuring device | |
JP2882813B2 (en) | Distance measuring device | |
JP3659260B2 (en) | Optical displacement measuring device | |
EP0328136A2 (en) | Distance measuring apparatus | |
JPH05172564A (en) | Active range finder | |
JP2779451B2 (en) | Auto focus camera | |
JP3672987B2 (en) | Ranging device | |
JPH05232375A (en) | Range finder | |
JPH03166534A (en) | Range-finding device for camera | |
JPH0545926Y2 (en) |