JPS62237355A - Quantitative determination method of phosphori - Google Patents

Quantitative determination method of phosphori

Info

Publication number
JPS62237355A
JPS62237355A JP8033186A JP8033186A JPS62237355A JP S62237355 A JPS62237355 A JP S62237355A JP 8033186 A JP8033186 A JP 8033186A JP 8033186 A JP8033186 A JP 8033186A JP S62237355 A JPS62237355 A JP S62237355A
Authority
JP
Japan
Prior art keywords
molybdate
molybdenum
hexavalent
reagent
pentavalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8033186A
Other languages
Japanese (ja)
Inventor
Masatsune Okuma
大熊 正恒
Sakae Katayama
片山 榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
Original Assignee
Katayama Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc filed Critical Katayama Chemical Inc
Priority to JP8033186A priority Critical patent/JPS62237355A/en
Publication of JPS62237355A publication Critical patent/JPS62237355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To make efficient quantitative determination of phosphori with one reaction reagent without using mercury having high toxicity by using metallic tin, stannous chloride or ascorbic acid to reduce hexavalent molybdenum. CONSTITUTION:The aq. acidic soln. of the molybdate which contains the pentavalent molybdenum reduced by 1 or >=2 kinds of reducing agents selected from the metallic tin, stannous chloride or ascorbic acid and in which the hexavalent molybdenum/pentavalent molybdenum coexist at the value of 0.5-2.0 ratio is mixed with a reagent liquid and the phosphori in the sample liquid are quantitatively determined in accordance with the coloration of the blue color generated when the liquid mixture is heated. The amt. of the molybdophosphoric acid to be formed decrease if the ratio of the hexavalent molybdenum/pentavalent molybdenum and therefore the larger amt. of the reagent is necessary. The reagent itself colors blue and such coloration is inadequate if the ratio exceeds 2.0. The aq. acidic soln. of the molybdate is prepd. by mixing the aq. acidic soln. of the pentavalent molybdate obtd. by adding the reducing agent into the aq. acidic soln. of the hexavalent molybdate and the aq. acidic soln. of the hexavalent molybdate.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、リン類の定量方法に関する。さらに詳しく
は、種々の液体中、ことに水中におけるリン酸イオン、
縮合リン酸イオン、加水分解性リン化合物等の種々のリ
ン類の定量方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for quantifying phosphorus. More specifically, phosphate ions in various liquids, especially in water,
This article relates to methods for quantifying various phosphorus compounds such as condensed phosphate ions and hydrolyzable phosphorus compounds.

(ロ)従来の技術 リン類の定m法としては、従来から重量法、容も1法、
電気分析法、光学分析法等の種々の方法が知られており
、ことに吸光光度による光学分析法は粘度が良< J、
 I SやASTMで規格化されている。
(b) Conventional technology The constant m method for phosphorus has traditionally been the gravimetric method, the volume method,
Various methods such as electroanalysis and optical analysis are known, and optical analysis using absorbance is particularly effective because the viscosity is good < J,
It is standardized by IS and ASTM.

かかる吸光光度法の中でも、リン酸イオンの定φに最も
よく使用されているのは、酸性水溶液中ぐリン酸とモリ
ブデン酸とが反応して生じる[リブドリン酸を適当な還
元剤で還元しC生じるn色鏡体の9色の強度を測定する
方法であり、通常、モリブデン酸アンモニウムの酸性水
溶液を試料液に加えた後、塩化第1錫の酸性水溶液を添
加して呈色を行なう手法(モリブデン青法)が採られC
いる。しかしこの手法によれば分析時にモリブデン酸溶
液と還元剤溶液とを別々に試料に混合しなければならず
、ざらにAルトリン酸以外のリン類を測定するためには
、予め試料を加水分解に付す等の前処理が必要である。
Among these spectrophotometric methods, the most commonly used method for determining the constant φ of phosphate ions is the reaction of phosphoric acid with molybdic acid in an acidic aqueous solution [by reducing phosphoric acid with a suitable reducing agent and This method measures the intensities of the nine colors of the resulting n-color mirror, and usually involves adding an acidic aqueous solution of ammonium molybdate to a sample solution, and then adding an acidic aqueous solution of tin chloride to develop the color ( Molybdenum blue method) was adopted.C
There is. However, according to this method, the molybdic acid solution and the reducing agent solution must be mixed into the sample separately during analysis. Pre-treatment such as attaching is necessary.

また、還元剤溶液が不安定で還元能を失い易くその調製
をしばしば行なわなければならないという分析操作上の
不都合がある。
Furthermore, there are disadvantages in terms of analytical operations, such as the reducing agent solution is unstable and easily loses its reducing ability, and must be prepared frequently.

この点に関しF、1ucena−conde及びり。In this regard F. 1ucena-conde and et al.

pratは、五価のモリブデンを含むモリブデン酸塩試
薬を用いることにより、還元剤溶液を用いることなく一
種の試薬で呈色する手法を提案している(″゛リンヒ素
、及びゲルマニウムの比色及び分光光度測定用の新しい
試薬” A nalytica  Chimica  
Acta  Vol、’16  pp478〜479(
1957) )。
Prat proposed a method of coloring with a single reagent without using a reducing agent solution by using a molybdate reagent containing pentavalent molybdenum ("Colorimetric and colorimetric analysis of phosphorus arsenic and germanium" A new reagent for spectrophotometric measurements” A analytica Chimica
Acta Vol, '16 pp478-479 (
1957) ).

この方法はモリブデン酸塩の酸性水溶液中に金属水銀を
添加することにより六価のモリブデンを五価のモリブデ
ンに還元し、これを濾過した溶液を、別に調整した六価
のモリブデン酸塩の酸性水溶液と混合して六価のモリブ
デンと五価のモリブデンを共存させたー試薬とし、これ
を用いて六価のモリブデンより生じるモリブドリン酸を
共存する五価のモリブデンで加熱化還元させて青色錯体
を生成さ已る方法であり、調製されたモリブデン酸試桑
が安定であり、かつ、縮合リン酸塩等のオルI〜リン酸
以外の加水分解性リンの加水分解と呈色が同時に行なえ
る利点をも有している。
In this method, hexavalent molybdenum is reduced to pentavalent molybdenum by adding metallic mercury to an acidic aqueous solution of molybdate, and the filtered solution is added to a separately prepared acidic aqueous solution of hexavalent molybdate. A reagent is created in which hexavalent molybdenum and pentavalent molybdenum coexist by mixing with the reagent, and using this reagent, molybdophosphoric acid produced from hexavalent molybdenum is thermally reduced with the coexisting pentavalent molybdenum to form a blue complex. This method has the advantage that the prepared molybdic acid test sample is stable, and that hydrolysis of hydrolyzable phosphorus other than phosphoric acid such as condensed phosphates and coloration can be performed simultaneously. It also has

(ハ)発明が゛解決しようとする問題点しかしながら、
上記F 、 l ucena−condeらの方法にお
いては、五価及び六価のモリブデンを含むモリブデン酸
塩の酸性水溶液の調製時に、1元剤として金属水銀を用
いる必要かあると共に、還元後に残留する金属水銀を回
収する必要がある。
(c) Problems that the invention seeks to solveHowever,
In the method of F. Lucena-conde et al., it is necessary to use metallic mercury as a primary agent when preparing an acidic aqueous solution of molybdate containing pentavalent and hexavalent molybdenum, and the remaining metal after reduction is required. Mercury needs to be recovered.

さらに、本発明者らの研究によれば調製された上記モリ
ブデン酸試薬中に水銀イオンが無視できない10混入し
、分析後の排液処理が大変であるという問題点があった
Furthermore, according to the research conducted by the present inventors, mercury ions were mixed into the prepared molybdic acid reagent, which was not negligible, and there was a problem in that it was difficult to treat the waste liquid after analysis.

このざi明は、かかる問題点を解消すべてなされたもの
Cある。
This scheme has solved all of these problems.

(ニ)問題点を解決するための手段及び作用本発明占ら
は、上記五価及び六価のモリブデンを含むモリブデン酸
基Xi!(酸性水溶液)を、金属水銀を用いることなく
調製してリン類の足労に用いる方法について”鋭意研究
を行なった。その結果種々の還元剤の中でも、ことに金
属錫、塩化第1錫又はアスコルごン酸を用いて6価のモ
リブデンの還元を行うことにより、強力な還元作用を有
する金属水銀を用いた場合と同様な試薬安定性、同等の
定量感度が得られる事実を見出した。ことに還元剤とし
てよく知られた、金属鉄、ハイドロキノン、亜硫酸ナト
リウム、亜硫酸水素ナトリウム、硫PIJ第1鉄、硫酸
ヒドラジド、アミトール、1−アミノ −2−ナフトー
ル−4−スルホン酸等を用いてもかかる効果は得られな
いことからして、上記特定の還元剤の効果は選択的なも
のといえる。
(d) Means and action for solving the problem The present invention is based on the molybdic acid group Xi! containing the pentavalent and hexavalent molybdenum mentioned above! We have conducted intensive research into methods for preparing (acidic aqueous solutions) without using metallic mercury and using them for the treatment of phosphorus.As a result, among various reducing agents, especially metallic tin, stannous chloride, or ascor We have discovered that by reducing hexavalent molybdenum using gonic acid, it is possible to obtain the same reagent stability and quantitative sensitivity as when using metallic mercury, which has a strong reducing effect. Similar effects can be obtained even when using well-known reducing agents such as metallic iron, hydroquinone, sodium sulfite, sodium hydrogen sulfite, PIJ ferrous sulfate, sulfuric hydrazide, amitol, 1-amino-2-naphthol-4-sulfonic acid, etc. Since this is not obtained, it can be said that the effect of the above-mentioned specific reducing agent is selective.

かくしてこの発明によれば、金属錫、塩化第1錫及びア
スコルビン酸から選ばれる1種又は2種以上の還元剤に
よって還元された五価のモリブデンを含有し、六価のモ
リブデンと上記五価のモリブデンとを前者/後者として
0.5〜2.0の比で共存してなるモリブデン酸塩の酸
性水溶液を、試料液と混合・加熱し、生じうる青色の呈
色に基づいて該試料液中のリン類を定Mすることを特徴
とするリン類の定tdn法が提供される。
Thus, according to the present invention, the present invention contains pentavalent molybdenum reduced with one or more reducing agents selected from tin metal, stannous chloride, and ascorbic acid, and contains hexavalent molybdenum and the pentavalent molybdenum described above. An acidic aqueous solution of molybdate coexisting with molybdenum at a ratio of 0.5 to 2.0 (former/latter) is mixed and heated with a sample solution, and based on the blue coloration that may occur, the concentration of molybdate in the sample solution is determined. A constant tdn method for phosphorus is provided, which is characterized in that phosphorus is constant M.

この発明で用いる五価及び六価のモリブデンを含むモリ
ブデン酸塩の酸性水溶液中におGする11価のモリブデ
ンと六価のモリブデンとの比率はM。
The ratio of 11-valent molybdenum to hexavalent molybdenum in the acidic aqueous solution of molybdate containing pentavalent and hexavalent molybdenum used in this invention is M.

[61/ A/I O(51として0.5〜2.0とさ
れる。この比が0.5未満ではモリブドリン酸の生成量
が少なくなるため試薬を多量用いる必要があり、2.0
を越えると試薬自体が青色発色するため適さない。
[61/A/I O (51 is set as 0.5 to 2.0. If this ratio is less than 0.5, the amount of molybdophosphoric acid produced will be small, so it is necessary to use a large amount of reagent,
Exceeding this is not suitable as the reagent itself develops a blue color.

かかる酸性水溶液は、六価のモリブデンの部分還元ぐb
可能たが、通常六価のモリブデン酸塩の酸性水溶液と、
h価のモリブデン酸塩の酸性水溶液とを混合して調製す
るのが好ましく、この場合にはh価の酸性水溶液は、六
価のモリブデン酸塩酸性水溶液中に金属錫、塩化第1錫
もしくはアスコルビン酸又はこれらの二種以上を充分な
出添加して調製する。この際のモリブデン酸塩としては
、モリブデン酸アンモニウム又は〕川用リウムを用いる
のか適している。また、金属錫、塩化第1錫及びアスコ
ルビン酸の添加量は、六価のモリブデン酸をhIIIl
lに充分還元できる社用いられる。通常モリブデン〈M
O)を1として重量比で0.1〜0.5が適している。
Such acidic aqueous solution partially reduces hexavalent molybdenum.
Possible, but usually with an acidic aqueous solution of hexavalent molybdate,
It is preferable to prepare the h-valent acidic aqueous solution by mixing it with an acidic aqueous solution of an h-valent molybdate. Prepared by adding sufficient amount of acid or two or more thereof. As the molybdate in this case, it is suitable to use ammonium molybdate or kawayo lium. In addition, the amounts of metal tin, stannous chloride, and ascorbic acid added are as follows: hexavalent molybdic acid
It is used in companies that can be sufficiently reduced to l. Normal molybdenum (M)
When O) is 1, a weight ratio of 0.1 to 0.5 is suitable.

この発明におけるモリブデン酸塩の酸性水溶液の11度
は、試薬としての安定性の点では多い方か好ましく、リ
ン酸との反応性からは少ない方が好ましい。例えば、硫
酸を1ON前後及び塩酸を3前後存在させるのが好まし
い。前述した混合調製の場合には、これに対応して混合
調製前の各酸性水溶液の酸濃度を決定するのが好ましい
が、還元させる六価のモリブデン酸塩酸性水溶液中の酸
濃度は円滑な還元を行なうために比較的少な目にするの
が適しており、かつ塩酸のような非酸化性酸を用いるの
がより好ましい。これに対し混合させる六価のモリブデ
ン酸塩酸性水溶液中の酸濃度は多くするのかより好まし
く、塩酸やrA酸を適宜混合して用いればよい。
In the present invention, the acidic aqueous solution of molybdate has a temperature of 11 degrees, which is preferably higher in terms of stability as a reagent, and preferably lower in terms of reactivity with phosphoric acid. For example, it is preferable to have about 1 ON of sulfuric acid and about 3 ON of hydrochloric acid. In the case of the above-mentioned mixing preparation, it is preferable to determine the acid concentration of each acidic aqueous solution before mixing preparation, but the acid concentration in the hexavalent molybdate acidic aqueous solution to be reduced is determined so that smooth reduction is possible. It is suitable to use a relatively small amount to carry out this, and it is more preferable to use a non-oxidizing acid such as hydrochloric acid. On the other hand, it is more preferable to increase the acid concentration in the hexavalent molybdate acidic aqueous solution to be mixed, and it is preferable to use a mixture of hydrochloric acid and rA acid as appropriate.

上記還元剤を用いた場合には、得られた還元酸性水溶液
は褐色透明の真溶液であり、従来のように濾過処理を全
く行なうことなく六価のモリブデン酸塩水溶液との混合
に供しうる。
When the above-mentioned reducing agent is used, the resulting reduced acidic aqueous solution is a brown transparent true solution, and can be mixed with a hexavalent molybdate aqueous solution without any filtration treatment as in the conventional case.

このようにしてiqられた方面及び六価のモリブデンを
含むしリブ1ン酸塩の酸性水溶液と試料液との混合比は
、モリブデンPli塩淵度゛史試料液中のリン濃度によ
っても変化しうるか、例えば、試料液5011に対し−
C約1.5〜417程度とするのが適している。
The mixing ratio of the sample liquid with the acidic aqueous solution of phosphate containing molybdenum and hexavalent molybdenum thus determined varies depending on the concentration of phosphorus in the sample liquid. For example, for sample liquid 5011 -
It is suitable that C is approximately 1.5 to 417.

加熱は通常50〜100℃の範囲で行なえばよく、肖色
呈色の迅速性の点で沸騰水中で加熱するのが好ましい。
Heating may normally be carried out in the range of 50 to 100°C, and heating in boiling water is preferred from the viewpoint of rapid color development.

この場合、約15分で最大吸収となる。In this case, maximum absorption occurs in about 15 minutes.

吸光度測定は、通常、極大吸収波長域である820・〜
830nmで行なうのが適している。
Absorbance measurement is usually carried out in the maximum absorption wavelength range of 820.
Suitably, it is carried out at 830 nm.

(ボ)実施例 ■試薬の調製 七り1デン酸アンモニウム6水和物8.15(+を水6
011に溶解した。この溶液2511をビーカーにとり
、12N塩醒ど水12.5xIを加え、これに下記化学
物質(還元剤)  0.2gを加え撹拌溶解した。この
液401ノをA液とする。
(B) Example ■ Preparation of reagent Ammonium monodenate hexahydrate 8.15 (+ 6
It was dissolved in 011. This solution 2511 was placed in a beaker, 12.5×I of 12N salted water was added, and 0.2 g of the following chemical substance (reducing agent) was added thereto and dissolved with stirring. This liquid 401 is referred to as liquid A.

はじめに作成したモリブデン酸アンモニウム溶液307
Ilに12N塩酸501!と18M硫酸561!を徐々
に加え、溶液濃縮後12N塩酸を加えて容積を136毅
にもと1゜この液に上記A液40 xIを加え、水でう
すめて200 xlとして五価及び六価のモリブデンを
含むモリブデン酸塩の酸性水溶液を調製した。
Firstly prepared ammonium molybdate solution 307
12N hydrochloric acid to Il 501! and 18M sulfuric acid 561! After concentrating the solution, add 12N hydrochloric acid to bring the volume up to 136 liters. To this solution, add 40 x I of the above solution A and dilute with water to make 200 x 1 molybdenum containing pentavalent and hexavalent molybdenum. An acidic aqueous solution of the acid salt was prepared.

還元剤として各々用いた化学物質は以下の通りである。The chemical substances used as reducing agents are as follows.

A、金属錫 B、金属鉄 C,#A化第−錫 D1アスコルビン酸 [、ハイドロキノン [、亜硫酸ナトリウム G1亜硫酸水素ナトリウム [」、硫酸第一鉄 ■、硫酸ヒドラジン Jll−アミノ−2ナフトール−4−スルホン酸 に1アミトール ■分析操作 オルトリン酸根を2.4.6.8及び10ppi含右り
゛る試お1液各々201)を5011のメスフノス:1
に注入し、この中に各々上記モリブデン酸塩試!11!
311を加え、沸騰水中に浸漬して1時間放置した。そ
の後冷却し水を加えて5011とした後、分光光度計を
用いU 830nmにtF3ける吸光度を各々測定した
A, Metallic tin B, Metallic iron C, #A Tin-tin D1 Ascorbic acid [, Hydroquinone [, Sodium sulfite G1 Sodium bisulfite], Ferrous sulfate ■, Hydrazine sulfate Jll-Amino-2 Naphthol-4- 1 amitol in sulfonic acid Analysis procedure 1 solution each containing 2.4, 6.8 and 10 ppi of orthophosphoric acid group 5011 Mesfunos: 1
Inject each of the above molybdates into this! 11!
311 was added, and the mixture was immersed in boiling water and left for 1 hour. Thereafter, the mixture was cooled and water was added to give a concentration of 5011, and then the absorbance at tF3 at U 830 nm was measured using a spectrophotometer.

この吸光度とオルトリン酸根濃度との関係を第1図に示
した。なお、図中の従来例は、各化学物質をビーカー中
で撹拌溶解させて還元する代わりに、分液漏斗中で10
11の水銀を加え5分間激しく振盪し濾過して還元溶液
を10る以外、前記と同様にしC吸光度を測定した結果
である(ただし、使用済みの水銀にはH(12Cl 2
が付着しているのでこれをNa Clの濃厚溶液中で加
温し水銀を完全に回収した)。
The relationship between this absorbance and the concentration of orthophosphate radicals is shown in FIG. In addition, in the conventional example shown in the figure, instead of stirring and dissolving each chemical substance in a beaker and reducing it,
The C absorbance was measured in the same manner as above, except that mercury No. 11 was added, shaken vigorously for 5 minutes, filtered, and the reduced solution was removed.
(The mercury was completely recovered by heating it in a concentrated solution of NaCl).

このように、金属錫、塩化第1錫、アスコルビン酸及び
ハイドロキノン<A、C,ElD)使用時において、リ
ン酸恨淵度と吸光度に優れた直線関係か117られた。
As described above, when using tin metal, stannous chloride, ascorbic acid, and hydroquinone <A, C, ElD), an excellent linear relationship between phosphoric acid resistance and absorbance was established.

これに対し、他の化学物質においCは実質的にイ色が生
じず定量不能であることがT1する。
On the other hand, in other chemical substances, C does not substantially produce a dark color and cannot be quantified.

なお、上記A、C,E及びDのうちA、C,Dを用いた
モリブデンU塩の酸性水溶液を一5℃及び50℃で保存
したところ、6力月後においても状態は変わらず優れた
安定性を有することが判明した。これに対し、E(ハイ
ドロキノン)を用いたものは、2ケ月で黒色化し使用で
きなくなることか判明した。
In addition, when an acidic aqueous solution of molybdenum U salt using A, C, and D among the above A, C, E, and D was stored at -5°C and 50°C, the condition remained excellent even after 6 months. It was found to have stability. On the other hand, it was found that those using E (hydroquinone) turned black in two months and became unusable.

これらの結果から、A、C,及びD(金属錫、塩化第1
錫及びアスコルビン酸)が優れた還元剤であることが判
る。
From these results, A, C, and D (metallic tin, dichloride
It turns out that tin and ascorbic acid) are excellent reducing agents.

なお、上記各調製試薬のうち金属錫を用いたものについ
てのJIS法(モリブデン前払)との相関を調べた結果
を第2図に示す。
FIG. 2 shows the results of examining the correlation with the JIS method (molybdenum advance payment) for those using metallic tin among the above-mentioned prepared reagents.

なお、試料は、重合リンil!塩系腐食防止剤を含有す
る某製鉄所から得た冷却水(Ii1度既知)からのもの
を用いた。
The sample was polymerized phosphorus il! Cooling water (Ii 1 degree known) obtained from a certain steel mill containing a salt-based corrosion inhibitor was used.

このよ−うに、この発明の方法は良好な相関性を有して
いることが判る。
Thus, it can be seen that the method of the present invention has good correlation.

(へ)発明の効果 この発明の方法によれば、毒性の高い水銀を用いること
なく、一つの及応試桑でリン類を効率良く定吊りること
がひきる。そして、試料に加える反応試薬し安定性か浸
れでいるため大量作製、貯蔵等に適してa5す、安全性
の点とも相俟って現場て・の調装に極めC適しており、
分析操作上り利である。さらに、縮合リン酸塩等の加水
分解付リン化合物の加水分解も呈色反応量に局部に行な
えるという利点も有している。
(F) Effects of the Invention According to the method of the invention, phosphorus can be efficiently suspended using a single test mulberry without using highly toxic mercury. Since the reaction reagent added to the sample is stable and immersible, it is suitable for mass production and storage, and combined with safety, it is extremely suitable for on-site preparation.
Analytical operation is profitable. Furthermore, it also has the advantage that hydrolysis of hydrolyzable phosphorus compounds such as condensed phosphates can be carried out locally in the amount of color reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法によるリン酸根と吸光度との
関係を、比較例と共に示ッグシフ図、第2図は同じ<J
IS77法との相関を示すグラフ図である。 吸先彦
Fig. 1 is a gschiff diagram showing the relationship between phosphate groups and absorbance according to the method of the present invention, together with comparative examples, and Fig. 2 shows the same <J
It is a graph diagram showing the correlation with the IS77 method. Susakihiko

Claims (1)

【特許請求の範囲】 1、金属錫、塩化第1錫及びアスコルビン酸から選ばれ
る1種又は2種以上の還元剤によって還元された五価の
モリブデンを含有し、六価のモリブデンと上記五価のモ
リブデンとを前者/後者として0.5〜2.0の比で共
存してなるモリブデン酸塩の酸性水溶液を、試料液と混
合・加熱し、生じうる青色の呈色に基づいて該試料液中
のリン類を定量することを特徴とするリン類の定量方法
。 2、モリブデン酸塩の酸性水溶液が、六価のモリブデン
酸塩の酸性水溶液中に還元剤を添加して得られる溶液と
、六価のモリブデン酸塩の酸性水溶液とを混合して調製
される特許請求の範囲第1項記載の定量方法。
[Claims] 1. Contains pentavalent molybdenum reduced with one or more reducing agents selected from tin metal, stannous chloride, and ascorbic acid; An acidic aqueous solution of molybdate coexisting with molybdenum at a ratio of 0.5 to 2.0 (former/latter) is mixed with a sample solution and heated, and the sample solution is determined based on the blue coloration that may occur. A method for quantifying phosphorus, characterized by quantifying phosphorus in it. 2. A patent in which an acidic aqueous solution of molybdate is prepared by mixing a solution obtained by adding a reducing agent to an acidic aqueous solution of hexavalent molybdate and an acidic aqueous solution of hexavalent molybdate. Quantification method according to claim 1.
JP8033186A 1986-04-08 1986-04-08 Quantitative determination method of phosphori Pending JPS62237355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8033186A JPS62237355A (en) 1986-04-08 1986-04-08 Quantitative determination method of phosphori

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8033186A JPS62237355A (en) 1986-04-08 1986-04-08 Quantitative determination method of phosphori

Publications (1)

Publication Number Publication Date
JPS62237355A true JPS62237355A (en) 1987-10-17

Family

ID=13715269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8033186A Pending JPS62237355A (en) 1986-04-08 1986-04-08 Quantitative determination method of phosphori

Country Status (1)

Country Link
JP (1) JPS62237355A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106856A (en) * 1980-12-24 1982-07-02 Agency Of Ind Science & Technol Analytic agent for phosphoric acid and arsenic acid
JPS58153167A (en) * 1982-03-08 1983-09-12 Fujihira Kogyo Kk Color reagent for determining phosphoric acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106856A (en) * 1980-12-24 1982-07-02 Agency Of Ind Science & Technol Analytic agent for phosphoric acid and arsenic acid
JPS58153167A (en) * 1982-03-08 1983-09-12 Fujihira Kogyo Kk Color reagent for determining phosphoric acid

Similar Documents

Publication Publication Date Title
Panadero et al. Stopped flow kinetic determination of nalidixic acid and norfloxacin based on lanthanide-sensitized fluorescence
Burton et al. Determination of soluble phosphate, and total phosphorus in sea-water and of total phosphorus in marine muds
Ohnishi et al. Characterization of the catalyzed phosphate assay
Maynes et al. Absorptiometric determination of iridium and rhodium
Goodwin Colorimetric measurement of serum bromide with a bromate-rosaniline method
US5556787A (en) Manganese III method for chemical oxygen demand analysis
Uchikawa The Spectrophotometric Determination of Perchlorate Ions by Solvent Extraction with Crystal Violet
Chauhan et al. Use of calmagite for the determination of traces of magnesium in biological materials
JPS62237355A (en) Quantitative determination method of phosphori
Barker et al. The colorimetric determination of adrenaline in suprarenal gland extracts
Winkler et al. The use of phenylfluorone in the presence of cetylpyridinium chloride and Triton X-100 for the spectrophotometric determination of copper (II) in blood serum
Nakamura Resorcinol as fluorimetric reagent for the determination of nitrate
Abe et al. Simultaneous determination of trace iron (II) and iron (III) based on kinetic spectrophotometry of the iron (III)-pyrocatechol violet complex in a micellar medium
Yonehara et al. Simultaneous spectrophotometric determination of traces of bromide and iodide based on their catalytic effects on pyrocatechol violet-hydrogen peroxide reaction
Hayashi et al. Spectrophotometric determination of phosphate using lanthanum chloranilate
Westwood et al. The direct colorimetric determination of tungsten in cast iron
Knechtel et al. Determination of chlorine dioxide in sewage effluents
US20080057591A1 (en) Metal Indicator
Ensafi et al. Catalytic kinetic determination of ultratrace amounts of silver with spectrophotometric detection
RU2206889C2 (en) Method of determining nitrate, reducing agent and a method of preparation thereof
Gaidamauskas et al. Metal complexation chemistry used for phosphate and nucleotide determination: an investigation of the Yb 3+–pyrocatechol violet sensor
Scardi A rapid colorimetric method for the determination of isonicotinic acid hydrazide in blood serum
Rizk et al. Spectrophotometric determination of aluminum and copper ions using spadns
Shrivastava et al. Spectrophotometric determination of stability constant of naphthol green-B dye using Ni (II) as an analytical reagent
Uesugi The spectrophotometric determination of scandium with chromal blue G