JPS62236556A - Profile cross-sectional tubular body for heat exchange - Google Patents

Profile cross-sectional tubular body for heat exchange

Info

Publication number
JPS62236556A
JPS62236556A JP61079840A JP7984086A JPS62236556A JP S62236556 A JPS62236556 A JP S62236556A JP 61079840 A JP61079840 A JP 61079840A JP 7984086 A JP7984086 A JP 7984086A JP S62236556 A JPS62236556 A JP S62236556A
Authority
JP
Japan
Prior art keywords
tubular body
heat exchange
protrusion
tubular
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61079840A
Other languages
Japanese (ja)
Inventor
久仁夫 三十尾
岡村 清伸
博 木村
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61079840A priority Critical patent/JPS62236556A/en
Publication of JPS62236556A publication Critical patent/JPS62236556A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は人工臓器等に用いられる小型の多管式熱交換器
に好適な熱交換用管状体に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a heat exchange tubular body suitable for a small multi-tubular heat exchanger used for artificial organs and the like.

し従来の技術〕 熱又換器な高温流体刀為ら低温流体あるいに七の逆の方
向に熱を伝達する装置として工業用途はかりでなく家庭
用冷暖房i置、人工肺等の医療用機器等、様々の分野で
利用されている。特に多管式熱交換器は伝熱効率に優れ
、構造も簡単なことから、一般に広く用いられている。
[Conventional technology] As a device for transferring heat from a high-temperature fluid to a low-temperature fluid or vice versa, it is used not only in industrial scales but also in household air-conditioning equipment, medical equipment such as artificial lungs, etc. etc., are used in various fields. In particular, shell-and-tube heat exchangers are generally widely used because they have excellent heat transfer efficiency and are simple in structure.

多管式熱交換器の伝熱チューブの素材としては従来より
伝熱効率のi&も優れ友金属、特に耐蝕性を有するステ
ンレス製のものが多く便用されている。
As materials for heat transfer tubes in shell-and-tube heat exchangers, friendly metals, especially corrosion-resistant stainless steel, have been commonly used because of their excellent heat transfer efficiency.

一万、最近、人工臓器等への組込みが可能なコンパクト
な熱又換器が要望されており、外径が1〜3m程度の比
較的細いステンレス製チューブを利用し′fcも、のが
実用化されているが、外径が1〜3mの場合、管状体の
単位容積当9の伝熱面積は十分に大きくとることが難し
く、従って、所定の伝熱面損金確保するには、熱又換器
の内容積を大きくする必要があり、伝熱面積を元号にと
った慈父換器全人工肺等へ使用し友場合、体外への血液
搬出量が大きくなり患者の負担が重くなるという問題か
ある。
Recently, there has been a demand for a compact heat exchanger that can be incorporated into artificial organs, etc., and it has become practical to use a relatively thin stainless steel tube with an outer diameter of about 1 to 3 meters. However, when the outer diameter is 1 to 3 m, it is difficult to obtain a sufficiently large heat transfer area per unit volume of the tubular body. It is necessary to increase the internal volume of the exchanger, and when used in a total oxygenator, etc., which uses the heat transfer area as its name, the amount of blood being carried out of the body becomes large and the burden on the patient becomes heavy. There is a problem.

このような問題音解決する几めに、我々は特願昭60−
162947において伝熱チューブとしての管状体にそ
の外径と肉厚とを特定したものを用いることにより、こ
の裡の熱交換器全著しくコンパクト化し、さらに機能性
全飛躍的に同上させ得ることを見出し几。
In order to solve this kind of problem, we have filed a special application in 1986-
In 162947, it was discovered that by using a tubular body as a heat transfer tube with a specified outer diameter and wall thickness, the entire heat exchanger therein could be made significantly more compact, and furthermore, the functionality could be dramatically increased.几.

し発明か解決しようとする問題点〕 しかしながら、管状体がM模型合体であって、しかもコ
ンパクト化可能なように細いものになると管状体自体が
変形しfすくなり、熱交換モジュールを作成した場合に
管状体の直線形状が乱れて管状体束の分散性が悪くなる
とともに管状体の断面が真円状であるため5管状体どう
しが密着して外部を流れる流体との熱交換が均一に効率
良く行なわれず、性能安定性等に問題がある。
[Problems to be solved by the invention] However, if the tubular body is an M model combination and is thin enough to be made compact, the tubular body itself is likely to deform. In addition, the linear shape of the tubular body is disturbed and the dispersibility of the tubular bundle becomes poor, and since the cross section of the tubular body is a perfect circle, the five tubular bodies are in close contact with each other, making heat exchange with the fluid flowing outside uniform and efficient. This is not done well and there are problems with performance stability, etc.

そこで、このような細い管状体においても、変形しにく
く、モジュールを作成し九時に管状体どうしが、密着し
ないような均一分散性の優れ友熱交換用管状体が望まれ
ている。
Therefore, even in such a thin tubular body, there is a need for a tubular body for friendly heat exchange that is difficult to deform and has excellent uniform dispersibility so that the tubular bodies do not come into close contact with each other when forming a module.

し問題点を解決する窺めの手段〕 本発明は上記の失望にこ几える熱又換用管状態全提供す
ることにある。即ち本発明の要旨は溶融賦型可能な熱可
塑性M機高分子化合物より成り、外径100〜1000
μvnf有する管状体において、該管状体の外周部に下
記式(1)及び(2)を満足する長手方向に延長された
突起を少なくと%、1条Mする熱交換用異形断面管状体
にある。
Means for Solving the Problems] The object of the present invention is to provide a heat exchanger pipe that overcomes the above-mentioned disappointment. That is, the gist of the present invention is that it is made of a thermoplastic M-machine polymer compound that can be melt-formed, and that has an outer diameter of 100 to 1000 mm.
In the tubular body having μvnf, the tubular body has at least 1 M of longitudinally extending protrusions satisfying the following formulas (1) and (2) on the outer periphery of the tubular body. .

D、/D、=1.15〜2. OO(1)(Dl K 
 T n ) / DBπ) 1.14    (2)
但し、DIは管状体の円径(μm) D!は突起を除く管状体の外径(μm)πは円周率 Tは突起の幅(μm) nは突起の数 本発明の管状体の材質としては溶融賦型可能な熱可塑性
有機高分子化合物であれば特に限定されないか、医療用
途に使用する場合は安全性。
D, /D, = 1.15-2. OO(1)(Dl K
T n ) / DBπ) 1.14 (2)
However, DI is the circular diameter (μm) of the tubular body D! is the outer diameter of the tubular body excluding protrusions (μm) π is the circumference T is the width of the protrusion (μm) n is the number of protrusions The material of the tubular body of the present invention is a thermoplastic organic polymer compound that can be melt-formed. If so, there are no particular limitations, or if it is used for medical purposes, it is safe.

信頼性上確保でき、浴融賦形により容易に管状体を形成
できる材料が好ましく、ポリエチレン。
A material that can be ensured in terms of reliability and that can be easily formed into a tubular body by bath melting is preferred, such as polyethylene.

ポリプロピレン、ポリ4−メチルペンテン−1゜ポリエ
チレンテレフタレート、ポリアミド、ポリカーボネート
、ポリメチルメタクリレート。
Polypropylene, poly4-methylpentene-1° polyethylene terephthalate, polyamide, polycarbonate, polymethyl methacrylate.

ポリフッ化ビニリデン、ポリオキシメチレン。Polyvinylidene fluoride, polyoxymethylene.

ポリバラフェニレンスルフィド等が好適な例として挙げ
られる。
Preferred examples include polyvaraphenylene sulfide.

管状体の外径としては100〜1000μmの範囲のも
のが用いられるが、外径が1000μmt超えるものは
単位容積当りの伝熱面積が小さくなり、熱交換器のコン
パクト化は難しくなる。
The outer diameter of the tubular body used is in the range of 100 to 1000 μm, but if the outer diameter exceeds 1000 μm, the heat transfer area per unit volume becomes small, making it difficult to make the heat exchanger compact.

まに1外径が100μm未満では円径が細くなり管状体
内部を流れる流体の圧力損失が高くなりすぎ、問題があ
る。熱交換器の効率的な性能を得る点からは外径200
〜800μmであることがより好ましい。
However, if the outer diameter of the tubular body is less than 100 μm, the diameter becomes small and the pressure loss of the fluid flowing inside the tubular body becomes too high, which poses a problem. From the point of view of obtaining efficient performance of the heat exchanger, the outer diameter is 200 mm.
It is more preferable that it is 800 micrometers.

本発明の管状体に第1囚に示すように外周部に長手方向
に延長された突起を有するものであり、その形状として
は上記式(1]及び(2)の条件を濶たす必要かある。
As shown in the first example, the tubular body of the present invention has a projection extending in the longitudinal direction on the outer periphery, and its shape must satisfy the conditions of formulas (1) and (2) above. be.

すなわち、第1図に示されるように、管状体の断面にお
ける円径k Dt、突起を除く外径k Dzとしたとき
、その円径と外径の比り鵞/Dtにより膜厚が規定され
るが、本発明の管状体では(1]式に示されるようにD
2/ DIは、1.15以上、2.00以下の範囲が好
ましい。1.15禾満の場合は膜厚が非常に薄くなるた
め、伝熱効率の点では良いか、機械的強度は著しく低下
し、使用時の外圧あるいは内圧によって偏平や破裂が起
こり、実質的に使用不可能となる。また、Dz / D
Iが2.00より大きくなると膜厚か増大するため、伝
熱抵抗が大きくなり伝熱効率は著しく低下する。
That is, as shown in Fig. 1, when the diameter of the circle in the cross section of the tubular body is kDt and the outer diameter excluding the protrusion is kDz, the film thickness is defined by the comparison of the circle diameter and the outer diameter /Dt. However, in the tubular body of the present invention, as shown in formula (1), D
2/DI is preferably in the range of 1.15 or more and 2.00 or less. If the thickness is 1.15%, the film thickness will be very thin, so it may not be good in terms of heat transfer efficiency, but its mechanical strength will drop significantly, and flattening or rupture will occur due to external or internal pressure during use, making it virtually impossible to use. It becomes impossible. Also, Dz/D
When I is greater than 2.00, the film thickness increases, heat transfer resistance increases, and heat transfer efficiency decreases significantly.

更に(2]式に示されるように、外周長D2πから突起
部と接する長さ’rnt−iし引い友長さは、内周長D
1πの1.14倍よりも大きいことが必要である。この
値が1.14以下の条件では管状体外表面における突起
部の占有面積が大きくなり管状体の有効表面積の著しい
低下を招く友め、熱交換用管状体として適当ではない。
Furthermore, as shown in equation (2), the length 'rnt-i of the contact with the protrusion from the outer circumference D2π is the inner circumference length D
It needs to be larger than 1.14 times 1π. If this value is less than 1.14, the area occupied by the protrusions on the outer surface of the tubular body becomes large, leading to a significant reduction in the effective surface area of the tubular body, making the tubular body unsuitable for use as a heat exchanger.

なお、突起の@Tとは第2図に示されるように、外周面
と突起部とが接する破線部分の長さで表わされる。ま友
、幅Tを有する突起の数nは少なくとも1条は必要であ
るが、管状体の分散性と有効表面積のパラノスから考え
て1〜8条が好ましい。突起の高さや形態については特
に限定されないが、突起の低い場合には、有効な分散性
が得られにくい之め、突起幅と同等あるいはそれ以上の
高さであることが好ましい口 塞発明の熱交換用異形断面管状体全製造する方法とじて
は、例えば突起形態t!する異形断面中空糸@型用紡糸
口金を用いて熱可塑性M機高分子化合物を押出し成形す
ることにより得られる。
Note that, as shown in FIG. 2, @T of the protrusion is represented by the length of the broken line portion where the outer circumferential surface and the protrusion are in contact. Although the number n of protrusions having a width T must be at least 1, it is preferably 1 to 8 in view of the dispersibility of the tubular body and the effective surface area. There are no particular restrictions on the height or shape of the protrusions, but if the protrusions are low, it is difficult to obtain effective dispersion, so it is preferable that the height is equal to or greater than the protrusion width. As for the entire method of manufacturing the replacement tubular body with irregular cross section, for example, the protrusion shape t! It is obtained by extrusion molding a thermoplastic M-machine polymer compound using a spinneret for hollow fibers with irregular cross-sections.

多管式熱父矢器の伝熱チューブとして本発明の異形断面
管状体を用いる場合、管状体の充填率は如何なるもので
あっても良く、充填率が低いものでは管状体の嵩量性の
tめに管状体束の均一分散性が同上する。また、充填率
の高いものでは管状体どうしの密着が起りにくくなり、
管状体束の内部まで液体が容易に流れ込む丸め均一で効
率的な熱交換が可能となる。
When using the irregular cross-section tubular body of the present invention as a heat transfer tube of a multi-tubular heat exchanger, the tubular body may have any filling rate, and if the filling rate is low, the bulk of the tubular body The uniform dispersibility of the tubular body bundle is the same as above. In addition, if the filling rate is high, it becomes difficult for the tubular bodies to stick together,
Rounding allows liquid to easily flow into the tubular bundle, enabling uniform and efficient heat exchange.

し実施例」 以下、実施例により本発明を詳述する。Examples Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 密度[1968t/cry?、  メルトインデックス
氏5の高密度ポリエチレン(三井石油化学株式会社製、
ハイゼツクス 2208.7 )’i吐出口佳が28鵬
、円環スリット巾が五5鵡の二重管構造に!し、外周部
に等間隔に6つのくほみ’に!する異形中空糸賦型用紡
糸口金を用いて自吸式で空気t−導入し、紡糸温度17
0℃、吐出量30 r/minで溶融紡糸し、巻取速度
400 m/minで巻取った。
Example 1 Density [1968t/cry? , high-density polyethylene with a melt index of Mr. 5 (manufactured by Mitsui Petrochemical Co., Ltd.,
Hi-Zex 2208.7 )'i Double pipe structure with a discharge port size of 28mm and an annular slit width of 55mm! Then, there are 6 holes evenly spaced around the outer circumference! Using a spinneret for forming irregularly shaped hollow fibers, air was introduced in a self-priming manner, and the spinning temperature was set to 17.
Melt spinning was carried out at 0° C. and a discharge rate of 30 r/min, and winding was performed at a winding speed of 400 m/min.

得られ友ポリエチレン異形断面管状体は突起1除く外径
が471μm、膜厚71μm、1条の突起の幅2) p
m、高さ28 pm %D2 / DI = 1.43
、(D鵞π−T n )/ DIπ= 1.51であっ
た。このポリエチレン異形管状体2256本を束ね、直
径45■、長さ160鵡の円筒状の容器内へ収納し、両
端を各々15趨の厚さでウレタン樹脂で固定することに
より有効長130鵬の円筒状の熱交換器全10こ製作し
た。
The obtained polyethylene irregular cross-section tubular body had an outer diameter of 471 μm excluding the protrusion 1, a film thickness of 71 μm, and a width of one protrusion 2) p
m, height 28 pm %D2/DI = 1.43
, (D π - T n )/DI π = 1.51. 2256 of these polyethylene irregularly shaped tubular bodies are bundled and stored in a cylindrical container with a diameter of 45 cm and a length of 160 cm, and both ends are fixed with urethane resin with a thickness of 15 cm each to form a cylinder with an effective length of 130 cm. A total of 10 heat exchangers were manufactured.

収納された異形管状体は優れfc嵩高性を有しており、
管状体どうしの密着部分に認められなかった。また、熱
交換器の端面をカッターで切断し、切断面を拡大して観
察したところ、管状体の分散状態は良好であった。
The housed irregularly shaped tubular body has excellent fc bulkiness,
It was not observed in the areas where the tubular bodies were in close contact with each other. Further, when the end face of the heat exchanger was cut with a cutter and the cut surface was observed under magnification, it was found that the dispersion state of the tubular bodies was good.

上記の熱交換器を用いて管状体の外側にHema!:、
ocrtt (fi 35%の牛1IIL液を、内側に
水全流し熱交換を行なわせ友。この結果、水流量I Q
 z/mtn 、血7PL bit t6 L/ mi
n T、血液入側温度30℃、水入側温度40℃の時の
下記に示す熱交換効率Eは第1表に示すように熱又換器
ごとのほらつきが少なく、性能安定性に優れていること
が確認された。
Hema! is applied to the outside of the tubular body using the heat exchanger described above. :,
ocrtt (fi 35% cow 1IIL liquid is completely poured inside with water to perform heat exchange. As a result, the water flow rate IQ
z/mtn, blood 7PL bit t6 L/mi
n T, the heat exchange efficiency E shown below when the blood input side temperature is 30℃ and the water input side temperature is 40℃, as shown in Table 1, there is little fluctuation in each heat exchanger and excellent performance stability. It was confirmed that

K = (TBO−TBr) / (TWI−TBU)
ここで、E:熱交換効率、  TBx:血液入側温度。
K = (TBO-TBr) / (TWI-TBU)
Here, E: heat exchange efficiency, TBx: blood entrance temperature.

’rBo :血液入側温度、  Twz:水入側温圧で
ある。
'rBo: Blood inlet temperature; Twz: Water inlet temperature and pressure.

比較例1 突起を詩文ない以外は実施例1と同様の円径。Comparative example 1 The diameter of the circle is the same as in Example 1 except that the protrusion is not shaped like a poem.

膜厚全有するポリエチレン管状体2256不全束ね、有
効長130mの円筒状の熱交換器10個全作製し、実施
例1と同様の条件にて熱交換全行なわせた。その結果上
第1表に示す。得られ几熱交換器の熱交換効率は熱交換
器ごとのばらつきが大きいものであつ友。
A total of 10 cylindrical heat exchangers with an effective length of 130 m were fabricated using 2256 polyethylene tubular bodies having a full film thickness, and heat exchange was performed under the same conditions as in Example 1. The results are shown in Table 1. The heat exchange efficiency of the obtained heat exchangers varies widely from one heat exchanger to another.

実施例2 230℃でのメルトインデックス値が101F/ 10
 minのポリプロピレンを吐出口径か25調、円環ス
リット巾が1.7 amの二重管構造’に!し外周部に
等間隔に3つの突起形状を有する異形中空糸賦型用紡糸
口金を用い、自吸式で空気t−導入し、紡糸温度200
C,吐出!10f/min 、巻取速度6.00m/m
inの条件で溶融紡糸し友◎ 得らnたポリプロピレン典形管状体は等間隔に5条の突
起金有し、突起を除く外径が246湖膜厚22μm 、
 1条の突起の幅9μm、高さ15pm 、  Dz 
/D%= t 22 、  (Dz f Tn)/D、
lm=1−18であつ友。
Example 2 Melt index value at 230°C is 101F/10
A double pipe structure with a discharge port diameter of 25 mm and an annular slit width of 1.7 am! Using a spinneret for forming irregularly shaped hollow fibers having three protrusions at equal intervals on the outer periphery, air was introduced in a self-priming manner, and the spinning temperature was 200.
C. Spit! 10f/min, winding speed 6.00m/m
The polypropylene typical tubular body obtained had five protrusions at equal intervals, the outer diameter excluding the protrusions was 246 mm, and the film thickness was 22 μm.
The width of one protrusion is 9 μm, the height is 15 pm, Dz
/D%=t 22 , (Dz f Tn)/D,
Atsutomo with lm=1-18.

このポリプロピレン異形管状体8843不全束ね、実施
例1と同様の円筒状の熱又換器1゜個全製作した。収納
され几管状体束は良好な均一分散性を示し、管状体どう
しが密着している部分は認められなかつ之。
By bundling the polypropylene irregularly shaped tubular bodies 8843 together, a 1° cylindrical heat exchanger similar to that of Example 1 was manufactured. The stored bundle of tubular bodies showed good uniform dispersion, and no areas where the tubular bodies were in close contact with each other were observed.

上記の熱又換器を用いて、実施例1と同様にして熱又換
効率を調べたところ、第1表に示す値が得られ、性能の
ばらつきの少ない熱又換器が得られ九〇 比較例2 突起を詩文ない以外は実施例2と同様の円径。
Using the above heat exchanger, the heat exchange efficiency was investigated in the same manner as in Example 1, and the values shown in Table 1 were obtained, indicating that a heat exchanger with little variation in performance was obtained. Comparative Example 2 Same diameter as Example 2 except that the protrusion was not shaped like a poem.

膜厚e!するポリプロピレン管状体8845本を束ねて
なる、有効長130Mの円筒状の熱又換器10個會製作
し友。引@き、実施例1と同様にして熱又換効率全調べ
友ところ、第1表に示す値を得た・ 第  1  表 し発明の効果〕 本発明の熱交換用異形管状体は外周面に突起か設けられ
ているため、剛性七有し、形態保持性に優れているばか
りでなく、モジュール化し几場合に管状体どうしが@着
せず、均一分散性。
Film thickness e! A group of 10 cylindrical heat exchangers with an effective length of 130M were made by bundling 8845 polypropylene tubular bodies. Then, the total heat exchange efficiency was investigated in the same manner as in Example 1, and the values shown in Table 1 were obtained. Because it is provided with protrusions, it not only has rigidity and excellent shape retention, but also has uniform dispersion because the tubular bodies do not stick to each other when modularized.

嵩高性に優れ次管状体来が得られる。It has excellent bulk and a tubular shape.

従って、コンパクト化し次熱交換器においても外部を流
れる流体との熱交換を均一に効率良く行なうことが可能
となり、性能安定性の点で非常に大きな効果を与えるも
のである。
Therefore, even in a compact secondary heat exchanger, it is possible to uniformly and efficiently exchange heat with the fluid flowing outside, which has a very large effect in terms of performance stability.

歳図面の簡jIlな説明 図において Dl: V:J径 り鵞:突起を除く外径 T:突起の幅 を示す。Simple explanation of old drawings In the figure Dl: V: J diameter Riku: Outer diameter excluding protrusions T: Width of protrusion shows.

川・1図 寺2図       孝3図River・1 diagram Temple map 2 Koji map 3

Claims (1)

【特許請求の範囲】 溶融賦型可能な熱可塑性有機高分子化合物より、外径1
00〜1000μmを有する管状体において、該管状体
の外周部に下記式(1)及び(2)を満足する長手方向
に延長された突起を少なくとも1条有する熱交換用異形
断面管状体。 D_2/D_1=1.15〜2.00(1)(D_2π
−Tn)/D_1π>1.14(2)但し:D_1は管
状体の円径(μm) D_2は突起を除く管状体の外径(μm) πは円周率 τは突起の幅(μm) nは突起の数
[Claims] Made from a melt-formable thermoplastic organic polymer compound with an outer diameter of 1
A tubular body for heat exchange with an irregular cross section having a diameter of 00 to 1000 μm, the tubular body having at least one projection extending in the longitudinal direction that satisfies the following formulas (1) and (2) on the outer periphery of the tubular body. D_2/D_1=1.15~2.00(1)(D_2π
-Tn)/D_1π>1.14 (2) Where: D_1 is the circular diameter of the tubular body (μm) D_2 is the outer diameter of the tubular body excluding the protrusion (μm) π is the circumference τ is the width of the protrusion (μm) n is the number of protrusions
JP61079840A 1986-04-07 1986-04-07 Profile cross-sectional tubular body for heat exchange Pending JPS62236556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079840A JPS62236556A (en) 1986-04-07 1986-04-07 Profile cross-sectional tubular body for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079840A JPS62236556A (en) 1986-04-07 1986-04-07 Profile cross-sectional tubular body for heat exchange

Publications (1)

Publication Number Publication Date
JPS62236556A true JPS62236556A (en) 1987-10-16

Family

ID=13701400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079840A Pending JPS62236556A (en) 1986-04-07 1986-04-07 Profile cross-sectional tubular body for heat exchange

Country Status (1)

Country Link
JP (1) JPS62236556A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549107A (en) * 1978-10-02 1980-04-09 Akzo Nv Dialysis membrane in cellulose and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549107A (en) * 1978-10-02 1980-04-09 Akzo Nv Dialysis membrane in cellulose and its preparation

Similar Documents

Publication Publication Date Title
USRE41870E1 (en) Method for forming hollow fibers
US5558737A (en) Method of welding a tip to a catheter
US5578267A (en) Cylindrical blood heater/oxygenator
US4428403A (en) Conduit having spirally wound monofilament material
JP4041254B2 (en) Hollow fiber membrane oxygenator
GB2047874A (en) An Apparatus in which Heat is transferred through Hollow Threads as well as Hollow Threads suitable for this purpose
JPS58114924A (en) Sizing device for extruded plastic pipe
EP0010817B1 (en) Apparatus for the exchange of heat by means of channels having a small diameter, and the use of this apparatus in different heating systems
US10955195B2 (en) Heat exchanger for an oxygenator and method for producing such a heat exchanger
JPS62236556A (en) Profile cross-sectional tubular body for heat exchange
EP0548065B1 (en) Cylindrical blood heater/oxygenator
CA1128928A (en) Thin-walled tube composed of a melt spinnable synthetic polymer and its use in apparatus for transferring heat
JPS58169510A (en) Hollow fiber with modified cross section and hollow fiber module therefrom
US4607424A (en) Thermal regenerator
JP3609835B2 (en) Blood heat exchange system
US4649991A (en) Cross-counter-stream module for heat or mass exchange
JPS62155858A (en) Hollow yarn module
JPH0732865B2 (en) Fluid treatment equipment using hollow fibers
CN101105380A (en) Hollow fibre heat-exchange device and method
JPS62225206A (en) Modified cross-section porous hollow yarn membrane
EP0681040B1 (en) An exchange structure, for example for biomedical equipment
JPS6315381B2 (en)
JP4472210B2 (en) External perfusion heat exchanger
CN2174676Y (en) High polymer diaphragm heat exchanger
CN112618829B (en) Hollow fiber tube diversion temperature changing device and oxygenator for ECMO