JPS62235906A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS62235906A
JPS62235906A JP61079842A JP7984286A JPS62235906A JP S62235906 A JPS62235906 A JP S62235906A JP 61079842 A JP61079842 A JP 61079842A JP 7984286 A JP7984286 A JP 7984286A JP S62235906 A JPS62235906 A JP S62235906A
Authority
JP
Japan
Prior art keywords
polymer
component
optical fiber
sheath
sheath component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61079842A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Katsuhiko Shimada
島田 勝彦
Ryuji Murata
龍二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61079842A priority Critical patent/JPS62235906A/en
Publication of JPS62235906A publication Critical patent/JPS62235906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a fiber having uniform quality and good optical performance by using a molded polymer from which the volatile component is removed under shearing stress at the temp. higher by >=30 deg.C than the secondary glass transition temp. of a sleeve component polymer for the sleeve component. CONSTITUTION:There is no particular limitation to the compsn. of the sleeve component polymer and the compsn. having the refractive index lower by >=0.01 than the refractive index of a core component is preferred and a fluoropolymer is desirable. The removal of the volatile component is executed by increasing the polymer temp. to the temp. higher by >=30 deg.C than the secondary glass transition temp., and kneading the polymer under the shearing stress until the major axis length of the polymer particles is made <5 times the minor axis length. The extrusion is then stably executed and the impurity component and volatile matter are quickly and efficiently removed. The disturbance at the core/sleeve boundary is suppressed, the coloring by heating is prevented. The resultant optical fiber has the stable performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学繊維の製法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing optical fibers.

〔従来の技術〕[Conventional technology]

光学繊維の製法は、特公昭43−8978号、特開昭5
3−53339号、特開昭59−7906号などの公報
で一般に知られている。
The manufacturing method of optical fiber is disclosed in Japanese Patent Publication No. 43-8978 and Japanese Patent Publication No. 5
It is generally known from publications such as No. 3-53339 and Japanese Unexamined Patent Publication No. 59-7906.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの公報に開示されている発明では、鞘成
分として使用する成型重合体の粒度や残揮発分について
は全く考慮が払われていな−と考えられる鞘成分の紡糸
浴への供給が不安定となり、また、鞘成分成型重合体中
に揮発成分が存在すると、光学繊維製造工程で鞘成分成
型重合体が加熱着色したり、或いは得られる光学繊維の
構造不整発生の原因となり、得られる光学繊維の光伝送
損失の増大を招く大きな原因となりている。
However, in the inventions disclosed in these publications, it is thought that no consideration was given to the particle size or residual volatile content of the molded polymer used as the sheath component, and the supply of the sheath component to the spinning bath was inadequate. In addition, if volatile components are present in the sheath component molding polymer, the sheath component molding polymer may be heated and colored during the optical fiber manufacturing process, or it may cause structural irregularities in the resulting optical fiber. This is a major cause of increased fiber optical transmission loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の欠点を解消し、それによって均質で光
学性能の良い光学繊維の製法を提供しようとするもので
ある。
The present invention aims to eliminate the above-mentioned drawbacks and thereby provide a method for producing optical fibers that are homogeneous and have good optical performance.

本発明は、芯成分の周囲に、熱可塑性重合体からなる鞘
成分で押出一体化して光学繊維を製造する際に、鞘成分
として、鞘成分重合体の第二次ガラス転移温度より30
℃以上高い温度にて剪断応力下に揮発分を除去せしめた
鞘成分成型重合体を使用することを特徴とする光学繊維
の製法に関する。
In the present invention, when manufacturing an optical fiber by integrally extruding a sheath component made of a thermoplastic polymer around a core component, the sheath component is used as a sheath component with a temperature of 30% higher than the second glass transition temperature of the sheath component polymer.
The present invention relates to a method for producing an optical fiber, characterized in that it uses a sheath component molded polymer whose volatile content has been removed under shear stress at a temperature higher than .degree. C. or higher.

本発明を実施するに際し芯成分としては、使用しうる重
合体としては従来から使用されているメチルメタクリレ
ート系の重合体、ポリグルタルイミド系重合体やスチレ
ン系の重合体、ポリカーボネート系重合体などを挙げる
ことができるが、本発明は、例えば特開昭59−790
6号公報に開示されているようなガラス又はシリカを芯
成分として使用した光学繊維の製造に際しても十分に適
用される。
Examples of polymers that can be used as the core component in carrying out the present invention include conventionally used methyl methacrylate polymers, polyglutarimide polymers, styrene polymers, and polycarbonate polymers. For example, the present invention is disclosed in Japanese Unexamined Patent Publication No. 59-790.
It is also fully applicable to the production of optical fibers using glass or silica as a core component as disclosed in Japanese Patent No. 6.

本発明において使用される鞘成分重合体の化学的組成に
ついては特別な限定はないが、と(に芯成分の屈折率よ
りも0.01以上低い屈折率を有するものが好ましく、
例えば前記した特許公報に記載されているように弗素系
の重合体を使用するのが望ましい。
There is no particular limitation on the chemical composition of the sheath component polymer used in the present invention, but it is preferable that it has a refractive index lower than the refractive index of the core component by 0.01 or more,
For example, it is desirable to use a fluorine-based polymer as described in the above-mentioned patent publication.

鞘成分重合体より揮発分を除去する工程は、重合体温度
をその第二次ガラス転移温度(以下Tf  と称す)よ
り30℃以上高くし、剪断応力下にて行なう。もし、鞘
成分重合体の処理を’rtより30℃以上の温度で揮発
分除去を行なわないと、溶融した鞘成分重合体の粘度が
高いので剪断による混線効果が少なく脱揮効率が悪く、
揮発分がほとんど除去できない。さらに重合体を剪断す
る場合の動力の負荷が非常に多大となるという結果とな
る。
The step of removing volatile matter from the sheath component polymer is carried out at a temperature of the polymer 30° C. or more higher than its second glass transition temperature (hereinafter referred to as Tf) and under shear stress. If the sheath component polymer is not treated to remove volatile matter at a temperature of 30°C or higher than 'rt, the viscosity of the molten sheath component polymer will be high, so there will be little crosstalk effect due to shearing, and the devolatilization efficiency will be poor.
Almost no volatile matter can be removed. Furthermore, the result is that the power load when shearing the polymer becomes very large.

また、鞘成分成型重合体の長軸の長さが短軸の長さの5
倍をこえると、光学線維製造工程での鞘成分成型重合体
の押出し゛カー円滑に行なわれなくなり、光学繊維上で
の鞘切れ、鞘吐出ムラが発生し、光学繊維の製造が困難
となる。
In addition, the length of the major axis of the sheath component molded polymer is 5 times the length of the minor axis.
If it exceeds twice that, the extrusion of the sheath component molding polymer in the optical fiber manufacturing process will not be carried out smoothly, sheath breakage on the optical fiber and sheath discharge unevenness will occur, making it difficult to manufacture the optical fiber.

鞘成分成型重合体の揮発分を除去し、粒度な揃えるため
にはスクリュー型脱揮押出機により鞘成分重合体を熱及
び剪断溶融しながら揮発分を除去し、押出機先端グイよ
り溶融吐出した糸条ポリマーを均等長さに切断する方法
をとるのがよい。
In order to remove the volatile content of the sheath component molding polymer and make the particle size uniform, the sheath component polymer was melted using heat and shear using a screw type devolatilizing extruder to remove the volatile content, and then melted and discharged from the tip of the extruder. It is preferable to use a method in which the thread polymer is cut into equal lengths.

かくすることにより、スクリュー押出機内で鞘成分重合
体を剪断混練することにより、重合体の重合ムラによる
成型重合体粒間の性能不均一を均一化できる。また鞘成
分成型重合体より不純分及び揮発物を短時間に効率的に
脱揮除去することができ、着色性不純分の除去ができる
In this way, by shearing and kneading the sheath component polymer in the screw extruder, it is possible to equalize the non-uniformity of performance among the molded polymer particles due to uneven polymerization of the polymer. Further, impurities and volatile matter can be efficiently devolatilized and removed from the sheath component molded polymer in a short time, and colored impurities can be removed.

さらに鞘成分成型重合体粒の長軸の長さが短軸の長さの
5倍未満とすることにより光学繊維製造工程における鞘
成分成型重合体の押出しが安定に行なわれる。
Further, by setting the length of the long axis of the sheath component molded polymer particles to less than 5 times the length of the short axis, extrusion of the sheath component molded polymer in the optical fiber manufacturing process can be carried out stably.

すなわち、鞘成分重合体を溶融脱揮押出することにより
重合体を均一化し、鞘成分重合体に含まれる単量体合成
による副生物、重合助剤、未重合単量体、二量体、三量
体等のオリゴマーあるいはそれらの複合変性体等の揮発
性不純分を除去することができ、複合溶融紡糸時の溶融
重合体流れの不拘−或いは揮発物による芯−鞘界面の乱
れを抑制することができると共に、さらに重合体の加熱
着色も防ぐことができ、その結果として得られた光学繊
維は光学性能が安定に非常に良好なものが得られる。
That is, by melting and devolatilizing the sheath component polymer and extruding it, the polymer is homogenized, and by-products from monomer synthesis, polymerization aids, unpolymerized monomers, dimers, and trimers contained in the sheath component polymer are homogenized. It is possible to remove volatile impurities such as oligomers such as polymers or complex modified products thereof, and suppress the restriction of the flow of the molten polymer during composite melt spinning or the disturbance of the core-sheath interface due to volatile substances. In addition to this, it is also possible to prevent the polymer from being colored by heating, and as a result, the optical fiber obtained has stable and very good optical performance.

また、使用する溶融押出機としては単軸押出機よりもむ
しろ混練効果の良い2軸押用機が好ましい。
Furthermore, as the melt extruder to be used, a twin-screw extruder with better kneading effect is preferable than a single-screw extruder.

本発明を実施するに際しては、剪断応力下に揮発分を除
去する工程を光学繊維賦形紡糸機の鞘材押出機内に設置
することも可能であり、この場合は鞘重合体の予備成型
は、粒度がそろえば不要となる。又、鞘重合体の熱履歴
が少なくなる点でも好ましい。
When carrying out the present invention, it is also possible to install the step of removing volatile matter under shear stress in the sheath material extruder of the optical fiber shaping spinning machine, in which case the preforming of the sheath polymer is carried out by If the particle size is the same, it becomes unnecessary. It is also preferable in that the thermal history of the sheath polymer is reduced.

〔実施例〕〔Example〕

以下、実施例により、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 メタクリル酸2,2,3,3,3−ペンタフルオロプロ
ピル90部、メタクリル酸メチル8部、メタクリル酸2
部、重合開始剤アゾビスイソブチロニトリル0.05部
、n−ドデシルメルカプタン0.1部を混合溶解した後
、2jの塊状重合用オートクレーブ中に仕込み、脱気窒
素置換を繰り返して密封した。50℃の温水中に10時
間浸漬し重合すると内圧が10 kg/cm”ゲージ圧
となり、さらに70℃で5時間加熱重合した後、重合発
熱によるピークが完結して重合を終了し透明重合体を得
た。重合転化率は99%であった。
Example 1 90 parts of 2,2,3,3,3-pentafluoropropyl methacrylate, 8 parts of methyl methacrylate, 2 parts of methacrylic acid
1 part, 0.05 part of azobisisobutyronitrile as a polymerization initiator, and 0.1 part of n-dodecylmercaptan were mixed and dissolved, and the mixture was charged into a 2J bulk polymerization autoclave, which was repeatedly deaerated and replaced with nitrogen, and then sealed. When polymerized by immersing in hot water at 50°C for 10 hours, the internal pressure becomes 10 kg/cm'' gauge pressure, and after further heating and polymerizing at 70°C for 5 hours, the peak due to polymerization heat is completed, and the polymerization is completed and a transparent polymer is formed. The polymerization conversion rate was 99%.

得られた重合体の屈折率は1,422、’r7は95℃
であった。この重合体をクラッシャーにて粉砕して2軸
脱揮押出機(20龍φ×2.2ベン゛)ト方式、真空度
第1段ベント部4o龍HJI、第2段ベント部51m!
HJI)にて、押出樹脂温度230℃で糸条に押出し、
急冷後、直径が2.5fiのストランドをペレタイザー
にて長さ3uのペレットとし、鞘成型用重合体校とした
The refractive index of the obtained polymer was 1,422, and 'r7 was 95°C.
Met. This polymer is crushed in a crusher, and a twin-screw devolatilizing extruder (20 mm φ x 2.2 vents) is used.
HJI), extruded into yarn at an extrusion resin temperature of 230°C,
After quenching, the strands with a diameter of 2.5 fi were made into pellets with a length of 3 u using a pelletizer, and used as a polymer base for sheath molding.

スパイラルリボン型攪拌機をそなえた反応槽と2軸スク
リユ一ベント型押出機からなる揮発物分離装置を使用し
て連続塊状重合法によりメタクリル酸メチル100部、
t−ブチルメルカプタン0.40部、ジ−t−ブチルパ
ーオキサイド0.0017部からなる単量体混合物を重
合温度155℃、平均滞在時間4.0時間で反応させ、
次いでベント押出機の温度をベント部240℃、押出部
230℃、ベント部真空度4mmHP として揮発部を
分離後230℃に保たれたギヤポンプ部を経て230℃
の芯鞘複合紡糸頭に供給した。クラッド成分には上記重
合体を15龍φの押出機を経て複合紡糸頭に供給し23
0℃で押出し10m/分で引き取り延伸倍率1.8倍、
延伸温度140℃で延伸処理をした後、巻き取り直径5
00μ、芯の直径480μの複合フィラメントを得た。
100 parts of methyl methacrylate was produced by continuous bulk polymerization using a volatile separation device consisting of a reaction tank equipped with a spiral ribbon stirrer and a twin-screw one-vent extruder.
A monomer mixture consisting of 0.40 parts of t-butyl mercaptan and 0.0017 parts of di-t-butyl peroxide was reacted at a polymerization temperature of 155°C and an average residence time of 4.0 hours.
Next, the temperature of the vent extruder was adjusted to 240°C in the vent part, 230°C in the extrusion part, and a vacuum level of 4 mm HP in the vent part, and after separating the volatile part, the temperature was increased to 230°C through the gear pump part maintained at 230°C.
was supplied to the core-sheath composite spinning head. For the cladding component, the above polymer was fed to a composite spinning head through an extruder with a diameter of 15 mm.
Extrusion at 0°C, 10 m/min, draw ratio: 1.8 times,
After stretching at a stretching temperature of 140°C, the winding diameter is 5.
A composite filament with a core diameter of 480μ and a core diameter of 480μ was obtained.

顕微鏡による観察ではこの複合フィラメントのコアーク
ラッド界面は真円で異物の存在は認められなかりた。ク
ラッドの厚み斑も無いものでありた。
Microscopic observation revealed that the core-clad interface of this composite filament was perfectly round and no foreign matter was observed. There was also no thickness unevenness in the cladding.

このようにして得られた光学繊維の光伝送損失を特開昭
50−7602号公報に示された方法により測定した。
The optical transmission loss of the optical fiber thus obtained was measured by the method disclosed in Japanese Unexamined Patent Publication No. 50-7602.

測定波長は650 nmである。結果を表−1に示した
The measurement wavelength is 650 nm. The results are shown in Table-1.

比較例1 実施例1と同手法で製造した鞘重合体をクラッシャーに
より粉砕してJIS Z−8801規格で7メツシユパ
ス、32メツシュオン分に分別除去した鞘ポリマーを用
いる以外は、実施例1と同様にして光学繊維を得た。結
果を表−1に示した。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that the sheath polymer produced by the same method as in Example 1 was crushed using a crusher, and the sheath polymer was separated and removed in accordance with the JIS Z-8801 standard into 7 mesh passes and 32 mesh passes. An optical fiber was obtained. The results are shown in Table-1.

比較例2 実施例1と同手法で製造した鞘重合体をクラッシャーに
より粉砕して、同様の条件にて糸条に押出し、急冷後、
直径が2.5 mのストランドをペレタイザーにて長さ
15mにペレット化した。実施例1の鞘ペレッ)(3m
m)中に上記ペレッ)(15龍)を8%含有ブレンドし
た鞘ポリマーを用いる以外は、実施例1と同様にして光
学繊維を得た。結果を表−1に示1−ナー実施例2 実施例1と同手法で製造した鞘重合体をクラッシャーに
より粉砕して、比較例2と同様にしてペレタイザーにて
長さ10mにペレット化した。実施例1の鞘ベレン)(
3mm)中に上記ペレツ)(10部m)を8%含有ブレ
ンドした鞘ポリマーを用いる以外は、実施例1と同様に
して光学繊維を得た。結果を表−1に示した。
Comparative Example 2 A sheath polymer produced in the same manner as in Example 1 was crushed using a crusher, extruded into yarn under the same conditions, and after quenching,
A strand with a diameter of 2.5 m was pelletized into a length of 15 m using a pelletizer. Sheath pellet of Example 1) (3m
An optical fiber was obtained in the same manner as in Example 1, except that a sheath polymer blended with m) containing 8% of the above pellets (15 Dragon) was used. The results are shown in Table 1. 1-ner Example 2 The sheath polymer produced in the same manner as in Example 1 was crushed using a crusher, and then pelletized into a length of 10 m using a pelletizer in the same manner as in Comparative Example 2. The scabbard of Example 1) (
An optical fiber was obtained in the same manner as in Example 1, except for using a blended sheath polymer containing 8% of the above pellets (10 parts m) in 3 mm). The results are shown in Table-1.

、 比較例3 実施例1と同手法で製造した鞘重合体をクラッシャーに
より粉砕し、次いで2軸ノンペント押出機(15驕φ×
2)、押出樹脂温度230℃にて溶融押出する以外は、
実施例1と同様にして光学繊維を得た。結果を表−1に
示した。
, Comparative Example 3 The sheath polymer produced in the same manner as in Example 1 was crushed using a crusher, and then a twin-screw non-pent extruder (15 mm φ×
2), except for melt extrusion at an extrusion resin temperature of 230°C,
An optical fiber was obtained in the same manner as in Example 1. The results are shown in Table-1.

実施例3 α−フルオロアクリル酸2,2.2− トリフルオロエ
チル90部、α−フルオロアクリル酸メチル10部、重
合開始剤アゾビスイソブチロニトリル0.05部、n−
ドデシルメルカプタン0.5部を混合溶解した後、2E
の塊状重合用オートクレーブ中に仕込み、脱気窒素置換
を繰り返して密封した。50℃の温水中に10時間浸漬
し重合し、さらに70℃で5時間加熱重合した後重合発
熱によるピークが完結して重合を終了し透明重合体を得
た。重合転化率は97%であった。得られた重合体の屈
折率は1.3920 、 T/は107℃であった。こ
の重合体をクラッシャーにて粉砕して2軸脱揮押出機(
20朋φ×2.2ベント方式、真空度第1ペン) 40
11HJ1.第2ペン) 511HP)、押出樹脂温度
260℃にて糸条に押出し、急冷後、直径2.5朋φの
ストランドをペレタイザーにて長さ3朋にペレット化し
鞘ポリマーを得た以外は、実施例1と同様にして光学繊
維を得た、結果を表−2に示した。
Example 3 90 parts of 2,2.2-trifluoroethyl α-fluoroacrylate, 10 parts of methyl α-fluoroacrylate, 0.05 part of polymerization initiator azobisisobutyronitrile, n-
After mixing and dissolving 0.5 part of dodecyl mercaptan, 2E
It was placed in an autoclave for bulk polymerization, followed by repeated deaeration and nitrogen replacement, and then sealed. Polymerization was carried out by immersing it in hot water at 50°C for 10 hours, and then heating and polymerizing at 70°C for 5 hours. The peak due to the exotherm of polymerization was completed, and the polymerization was completed to obtain a transparent polymer. The polymerization conversion rate was 97%. The obtained polymer had a refractive index of 1.3920 and a T/ of 107°C. This polymer is crushed in a crusher and then crushed in a twin-screw devolatilizing extruder (
20 mm φ x 2.2 vent method, vacuum level 1 pen) 40
11HJ1. 2nd pen) 511 HP) was extruded into yarn at an extrusion resin temperature of 260°C, and after quenching, the strand with a diameter of 2.5 mm was pelletized into a length of 3 mm with a pelletizer to obtain a sheath polymer. Optical fibers were obtained in the same manner as in Example 1, and the results are shown in Table 2.

比較例4 実施例3と同手法で製造した鞘重合体をクラッシャーに
より粉砕してJIS  Z−8801規格で7メツシユ
パス、32メツシュオン分を分別除去した鞘ポリマーを
用いる以外は、実施例2と同様にして光学繊維を得た。
Comparative Example 4 The same procedure as in Example 2 was carried out, except that a sheath polymer produced by the same method as in Example 3 was crushed using a crusher, and 7 mesh passes and 32 mesh parts were separated and removed according to the JIS Z-8801 standard. An optical fiber was obtained.

結果を表−2に示した。The results are shown in Table-2.

比較例5 実施例3と同手法で製造した鞘重合体をクラッシャーに
より粉砕して同様の条件にて糸条に押出し、急冷後、直
径2.5朋φのストランドをペレタイザーにて長さ15
絹にペレット化した。
Comparative Example 5 A sheath polymer produced in the same manner as in Example 3 was crushed with a crusher and extruded into yarn under the same conditions. After quenching, the strand with a diameter of 2.5 mm was made into a strand with a length of 15 mm using a pelletizer.
Pelleted into silk.

実施例2の鞘ベレツ)(3m)中に上記ベレツ)(15
mm)を6%含有ブレンドした鞘ポリマーを用いる以外
は、実施例2と同様にして光学繊維を得た。結果を表−
2に示した。
The above bezel) (15
An optical fiber was obtained in the same manner as in Example 2, except that a blended sheath polymer containing 6% of mm) was used. Display the results -
Shown in 2.

比較例6 実施例3と同手法で製造した鞘重合体をクラッシャーに
より粉砕して、2軸ノンベント押出機(15朋φ×2)
、押出樹脂温度230℃にて溶融押出する以外は、実施
例3と同様にして光学繊維を得た。結果を表−2に示し
た。
Comparative Example 6 The sheath polymer produced in the same manner as in Example 3 was crushed using a crusher, and a twin-screw non-vent extruder (15 mm φ x 2) was used.
An optical fiber was obtained in the same manner as in Example 3, except that it was melt-extruded at an extrusion resin temperature of 230°C. The results are shown in Table-2.

Claims (1)

【特許請求の範囲】 1、芯成分の周囲に、熱可塑性重合体からなる鞘成分を
押出一体化して光学繊維を製造する際に、鞘成分として
、鞘成分重合体の第二次ガラス転移温度より30℃以上
高い温度にて剪断応力下に揮発分を除去せしめた鞘成分
成型重合体を使用することを特徴とする光学繊維の製法
。 2、鞘成分成型重合体として、鞘成分重合体の第一次ガ
ラス転移温度より30℃以上高い温度にて剪断応力下に
揮発分を除去し、引き続いて、成型重合体の長軸の長さ
が短軸の長さの5倍以下になるように成型した成型重合
体粒を使用することを特徴とする特許請求の範囲第1項
記載の光学繊維の製法。
[Claims] 1. When producing an optical fiber by extruding and integrating a sheath component made of a thermoplastic polymer around a core component, the second glass transition temperature of the sheath component polymer is used as a sheath component. A method for producing an optical fiber, characterized by using a sheath component molded polymer whose volatile content is removed under shear stress at a temperature 30° C. or higher. 2. As a sheath component molded polymer, volatile matter is removed under shear stress at a temperature 30°C or more higher than the primary glass transition temperature of the sheath component polymer, and then the length of the long axis of the molded polymer is 2. The method for producing an optical fiber according to claim 1, wherein molded polymer particles are used which are molded so that the length of the short axis is 5 times or less than the length of the minor axis.
JP61079842A 1986-04-07 1986-04-07 Production of optical fiber Pending JPS62235906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079842A JPS62235906A (en) 1986-04-07 1986-04-07 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079842A JPS62235906A (en) 1986-04-07 1986-04-07 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS62235906A true JPS62235906A (en) 1987-10-16

Family

ID=13701456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079842A Pending JPS62235906A (en) 1986-04-07 1986-04-07 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS62235906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214809A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH0243507A (en) * 1988-08-04 1990-02-14 Mitsubishi Rayon Co Ltd Polymer for optical fiber sheath and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214809A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH0243507A (en) * 1988-08-04 1990-02-14 Mitsubishi Rayon Co Ltd Polymer for optical fiber sheath and production thereof

Similar Documents

Publication Publication Date Title
KR940008671B1 (en) Plastic optical fiber
JP2004264758A (en) Clad pipe and manufacturing method and apparatus therefor for plastic optical fiber, and the plastic optical fiber
JPS62235906A (en) Production of optical fiber
JP2013213888A (en) Method for manufacturing plastic optical fiber
KR19980032683A (en) Inclined refractive index fiber manufacturing method
JPS5816163B2 (en) Manufacturing method of plastic optical fiber
KR100989295B1 (en) Plastic optical product, plastic optical fiber, apparatus for manufacturing plastic optical part, and method for manufacturing plastic optical part and plastic optical product
JP3671128B2 (en) Method for producing heat resistant thermoplastic resin pellets
CN1189608C (en) Method and installation for making optical fibre
JPS62227103A (en) Preparation of optical fiber
JPS58171405A (en) Production of optical fiber
JPS60149005A (en) Plastic optical fiber
JPH06235831A (en) Production of optical fiber clad material
JPH10111414A (en) Multistep index type plastic optical fiber and its production
JPS5984203A (en) Manufacture of optical fiber
JPH0225481B2 (en)
JPS62235907A (en) Production of optical fiber
KR20050071713A (en) Preform for producing plastic optical components, method of fabricating the preform, and plastic optical fiber
JPH065327B2 (en) Plastic optical fiber with excellent optical transmission efficiency
JPH06214122A (en) Production of optical fiber clad material
JPS5888702A (en) Manufacture of optical fiber superior in light transmittance
JP2003020342A (en) Methacrylic resin molding material and its production method
JPS61267705A (en) Production of optical fiber
JP2003040925A (en) Methacrylic polymer, plastic optical fiber and production method thereof, and plastic optical fiber cable and plastic optical fiber cable with plug
JPS5968703A (en) Method and device for producing plastic optical fiber