JPS62237373A - Phased array azimuth angle radar - Google Patents

Phased array azimuth angle radar

Info

Publication number
JPS62237373A
JPS62237373A JP61080644A JP8064486A JPS62237373A JP S62237373 A JPS62237373 A JP S62237373A JP 61080644 A JP61080644 A JP 61080644A JP 8064486 A JP8064486 A JP 8064486A JP S62237373 A JPS62237373 A JP S62237373A
Authority
JP
Japan
Prior art keywords
circuit
azimuth angle
azimuth
angle
phased array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61080644A
Other languages
Japanese (ja)
Inventor
Hisashi Ishikawa
久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP61080644A priority Critical patent/JPS62237373A/en
Publication of JPS62237373A publication Critical patent/JPS62237373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight, inexpensive azimuth angle radar whose circuit constitution is simplified by switching the azimuth angle of a beam stepwise at intervals which are nearby a small-integer submultiple of beam width. CONSTITUTION:An azimuth angle radar which arranges the beam at an optional position by controlling the phase electrically detects a reflection echo from a target by scanning the beam through a beam scan calculating circuit 103 with a beam scan command signal from a distance gate control circuit 117. At this time, the beam which is firstly directed at intervals which are 1/m (m: integer) the beam width is changed in angle digitally in (m) stages horizontally or/and vertically. The mean value of the level of the echo in a reflection echo train received by a receiver 107 at every time the beam is switched is found and (m) mean values are stored in an averaging and storing circuit 114 together with the beam scanning direction angle. Then, their levels are compared at every beam by a level comparator 115 to decide the largest azimuth angle as a real azimuth angle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は目標からの反射エコーを検知することによって
目標の方位角を探知するフェーズドアレイレーダに関し
、特に回路構成を著しく簡素化したフェーズドアレイ方
位角レーダに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a phased array radar that detects the azimuth of a target by detecting reflected echoes from the target. Regarding angle radar.

(従来技術) 第3図は従来提案されているフェーズドアレイによるモ
ノパルス方式レータ”の−例で図中。
(Prior Art) Figure 3 shows an example of a conventionally proposed "monopulse type generator using a phased array".

1はアンテナエレメント、2は移相器、3はビーム走査
計重回路、4は電力分配合成回路、5はT−Rスイッチ
、6は送信機、7は和信号受誤差検出回路、12はAz
角度誤差検出回路、13は゛El角度誤差検出回路、1
4は方位角合成回路、15は距離ゲート制御回路および
16は距離ゲート発生回路を示すものである。この回路
において目標の正確な方位角を知るにはビーム走査計真
回、路3によって移相数が決定され、その移相数が移相
器2に送られビームの指向方位角が決定されると、送信
パルスが送信機6から、T−Rスイッチ5の和信号回路
に加えられ、電力分配回路4.移相器2.アンテナエレ
メント1がう空間に送出される。そして目標物体からの
反射エコーが、アンテナエレメント1を通り移相器2゜
電力分配合成回路4を経て、和信号受信増幅回路7.A
z差信号受信増幅回路8.El差信号受信増幅回路9で
それぞれ増幅され、 Az角度誤差検出回路12. E
l角度誤差検出回路13に加えられる。
1 is an antenna element, 2 is a phase shifter, 3 is a beam scanning weighing circuit, 4 is a power distribution/synthesis circuit, 5 is a T-R switch, 6 is a transmitter, 7 is a sum signal reception error detection circuit, 12 is Az
Angle error detection circuit, 13 is "El angle error detection circuit, 1
4 is an azimuth synthesis circuit, 15 is a distance gate control circuit, and 16 is a distance gate generation circuit. In this circuit, in order to know the exact azimuth of the target, the beam scanning meter circuit 3 determines the phase shift number, and the phase shift number is sent to the phase shifter 2, which determines the beam pointing azimuth. Then, a transmission pulse is applied from the transmitter 6 to the sum signal circuit of the T-R switch 5, and the power distribution circuit 4. Phase shifter 2. Antenna element 1 is sent out into space. Then, the reflected echo from the target object passes through the antenna element 1, the phase shifter 2°, the power distribution/synthesizing circuit 4, and the sum signal receiving amplifier circuit 7. A
Z difference signal reception amplification circuit 8. El difference signal receiving amplification circuit 9 amplifies each, and Az angle error detection circuit 12. E
1 is added to the angle error detection circuit 13.

Az角度誤差検出回路12. El角度誤差検出回路1
3の出力はビーム走査計算回路3で計算した方位角に方
位角合成回路14で加えられて出力される。
Az angle error detection circuit 12. El angle error detection circuit 1
The output of No. 3 is added to the azimuth calculated by the beam scanning calculation circuit 3 by the azimuth synthesis circuit 14 and output.

(発明が解決しようとする問題点り 以上述べた構成の従来装置によれば、電力分配合成回路
4が、和、 Az差、 El差出力信号を出力する構成
であるために、また第3図の構成から明らかなように、
和、 Az差およびEl差についての3チヤンネルもの
受信増幅回路が必要とな゛るために1回路上、構成上か
なり複雑になること、および重量も大きくなり、高価に
なるという欠点がある。
(Problems to be Solved by the Invention) According to the conventional device having the configuration described above, since the power distribution/synthesizing circuit 4 is configured to output the sum, Az difference, and El difference output signals, and as shown in FIG. As is clear from the structure of
Since three channels of reception amplification circuits are required for the sum, Az difference, and El difference, there are disadvantages in that the circuit structure is quite complex, and the weight and price are also increased.

本発明は、かかる従来装置の欠点を解消するものであっ
て9回路構成が著しく簡素化され。
The present invention solves the drawbacks of the conventional device, and the circuit configuration is significantly simplified.

軽量でかつ安価なフェーズドアレイ方位角レーダの提供
を目的とするものである。
The purpose of this invention is to provide a phased array azimuth radar that is lightweight and inexpensive.

(問題点を解決するだめの手段ノ フェーズドアレイが簡単に、かつ高速にビームを走査す
ることができることを利用し、ビーム幅の数分の一程度
の間隔で数段階にビームの方位角を切り換え、ビームを
切換えるごとに数〜数10ハルス?送信し、受信エコー
列のエコーの大きさの平均値をとり、それらを記憶し、
その大きさをビームごとに比較するようにしてディジタ
ルでビームを制御することにより、従来のモノパルス方
式と比較して指向精度の点で劣るとしても、受信チャン
ネルが僅か1チヤンネルであるため回路構成が顯著に簡
略化され、これによって前述問題点が解決される。
(The only way to solve the problem is to take advantage of the fact that the phased array can scan the beam easily and at high speed, and switch the beam azimuth in several stages at intervals of about a fraction of the beam width.) , every time the beam is switched, several to several tens of Hals? are transmitted, the average value of the echo size of the received echo train is taken, and these are memorized,
By digitally controlling the beams by comparing the size of each beam, even if the pointing accuracy is inferior to the conventional monopulse method, the circuit configuration is simple because there is only one receiving channel. This is greatly simplified, and the above-mentioned problems are solved.

(実施例) 以下図面に示す本発明の一実施例につき詳説する。(Example) An embodiment of the present invention shown in the drawings will be explained in detail below.

本発明の実施例を示す第1図において、1o1はアンテ
ナエレメント、102は移相器、1o3はビーム走査計
算回路、104は電力分配合成回路、1o5はT −R
ス’f ノ+、 106は送信機、1o7は受信機、1
12はA/D変換器、113はマルチプレクサ、114
は平均記憶回路、115はレベル比較回路、116万位
角合成回路、111は距離誤差検出回路、117は距離
ゲート制御回路、118は距離ゲート発生回路を示す。
In FIG. 1 showing an embodiment of the present invention, 1o1 is an antenna element, 102 is a phase shifter, 1o3 is a beam scanning calculation circuit, 104 is a power distribution/synthesis circuit, and 1o5 is a T-R
S'f ノ+, 106 is the transmitter, 1o7 is the receiver, 1
12 is an A/D converter, 113 is a multiplexer, 114
115 is an average storage circuit, 115 is a level comparison circuit, 1,160,000 angle synthesis circuit, 111 is a distance error detection circuit, 117 is a distance gate control circuit, and 118 is a distance gate generation circuit.

第2図はペンシルビームを空間に指向させた場合のビー
ム幅と受信レベルの大きさを理解しゃ丁いようにグラフ
化して表わしたもので2図中、(a)は目標のある方向
をビームが指向した状態乞、 (b)、 (e)はペン
シルビームの中心力(a)においてそれぞれの、■、■
、■、■のポジションを指向したとき、 Az軸、 E
l軸で切り、受信信号レベルがそれぞれのビーム形状に
比例することに示すものである。
Figure 2 is a graphical representation of the beam width and reception level when a pencil beam is directed in space. In Figure 2, (a) shows the beam in the direction of the target. (b) and (e) are the states in which the central force of the pencil beam (a) is oriented, respectively, ■, ■
,■,■ When pointing to the position, Az axis, E
This shows that the received signal level is proportional to each beam shape when cut along the l-axis.

例としてm = 2でAz角、 El角走査の場合につ
いて説明する。いま、ビーム走査計算回路103が計算
し、ビームを第2図のポジションのに指向させ、送信機
106からのパルス列がT−Rスイッチ105.電力分
配合成回路104.移相器102ヲ経て。
As an example, a case where m = 2 and Az angle and El angle scanning will be explained. Now, the beam scanning calculation circuit 103 calculates and directs the beam to the position shown in FIG. 2, and the pulse train from the transmitter 106 is transmitted to the T-R switch 105. Power distribution and synthesis circuit 104. After phase shifter 102.

アンテナエレメント101から送信されたとすると。Suppose that it is transmitted from antenna element 101.

第2図に示すように目標がビニム■内にあるので反射エ
コー列が受信されることになる。この反射エコー列はア
ンテナニレメン) 101.移相器102、電力分配合
成回路104.T−Rスイッチ105および受信機10
7を経て、検出され距離誤差検出回路111.距離ゲー
ト制御回路117.距離ゲート発生回路118で示され
る距離ゲートにより距離が測定される。それと同時に距
離ゲート制御回路117から、ビーム走査計算回路10
3に対し、第2図のビーム■、■、■、■、■というよ
うにビーム走査をさせるため、ビーム走査指令信号を送
る。
As shown in FIG. 2, since the target is within the binim (2), a reflected echo train will be received. This reflected echo train is an antenna element) 101. Phase shifter 102, power distribution and synthesis circuit 104. T-R switch 105 and receiver 10
7, the detected distance error detection circuit 111. Distance gate control circuit 117. The distance is measured by a distance gate represented by a distance gate generation circuit 118. At the same time, from the distance gate control circuit 117, the beam scanning calculation circuit 10
3, a beam scanning command signal is sent to cause the beam to scan in the order of beams ■, ■, ■, ■, ■ in FIG.

−万、ビーム走査計算回路103と同期してビームかの
、■、■、■、■と切換えられるごとにマルチプレクサ
113が切り換えられ9反射エコー列−は平均・記憶回
路114に蓄えられ、平均される。
The multiplexer 113 is switched every time the beam is switched to ■, ■, ■, ■ in synchronization with the beam scanning calculation circuit 103, and the nine reflected echo trains are stored in the averaging/memory circuit 114 and averaged. Ru.

第2図の例において目標はビーム■、■、■が重なる領
域になっているので、ビームが■、■を向いたときは■
、■からの反射信号はほとんど受信できない。ビームの
、■、■で受信し。
In the example in Figure 2, the target is the area where the beams ■, ■, and ■ overlap, so when the beams are directed toward ■ and ■,
, almost no reflected signals from ■ can be received. Receive with beam ■, ■.

平均・記憶回路114で蓄えられている反射信号の大き
さの関係は第2図で示されるアンテナビーム形状に比例
した大きさとなり1図中(b) l (e)に示される
ようにa、b、c点で表わされる大きさとなり本例の場
合1反射エコー列の平均値はa > b > cとなる
。この大きさの比較はレベル比較回路115で行われ、
方位角合成回路116に出力されるが、このエラー信号
をもと忙方位合成回路116では目標の真の方向4Az
軸上では(■+θB/4)、El軸上では(θ−θB/
4)と判断して出力することになる。(ただしθBはビ
ーム幅)ただし、フェーズドアレイアンテナの場会ビー
ム幅は走査角に依存するのでこれらのビーム万位に関す
る計算はディレクションコサイン平面で行われてもよい
The relationship between the magnitudes of the reflected signals stored in the averaging/memory circuit 114 is proportional to the antenna beam shape shown in FIG. 2, and as shown in (b) l (e) in FIG. The size is represented by points b and c, and in this example, the average value of one reflected echo train is a > b > c. This magnitude comparison is performed by a level comparison circuit 115,
Based on this error signal, the busy azimuth synthesis circuit 116 calculates the true direction of the target by 4Az.
On the axis (■+θB/4), on the El axis (θ−θB/
4) will be determined and output. (where θB is the beam width) However, since the field beam width of the phased array antenna depends on the scanning angle, calculations regarding these beam positions may be performed on the direction cosine plane.

(発明の効果) 以上述べた構成の本発明によれば、従来のモノパルス方
式て較べてパルスの数が増加した分だけ時間を要するこ
とになり指向精度の点で劣るとしても、ディジタルでビ
ームを制御することによりすなわち、ビーム内を細か(
分割することにより相当の効果が期待され、かつ受信系
列が僅か1チヤンネルに簡素化されるため9回路構成が
顕著に簡単となり、 fllえはマイクロコンピュータ
程度のハードウェアで足りるものとなるのみならず2重
量も著しく軽減されまた安価に製造可能となる利点があ
る。
(Effects of the Invention) According to the present invention having the above-described configuration, it is possible to digitally control the beam even though it takes more time due to the increased number of pulses compared to the conventional monopulse method and is inferior in terms of pointing accuracy. In other words, by controlling the inside of the beam (
By dividing, a considerable effect is expected, and since the receiving sequence is simplified to just one channel, the nine-circuit configuration becomes significantly simpler, and not only the hardware equivalent to a microcomputer is sufficient for the entire circuit. 2 It has the advantage that the weight is significantly reduced and it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック回路図、第2
図は該実施例の動作を説明するための図および第3図は
従来のフェーズドアレイを利用したモノパルス方式レー
ダの構成を示すブロック回路図である。
FIG. 1 is a block circuit diagram showing one embodiment of the present invention, and FIG.
The figure is a diagram for explaining the operation of the embodiment, and FIG. 3 is a block circuit diagram showing the configuration of a monopulse radar using a conventional phased array.

Claims (1)

【特許請求の範囲】[Claims] 位相を電子的に制御してビームを任意の位置に配置する
フェーズドアレイ方位角レーダにおいて、ビームを走査
することにより目標からの反射エコーが検出されるとき
ビーム幅の1/m(但しmは整数)の間隔で最初に指向
したビームをビーム幅内でm段階に、左右、上下または
それらの組み合せにおいてディジタル状にその方位角を
切換え、各ビームを切換えるごとに前記目標から反射さ
れる反射エコー列のエコーの大きさの平均値を求め、該
平均値のm個を記憶回路にビーム走査方位角とともに記
憶しておき、その後それらの大きさを各ビームごとに比
較して最も大きな方位角を真方位角と判定するよう構成
したフェーズドアレイ方位角レーダ。
In a phased array azimuthal radar that electronically controls the phase and places the beam at an arbitrary position, when a reflected echo from a target is detected by scanning the beam, it is 1/m of the beam width (where m is an integer). ), the azimuth of the initially directed beam is digitally switched in m steps within the beam width, horizontally, vertically, or in a combination thereof, and each time the beam is switched, a row of reflected echoes is reflected from the target. Find the average value of the magnitude of the echoes, store m of the average values together with the beam scanning azimuth in a storage circuit, then compare the magnitudes for each beam and find the largest azimuth. A phased array azimuth angle radar configured to determine the azimuth angle.
JP61080644A 1986-04-07 1986-04-07 Phased array azimuth angle radar Pending JPS62237373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080644A JPS62237373A (en) 1986-04-07 1986-04-07 Phased array azimuth angle radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080644A JPS62237373A (en) 1986-04-07 1986-04-07 Phased array azimuth angle radar

Publications (1)

Publication Number Publication Date
JPS62237373A true JPS62237373A (en) 1987-10-17

Family

ID=13724073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080644A Pending JPS62237373A (en) 1986-04-07 1986-04-07 Phased array azimuth angle radar

Country Status (1)

Country Link
JP (1) JPS62237373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273084A (en) * 1991-02-28 1992-09-29 Mitsubishi Electric Corp Radar device
JPH0527022A (en) * 1991-07-19 1993-02-05 Mitsubishi Electric Corp Target detecting device and target detecting method
JPH0627232A (en) * 1991-09-30 1994-02-04 Nec Corp Beam control circuit
JP2004144542A (en) * 2002-10-23 2004-05-20 Omron Corp Device and method for detecting object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273084A (en) * 1991-02-28 1992-09-29 Mitsubishi Electric Corp Radar device
JPH0527022A (en) * 1991-07-19 1993-02-05 Mitsubishi Electric Corp Target detecting device and target detecting method
JPH0627232A (en) * 1991-09-30 1994-02-04 Nec Corp Beam control circuit
JP2004144542A (en) * 2002-10-23 2004-05-20 Omron Corp Device and method for detecting object

Similar Documents

Publication Publication Date Title
US7250902B2 (en) Method of generating accurate estimates of azimuth and elevation angles of a target for a phased—phased array rotating radar
JP4737165B2 (en) Radar target detection method and radar apparatus using the target detection method
US4034374A (en) Sequential lobing track-while-scan radar
US9470782B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
US9400325B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
US5359329A (en) Jammer reference target measurement system
US11454702B2 (en) Synthetic aperture radar method and synthetic aperture radar device
US8593903B2 (en) Calibrating a multibeam sonar apparatus
US8451163B2 (en) Weather radar apparatus and weather observation method
DK166108B (en) Radar system operating on two frequency bands for low altitude tracking
US4961075A (en) Two and one-half dimensional radar system
WO1980001956A1 (en) Radar system
US5559515A (en) Channel switching interferometric AMTI radar
JP3639179B2 (en) Radar equipment
JPS62237373A (en) Phased array azimuth angle radar
US3916407A (en) Doppler navigation system with angle and radial velocity determination
EP1678522A1 (en) Improved active element array apparatus for displaced phase center systems
US3854135A (en) Low angle radar tracking system
JP2006071597A (en) Height-measuring radar apparatus and its processing method for angle-measuring
JP2980573B2 (en) SRA radar system
US5051753A (en) Array antenna system with direction finding capability
JP2005062058A (en) Search radar system
US5412617A (en) High resolution measuring method and apparatus
RU2143706C1 (en) Device for airborne surveillance radar to identify group target
JP2884949B2 (en) Target detector