JPS6223627B2 - - Google Patents

Info

Publication number
JPS6223627B2
JPS6223627B2 JP1015482A JP1015482A JPS6223627B2 JP S6223627 B2 JPS6223627 B2 JP S6223627B2 JP 1015482 A JP1015482 A JP 1015482A JP 1015482 A JP1015482 A JP 1015482A JP S6223627 B2 JPS6223627 B2 JP S6223627B2
Authority
JP
Japan
Prior art keywords
pipe
paint
pressurized gas
treated
trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1015482A
Other languages
Japanese (ja)
Other versions
JPS58128176A (en
Inventor
Akira Kamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANIIDA KK
Original Assignee
SANIIDA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANIIDA KK filed Critical SANIIDA KK
Priority to JP1015482A priority Critical patent/JPS58128176A/en
Publication of JPS58128176A publication Critical patent/JPS58128176A/en
Publication of JPS6223627B2 publication Critical patent/JPS6223627B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Description

【発明の詳細な説明】 本発明は、パイプ内面のライニング方法に係る
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for lining the inner surface of a pipe.

給水管、排水管などでビル等の構造物に既設の
パイプ内面をライニングする方法として、主剤と
硬化剤とを混合したエポキシ樹脂塗料を被処理パ
イプの一端に供給し、同時に加圧気体を送り込ん
でこの塗料を移動通過させ、パイプ内面を塗付す
る方法はすでに提案されている。
As a method of lining the inner surface of existing pipes such as water supply pipes and drainage pipes in structures such as buildings, an epoxy resin paint mixed with a base agent and a hardening agent is supplied to one end of the pipe to be treated, and at the same time pressurized gas is sent in. A method has already been proposed in which this paint is moved through the pipe and coated on the inner surface of the pipe.

この方法にあつても、加圧気体によつて塗料を
霧状に飛散させるもの、又は例えば特開昭55−
94670号にみられるように加圧気体にあらかじめ
旋回流を与えて送出し、パイプ内の塗料に旋回運
動をさせつつ移動通過させるものなどがあるが、
いづれも加圧気体を被処理パイプ内における塗料
の搬送手段として利用するものであるから、被処
理パイプの始端部から2〜4mの範囲までは塗料
が充分に飛散又は旋回しないため、この部分のパ
イプ内面を確実に塗付することができない欠点が
ある。
Even in this method, the paint is dispersed in a mist using pressurized gas, or for example,
As seen in No. 94670, there are some that give pressurized gas a swirling flow before sending it out, causing the paint inside the pipe to move while moving through it.
In either case, pressurized gas is used as a means of transporting the paint within the pipe to be treated, so the paint does not scatter or swirl sufficiently within a range of 2 to 4 meters from the starting end of the pipe to be treated. There is a drawback that the inner surface of the pipe cannot be coated reliably.

また、従来公知のライニング方法においては、
第1図概念図に示すごとく、加圧気体源としての
エアコンプレツサー1′は別として、塗料の主剤
と硬化剤とを混合し、混合させた塗料を被処理パ
イプ2′に圧送する二液型エアレス塗装機3及び
その圧送ホース4が不可欠であつて、これはその
都度作業現場に搬入してセツトし、ライニングの
完了後は、エアレス塗装機及びホースに付着した
塗料をシンナーで洗浄除去して搬出する作業が必
要となつており、作業人員、時間、能率などを効
率化することができず、且つ高価なエアレス塗装
機を用いるためライニングコストの低減化は全た
く期待できなかつた。
In addition, in the conventionally known lining method,
As shown in the conceptual diagram in Fig. 1, apart from the air compressor 1' as a pressurized gas source, there is also an air compressor 1' that mixes the main component of the paint and a curing agent and pumps the mixed paint to the pipe 2' to be treated. A liquid type airless paint sprayer 3 and its pressure feed hose 4 are essential, and these must be carried to the work site and set up each time, and after lining is completed, the paint adhering to the airless paint sprayer and hose is washed and removed with thinner. This required work to be done and carried out, making it impossible to improve efficiency in terms of manpower, time, and efficiency.Moreover, since an expensive airless coating machine was used, no reduction in lining costs could be expected at all.

さらに、前記二液型のエアレス塗装機によつ
て、主剤と硬化剤とを混合する場合に、目詰まり
又は逆流等により混合ミスが生ずるとそのままパ
イプ内に圧送され、ライニングされたエポキシ樹
脂塗料が硬化しないというトラブルが発生するお
それがあるほか、前述のように装置に付着してい
る塗料をシンナーで洗浄除去する関係上、塗料の
硬化所要時間はライニング完了後の最大限2時間
程度(夏期20℃において)にしか設定できないの
であり、それ以上例えば30〜40分程度に短縮させ
ることは不可能である。
Furthermore, when mixing the base agent and curing agent using the two-component airless paint machine, if a mixing error occurs due to clogging or backflow, the epoxy resin paint that has been lined with the paint will be pumped into the pipe and the lined epoxy resin paint will be mixed. In addition to the possibility of problems with not curing, as mentioned above, the paint adhering to the equipment must be washed off with thinner, so the time it takes for the paint to harden is at most 2 hours after lining is completed (20 ℃), and it is impossible to shorten the time any further, for example, to about 30 to 40 minutes.

なお、塗料の粘性が10000CP以上の高粘度であ
る場合には、従来の二液型エアレス塗装機ではホ
ースの耐圧その他から塗料を圧送することがきわ
めて困難であるため、通常はそれ以下の粘性の塗
料を使用するので被処理パイプの内面塗膜の厚さ
は0.5mm程度に止まり、これを1.0mmまで厚くする
ことはできなかつた。
If the paint has a high viscosity of 10,000 CP or more, it is extremely difficult to pump the paint with a conventional two-component airless paint sprayer due to the pressure resistance of the hose. Since paint is used, the thickness of the inner coating of the pipe to be treated remains at around 0.5 mm, and it was not possible to increase the thickness to 1.0 mm.

本発明は、上記の諸点をすべて解消しようとす
るもので、前述した従来法において一般的に使用
されているエアレス塗装機及び塗料圧送系のホー
スを一切必要とせず、確実にパイプ内面にライニ
ングし得る簡易な方法を提供することを目的とす
る。
The present invention aims to solve all of the above-mentioned problems, and does not require any airless atomizers or paint pressure hoses that are commonly used in the conventional methods described above, and can reliably line the inner surface of the pipe. The purpose is to provide a simple method to obtain.

第2図は本発明の一実施例を概括的に示したも
ので、以下、これについて説明すると、5は塗料
圧送用のトラツプ管で、その一方の端部はやや大
径の充填口部5aに形成され、他方の端部5bに
は閉塞用の蓋6が取付けてあり、この端部5bを
被処理パイプ2の一方の開口端に挿入して蓋6で
密封する。
FIG. 2 schematically shows an embodiment of the present invention. This will be explained below. Reference numeral 5 designates a trap pipe for pumping paint, one end of which has a filling port 5a with a slightly larger diameter. A closing lid 6 is attached to the other end 5b, and this end 5b is inserted into one open end of the pipe 2 to be treated and sealed with the lid 6.

次いで、エポキシ樹脂塗料の主剤と硬化剤とを
例えば計量カツプなどを用いて手作業的に定量混
合し、この塗料Pを前記充填口部5aからトラツ
プ管内に注入充填する。その充填量は、被処理パ
イプの管径及び長さから計算された量と同等か、
又はそれよりもやや多くする。
Next, the main ingredient of the epoxy resin paint and the curing agent are mixed manually using, for example, a measuring cup, and the paint P is injected into the trap pipe from the filling port 5a. Is the filling amount equivalent to the amount calculated from the diameter and length of the pipe to be treated?
Or slightly more.

充填が終つたら、直ちに充填口部5aを蓋7で
密封し、コンプレツサー1のエアホース8を充填
口部5a内に連通接続させ、コンプレツサー1を
作動させて所定の圧力の圧縮空気を充填口5aの
内部に連続送入する。この場合の圧力は、第3図
に示すごとく、被処理パイプ2の管内において、
その風速が使用塗料Pの粘性から生ずる飛散限界
値(ベクトルA)よりも小さく、且つその粘性又
は位置エネルギーよりも大きい(ベクトルB)も
のとなるような風量を発生させるように設定する
ことが条件となる。
Immediately after filling, the filling port 5a is sealed with the lid 7, the air hose 8 of the compressor 1 is connected to the filling port 5a, and the compressor 1 is operated to supply compressed air at a predetermined pressure to the filling port 5a. Continuously feed into the inside of. In this case, the pressure in the pipe to be treated 2 is as shown in FIG.
The conditions must be set so that the air volume is generated such that the wind speed is smaller than the scattering limit value (vector A) caused by the viscosity of the paint P used, and larger than the viscosity or potential energy (vector B). becomes.

こうしてトラツプ管5内に加圧気体を連続送入
すると、管内の塗料Pには第4図に示すような変
化が急速に生じてくる。
When pressurized gas is continuously fed into the trap tube 5 in this manner, the paint P inside the tube undergoes a rapid change as shown in FIG.

すなわち、塗料Pのトラツプ管内壁面に接触し
ている部分には全体的に相当な摩擦抵抗が生じて
いるから、充填口部5aの内圧が高まつても塗料
Pの全体が押し出されることはないが、この内圧
がある程度高まると、第2図に示すトラツプ管5
の直管部分5c,5d,5eでは最も抵抗が弱い
管の軸央線にほぼ沿つた位置に、また、トラツプ
管5の屈曲部分5f,5gでは前記軸央線から少
し偏つた位置に、全体としては蛇行する状態で連
続する加圧気体の小さな通孔9が形成され(第4
図)、加圧気体はパイプ2に流出する。この
際、通孔9の加圧気体接触面P′にはその風速によ
つて相当な摩擦エネルギーが生ずるので、通孔9
の周囲の塗料Pも同時に流出する。
In other words, since considerable frictional resistance is generated throughout the portion of the paint P that is in contact with the inner wall surface of the trap tube, the entire paint P will not be pushed out even if the internal pressure of the filling port 5a increases. However, when this internal pressure increases to a certain extent, the trap pipe 5 shown in FIG.
In the straight pipe portions 5c, 5d, and 5e of the trap pipe 5, the resistance is the least at a position approximately along the center line of the pipe, and in the bent portions 5f and 5g of the trap pipe 5, the entire body is placed at a position slightly offset from the center line of the pipe. As a result, a continuous small through hole 9 for pressurized gas is formed in a meandering state (fourth hole).
), the pressurized gas flows out into pipe 2. At this time, considerable frictional energy is generated on the pressurized gas contact surface P' of the through hole 9 due to the wind speed.
The surrounding paint P also flows out at the same time.

こうして一たん塗料層Pに通孔9が形成される
と、加圧気体の圧力及び風速の相乗作用によつて
急速に拡開され(第4図)、塗料層Pの前記接
触面P′には通過する加圧気体、すなわち、その風
速により摩擦エネルギーが引き続いて生ずるが、
エネルギー受圧面積が小さいため通孔周囲部分の
塗料が流出するのみで、層流となつて移動するこ
とはない。
Once the through hole 9 is formed in the paint layer P in this way, it rapidly expands due to the synergistic effect of the pressure of the pressurized gas and the wind speed (Fig. 4), and the through hole 9 is formed on the contact surface P' of the paint layer P. is a pressurized gas passing through it, i.e. frictional energy is subsequently generated due to its wind speed,
Since the energy receiving pressure area is small, the paint around the hole only flows out and does not move as a laminar flow.

その後、さらに通孔9が拡開されると(第4図
)、前記接触面P′も拡大されて加圧気体の風速
による摩擦エネルギーの受圧面積が増大し、この
摩擦エネルギーを受けた塗料Pは層流状態とな
り、しかも、加圧気体の通孔9は前述のように蛇
行的に形成されるので塗料層の連続した横断面に
は不均一な移動エネルギーが加わることになり、
塗料層は自づと一方向に旋回運動を起こしつつト
ラツプ管5からパイプ2内に移動してゆく。
Thereafter, when the through hole 9 is further expanded (FIG. 4), the contact surface P' is also expanded, increasing the pressure area for receiving frictional energy due to the wind speed of the pressurized gas, and the paint P receiving this frictional energy. is in a laminar flow state, and since the pressurized gas holes 9 are formed in a meandering manner as described above, non-uniform moving energy is applied to continuous cross sections of the paint layer.
The paint layer moves from the trap tube 5 into the pipe 2 while automatically causing a swirling movement in one direction.

このように旋回流動を起こして被処理パイプ2
内に入つた塗料Pは、前述のように塗料の飛散限
界値よりも小さく、且つその粘性又は位置エネル
ギーよりも大きい風速を与えられるので、その摩
擦エネルギー(第3図ベクトルC)を受けて旋回
運動を継続しつつ移動し、パイプの上部側内面は
もちろん、その全内面に均一に塗膜を形成するの
である。なお、この旋回運動はパイプ2のエルボ
部分において若干の乱れを生ずるが、これを過ぎ
ると再び旋回流動して移動することが確められて
いる。こうして残存した塗料が被処理パイプ2の
終端部から滴下すれば、ライニングは完全に終了
する。
In this way, the swirling flow is caused and the pipe to be treated 2
As mentioned above, the paint P that has entered the interior is given a wind speed that is smaller than the scattering limit value of the paint and larger than its viscosity or potential energy, so it receives the frictional energy (vector C in Figure 3) and turns. It moves while continuing its motion, and forms a coating film uniformly not only on the upper inner surface of the pipe, but also on the entire inner surface of the pipe. Note that this swirling motion causes some disturbance at the elbow portion of the pipe 2, but it has been confirmed that after this, the pipe 2 moves again in a swirling motion. When the remaining paint drips from the terminal end of the pipe 2 to be treated, the lining is completely completed.

上記のごとく、本発明のライニング法にあつて
は、被処理パイプに接続したトラツプ管に塗料を
封入して加圧気体を送り込み、その圧力で塗料層
に加圧気体の通孔を形成させ、一たん通孔が形成
された後はその風速によつて塗料層の加圧気体接
触面に摩擦エネルギーを生じさせ、この摩擦エネ
ルギーを塗料移動のエネルギーとして利用し、し
かも塗料層の連続した横断面に不均衡な移動エネ
ルギーが加わるようにしたので、このトラツプ管
内において塗料層に急速に旋回運動を生起させる
ことができ、これをその状態でパイプに送入し移
動させるため、被処理パイプの始端部からその上
部側内面を含めて全内面に確実に塗料を塗付し得
る効果がある。
As mentioned above, in the lining method of the present invention, paint is sealed in a trap pipe connected to the pipe to be treated, pressurized gas is sent in, and the pressure is used to form holes for the pressurized gas in the paint layer. Once the through holes are formed, the wind speed generates frictional energy on the pressurized gas contact surface of the paint layer, and this frictional energy is used as energy for paint movement. Since unbalanced movement energy is applied to the trap pipe, it is possible to rapidly generate a swirling motion in the paint layer within the trap pipe, and in this state, in order to send it into the pipe and move it, the starting end of the pipe to be treated is This has the effect of reliably applying the paint to the entire inner surface, including the inner surface on the upper side.

また、コンプレツサー及びトラツプ管があれば
足り、従来の二液型エアレス塗装機及び圧送ホー
ス等は一切不要であるから、作業工程、作業人員
ならびに時間などを大幅に省略することが可能で
作業効率を著るしく高揚させることができ、且つ
ライニングコストも大きく低減化できる効果があ
る。さらに、エポキシ樹脂塗料の主剤と硬化剤と
は定量混合するから、混合ミスによるトラブルを
完全に防止できるとともに、ライニング完了後は
トラツプ管のみをシンナーで洗浄すればよいの
で、塗料の硬化所要時間を30分又はそれ以上の短
時間に短縮できる利点がある。
In addition, a compressor and a trap pipe are all that is needed, and conventional two-component airless atomizers and pressure feed hoses are not required at all, so it is possible to significantly reduce the work process, number of workers, and time, thereby increasing work efficiency. It has the effect of being able to significantly raise the height and also greatly reducing the lining cost. Furthermore, since the main ingredient and curing agent of the epoxy resin paint are mixed in fixed quantities, troubles caused by mixing errors can be completely prevented, and after lining is completed, only the trap pipe needs to be cleaned with thinner, so the time it takes for the paint to harden is reduced. It has the advantage of being shortened to 30 minutes or more.

なお、本発明においては、被処理パイプ内で所
定の風速が得られるようトラツプ管に所要の圧力
で加圧気体を送り込むのであるから、10000CP以
上の粘性の塗料であつてもよく、実験結果によれ
ば25000CPの高粘性の塗料を用いてパイプの内面
塗膜の厚さを10mmにできたもので、パイプの耐久
性を高め得る点で従来にない効果を奏するもので
ある。
In addition, in the present invention, pressurized gas is sent into the trap pipe at the required pressure to obtain a predetermined wind speed in the pipe to be treated, so the paint may have a viscosity of 10,000 CP or more, and the experimental results do not According to the company, the inner surface coating of the pipe was made 10 mm thick using a highly viscous paint of 25,000 CP, which has an unprecedented effect in increasing the durability of the pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のパイプライニング方法の概念
図、第2図は本発明の一実施例の概括図、第3図
はパイプ内における風速から生ずる摩擦エネルギ
ーのベクトル線図、第4図は第2図X―X線で例
示した塗料層の経時的変化の説明図、第5図は被
処理パイプの縦断面図、第6図は第5図Y―Y線
の横断面図である。 1…コンプレツサー、2…被処理パイプ、5…
トラツプ管、P…塗料、P′…加圧気体接触面。
Fig. 1 is a conceptual diagram of a conventional pipe lining method, Fig. 2 is a schematic diagram of an embodiment of the present invention, Fig. 3 is a vector diagram of frictional energy generated from wind speed in the pipe, and Fig. 4 is a FIG. 5 is a longitudinal cross-sectional view of the pipe to be treated, and FIG. 6 is a cross-sectional view taken along the Y--Y line in FIG. 5. 1... Compressor, 2... Pipe to be treated, 5...
Trap pipe, P...paint, P'...pressurized gas contact surface.

Claims (1)

【特許請求の範囲】[Claims] 1 被処理パイプの始端部にトラツプ管を気密に
接続し、主剤と硬化剤とを混合したエポキシ樹脂
塗料を前記トラツプ管に充填封入して所定の加圧
気体を送り込み、前記トラツプ管内において塗料
に旋回流動を生起させ、これをパイプ内に移動通
過せしめてその全内面に塗膜させることを特徴と
するパイプ内面のライニング方法。
1. A trap pipe is airtightly connected to the starting end of the pipe to be treated, an epoxy resin paint mixed with a base agent and a curing agent is filled and sealed in the trap pipe, and a predetermined pressurized gas is fed into the paint in the trap pipe. A method for lining the inner surface of a pipe, which is characterized by generating swirling flow, causing the swirling flow to move through the pipe, and coating the entire inner surface of the pipe.
JP1015482A 1982-01-27 1982-01-27 Linking method of inside surface of pipe Granted JPS58128176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015482A JPS58128176A (en) 1982-01-27 1982-01-27 Linking method of inside surface of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015482A JPS58128176A (en) 1982-01-27 1982-01-27 Linking method of inside surface of pipe

Publications (2)

Publication Number Publication Date
JPS58128176A JPS58128176A (en) 1983-07-30
JPS6223627B2 true JPS6223627B2 (en) 1987-05-25

Family

ID=11742350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015482A Granted JPS58128176A (en) 1982-01-27 1982-01-27 Linking method of inside surface of pipe

Country Status (1)

Country Link
JP (1) JPS58128176A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035859U (en) * 1983-08-19 1985-03-12 三菱自動車工業株式会社 Vehicle door inside handle structure
JP6851052B1 (en) * 2020-02-25 2021-03-31 日本リニューアル株式会社 Lining method

Also Published As

Publication number Publication date
JPS58128176A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
US3233580A (en) Material mixing and applying apparatus
US4419163A (en) Pipeline coating method
KR100358587B1 (en) Apparatus for repairing waterworks and sewer by injecting chemical agent and method thereof
JPS6223627B2 (en)
EP0924052B1 (en) Apparatus for lining an elongated tubular articles and use of this apparatus to produce a lined tubular article
US6223475B1 (en) Method and apparatus for lining manholes
CN105149168B (en) A kind of glue filling device
CN205056388U (en) Glue injecting device
JPS5811263B2 (en) Internal sealing method for existing conduits
JPS6343147B2 (en)
RU2059145C1 (en) Method of applying protective coating to inner surface of pipeline
JP2889525B2 (en) Lining method of pipe inner surface
JPS5826988B2 (en) Pipe inner wall lining method
JP3061545B2 (en) Lining method of pipe inner surface
JP3061565B2 (en) Lining method of pipe inner surface
JPS61103587A (en) Method for lining inner surface of underground pipe
JPS6123034B2 (en)
JPS61209074A (en) Method for coating inner wall surface of pipe
JP2766908B2 (en) Pipe lining repair equipment
JPH0417221Y2 (en)
JPS61181574A (en) Lining method for inside surface of pipe
JP5279173B2 (en) Coating layer forming method, coating layer, and coating apparatus
JPH08323261A (en) Two-pack highly viscous material injecting apparatus
JPH02298388A (en) Method for painting branched pipeline
JPS62201677A (en) Method for coating inside surface of pipe