JPS62235261A - Manufacture of high density sintered body of silicon nitride - Google Patents

Manufacture of high density sintered body of silicon nitride

Info

Publication number
JPS62235261A
JPS62235261A JP61078340A JP7834086A JPS62235261A JP S62235261 A JPS62235261 A JP S62235261A JP 61078340 A JP61078340 A JP 61078340A JP 7834086 A JP7834086 A JP 7834086A JP S62235261 A JPS62235261 A JP S62235261A
Authority
JP
Japan
Prior art keywords
sintered body
pressure
silicon nitride
atm
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61078340A
Other languages
Japanese (ja)
Other versions
JPH0375506B2 (en
Inventor
浩明 西尾
史郎 鳥塚
高瀬 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61078340A priority Critical patent/JPS62235261A/en
Publication of JPS62235261A publication Critical patent/JPS62235261A/en
Publication of JPH0375506B2 publication Critical patent/JPH0375506B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分!l!テコ この発明は窒化ケイ素(Si3 N4)の高密度焼結体
の製造方法、特にその焼結体の強度の向上に関するもの
である。
[Detailed description of the invention] [Industrial use! l! This invention relates to a method for producing a high-density sintered body of silicon nitride (Si3N4), and particularly to improving the strength of the sintered body.

[従来の技術] 窒化ケイ素の焼結体は、炭化ケイ素(SiC)の焼結体
、ジルコニア(ZrO□)の焼結体と共に、構造材料と
して最も期待され、その用途開拓が進冶^わていス− 窒化ケイ素、炭化ケイ素のような非酸化物を焼結するに
は、酸化物の焼結温度より高い温度を必要とし、例えは
、炭化ケイ素では1950〜2050℃の高温が必要で
ある。
[Prior Art] Sintered bodies of silicon nitride, along with sintered bodies of silicon carbide (SiC) and sintered bodies of zirconia (ZrO Sintering non-oxides such as silicon nitride and silicon carbide requires a higher temperature than the sintering temperature of oxides; for example, silicon carbide requires a high temperature of 1950 to 2050°C.

しかし、窒化ケイ素は平衡論的には1700℃では約0
.1気圧以下、1900℃では約1気圧以下の窒素中で
熱分解するので、炭化ケイ素における1950〜205
0℃という高温で焼結することは困難である。
However, silicon nitride has an equilibrium value of about 0 at 1700°C.
.. 1 atm or less, and at 1900°C, it decomposes thermally in nitrogen at about 1 atm or less, so the 1950-205
It is difficult to sinter at a high temperature of 0°C.

窒化ケイ素を焼結するには、窒化ケイ素粉末にイ・ント
リア(Y2O2)、アルミナ(八1203) 、マグネ
シア(Mg0)等の酸化物の粉体を焼結助剤として添加
して、その焼結温度を1700〜1900℃に下げると
ともに、窒素ガス雰囲気で焼結体に窒化ケイ素の分解圧
以上の圧力をかけておく必要がある。
To sinter silicon nitride, powder of oxides such as Y2O2, alumina (Y2O2), magnesia (Mg0), etc. is added as a sintering aid to the silicon nitride powder, and the sintering It is necessary to lower the temperature to 1,700 to 1,900°C and apply a pressure higher than the decomposition pressure of silicon nitride to the sintered body in a nitrogen gas atmosphere.

この場合、τ囲気の窒素ガスの圧力は、窒化ケイ素の熱
分解の平衡圧よりかなり高くしないと、その重量減少を
防止できない。例えば、窒化ケイ素を1800℃で焼結
するには、窒素ガスの圧力を大気圧以上としなければな
らない。
In this case, the pressure of the nitrogen gas in the τ atmosphere must be considerably higher than the equilibrium pressure of thermal decomposition of silicon nitride in order to prevent weight loss. For example, in order to sinter silicon nitride at 1800° C., the pressure of nitrogen gas must be higher than atmospheric pressure.

このような制約を老慮して空化ケイ去の鉛吏をを03気
圧から21気圧程度までの窒素ガス;囲気て焼結し、密
度率(、焼結体の実密度xlOO/焼結体の理論密度)
88〜94%の焼結体を得る方法が知られている。
Taking these constraints into account, the sintered lead was sintered in an atmosphere of nitrogen gas from 03 atm to 21 atm, and the density ratio (actual density of the sintered body xlOO/sintered body theoretical density)
A method of obtaining a sintered body of 88 to 94% is known.

しかし、このような方法で得られた焼結体中には6〜1
2%の空孔が残存するので、強度にバラツキを生じ易く
、この方法で強度が高く、しかも強度にバラツキか少な
い焼結体を製造することは困難である。
However, the sintered body obtained by such a method contains 6 to 1
Since 2% of pores remain, variations in strength are likely to occur, and it is difficult to produce a sintered body with high strength and little variation in strength using this method.

このため、この不完全を補う手段として、焼結体を上記
の窒素ガス7囲気中で加圧加熱して、焼結体中に残存し
ている空孔を、7囲気とつながっていない空孔、すなわ
ち閉気孔とした後、更に、窒素カスで第1段目よりも高
い圧力(10〜100気圧)で加圧しながら1700〜
2000℃に加熱する方法か知られている。
Therefore, as a means to compensate for this imperfection, the sintered body is heated under pressure in the above-mentioned nitrogen gas atmosphere, and the pores remaining in the sintered body are removed from the pores that are not connected to the atmosphere. , that is, after making the pores closed, further pressurize with nitrogen gas at a higher pressure than the first stage (10 to 100 atm) and pressurize at 1700~
A method of heating to 2000°C is known.

この場合、焼結体は開気孔を含まないので、ガス圧によ
り焼結体を等方向に圧縮でき、この過程で焼結体内部に
存在する空孔内の窒素ガスが空孔周囲の固体中へ拡散し
、空孔が縮小し、高密度化が進む。この方法では、密度
率95〜98%の高密度焼結体を得ることができる。
In this case, since the sintered body does not contain open pores, the sintered body can be compressed in the same direction by gas pressure, and in this process, nitrogen gas in the pores inside the sintered body is released into the solid surrounding the pores. , the pores shrink, and densification progresses. With this method, a high-density sintered body with a density ratio of 95 to 98% can be obtained.

更に、この方法を推し進めて、第2段目の高密度化過程
を熱間等方圧プレス(HIP)装置を使って実施し、窒
素ガスで1000気圧程度の超高圧を加え、密度率98
〜100%の高密度焼結体を製造する方法も知られてい
る。この窒素ガスによるHIP処理は、理論密度に近い
焼結体を得る最も優れた方法と考えられている。
Furthermore, this method was further advanced and the second stage of densification process was carried out using a hot isostatic pressing (HIP) device, applying ultra-high pressure of about 1000 atm with nitrogen gas, and achieving a density rate of 98.
Methods for producing high density sintered bodies of ~100% are also known. This HIP treatment using nitrogen gas is considered to be the most excellent method for obtaining a sintered body with a density close to the theoretical density.

[発明が解決しようとする問題点] しかし、1700℃以上の高温では、窒素ガス=囲気の
圧力が10気圧を越え、窒素ガス圧が高くなればなるほ
ど、7囲気窒素の一部が焼結体の結晶粒及び粒界相に拡
散固溶し、この固溶した窒素の一部が焼結体を冷却する
過程で気体となり、この気体か焼結体内に高圧窒素を内
蔵した微小気孔を形成し、この高圧窒素か焼結体内に内
部応力を発生させ、焼結体の強度を低下させ、例えは、
1240気圧、1750℃の窒素ガス7囲気中て製造さ
れた高密度焼結体の強度は、100気圧、1750℃で
製造された高密度焼結体の強度よりも低く、しかも強度
には依然としてバラツキがあるという問題点があった。
[Problems to be solved by the invention] However, at high temperatures of 1700°C or higher, the pressure of nitrogen gas = surrounding air exceeds 10 atm, and the higher the nitrogen gas pressure, the more a part of the surrounding nitrogen becomes a sintered body. A part of this solid solution nitrogen becomes a gas in the process of cooling the sintered body, and this gas forms micropores containing high-pressure nitrogen inside the sintered body. , this high-pressure nitrogen generates internal stress within the sintered body and reduces the strength of the sintered body, for example,
The strength of the high-density sintered body manufactured in a nitrogen gas atmosphere of 1240 atm and 1750°C is lower than that of the high-density sintered body manufactured at 100 atm and 1750°C, and the strength still varies. There was a problem that there was.

この発明は、かかる問題点を解決するためになされたも
ので、強度か高く、しかも強度のバラツキかできるたけ
少ない窒化ケイ素の高密度焼結体の製造方法を得ること
を目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide a method for producing a high-density sintered body of silicon nitride that has high strength and minimizes variations in strength.

[問題点を解決するための手段] この発明に係る窒化ケイ素の高密度焼結体の製造方法は
、開気孔のない窒化ケイ素の焼結体を混合ガスで加圧加
熱する方法であり、該混合ガスは不活i生ガスと窒素ガ
スとからなり、該混合ガスの全圧は800〜2150気
圧、該窒素ガスの分圧は0.3〜10気圧、該混合ガス
の温度は1650〜2050℃であるものである。
[Means for Solving the Problems] The method for producing a high-density sintered body of silicon nitride according to the present invention is a method of pressurizing and heating a sintered body of silicon nitride without open pores with a mixed gas. The mixed gas consists of an inert raw gas and nitrogen gas, the total pressure of the mixed gas is 800 to 2150 atm, the partial pressure of the nitrogen gas is 0.3 to 10 atm, and the temperature of the mixed gas is 1650 to 2050 atm. ℃.

[作用] この発明においては、=囲気ガスの圧力が800〜21
50気圧と高圧であるにもかかわらす、窒素ガスの分圧
が0.3〜lO気圧と低いので、霊囲気窒素の一宮区が
士aキ大イ大の糸古晶粒乃び持界才日に鉱肪因1客する
ことか殆どなく、焼結体を冷却する過程で高圧窒素を内
蔵した微小気孔は形成されず、焼結体内に内部応力が発
生しない。
[Function] In this invention, = pressure of surrounding gas is 800 to 21
Although the pressure is as high as 50 atm, the partial pressure of nitrogen gas is as low as 0.3 to 10 atm, so the Ichinomiya ward of spiritual air nitrogen has a large amount of energy. Hardly one mineral is lost per day, and micropores containing high-pressure nitrogen are not formed during the cooling process of the sintered body, so no internal stress is generated within the sintered body.

[実施例] この発明は、開気孔のない窒化ケイ素の焼結体を混合ガ
スで加圧加熱して窒化ケイ素の高密度焼結体を製造する
方法である。
[Example] The present invention is a method for manufacturing a high-density sintered body of silicon nitride by pressurizing and heating a sintered body of silicon nitride without open pores with a mixed gas.

この開気孔のない窒化ケイ素の焼結体は、多孔質の窒化
ケイ素成形体を例えば10気圧以下の比鮫的低圧の窒素
ガス雰囲気中で焼結して製造したものを用いる。
This silicon nitride sintered body without open pores is produced by sintering a porous silicon nitride molded body in a nitrogen gas atmosphere at a comparatively low pressure of, for example, 10 atmospheres or less.

窒化ケイ素の焼結体を加圧加熱する混合ガスは不活性ガ
スと窒素ガスとからなり、この不活性ガスとしては、焼
結原料と反応せず、かつ焼結体に固溶しないか又はその
固溶量を無視てきるアルゴン、ヘリウム等のガスを使用
する。
The mixed gas that pressurizes and heats the silicon nitride sintered body consists of an inert gas and nitrogen gas, and this inert gas does not react with the sintering raw material and is not solidly dissolved in the sintered body, or contains nitrogen gas. Use gases such as argon and helium whose solid solution amount can be ignored.

窒化ケイ素の焼結体を加圧加熱する混合カスの全圧は8
00〜2150気圧とする。混合ガスの全圧を800気
圧以上としたのは、混合ガスの全圧が800気圧未満で
は焼結体の高密度化か進行し難いからである。また、混
合ガスの全圧を2150気圧以下としたのは、混合ガス
の全圧を800気圧以上に上げた場合、圧力の上昇に伴
って高密度化は促進されるが、2150気圧を越えて圧
力を上げても、もはやそれ以上の高密度化の効果がない
からである。第1図にこのことを裏付けるガス圧と理論
密度比との関係を示す。
The total pressure of the mixed waste that pressurizes and heats the silicon nitride sintered body is 8
00 to 2150 atmospheres. The reason why the total pressure of the mixed gas is set to 800 atm or more is because if the total pressure of the mixed gas is less than 800 atm, it is difficult to increase the density of the sintered body. In addition, the reason why the total pressure of the mixed gas was set to 2150 atm or less is that when the total pressure of the mixed gas is increased to 800 atm or more, densification is promoted as the pressure increases, but if the total pressure of the mixed gas exceeds 2150 atm, This is because even if the pressure is increased, there is no further effect of increasing the density. Figure 1 shows the relationship between gas pressure and theoretical density ratio, which supports this fact.

窒化ケイ素の焼結体を加圧加熱する混合ガスの窒素ガス
分圧は0.3〜10気圧とする。窒素ガスの分圧を03
気圧以上としたのは、窒素ガスの分圧を0.3気圧未満
にすると、窒化ケイ素の熱分解の量が無視できなくなり
、しかも焼結体の緻密化が阻害されるからである。窒素
ガスの分圧をlO気圧以下としたのは、窒素ガスの分圧
が10気圧を越えると焼結体の内部に拡散する窒素ガス
の量が無視できなくなり、焼結体の強度が低下するから
である。
The nitrogen gas partial pressure of the mixed gas for pressurizing and heating the silicon nitride sintered body is 0.3 to 10 atm. The partial pressure of nitrogen gas is 03
The reason why the partial pressure of the nitrogen gas is set to be at least 0.3 atm is because the amount of thermal decomposition of silicon nitride cannot be ignored and furthermore, the densification of the sintered body is inhibited. The reason why the partial pressure of nitrogen gas was set to be less than 10 atm is because if the partial pressure of nitrogen gas exceeds 10 atm, the amount of nitrogen gas that diffuses into the inside of the sintered body cannot be ignored, and the strength of the sintered body decreases. It is from.

窒化ケイ素の焼結体を加圧加熱する混合ガスの温度は1
650〜2050℃とする。この混合ガスの温度を16
50〜2050℃の範囲としたのは、1650℃未満の
温度及び2050℃を越えた温度での焼結体の加圧加熱
は、粒界相である酸化物ガラス相の形成に適しないから
である。
The temperature of the mixed gas that pressurizes and heats the silicon nitride sintered body is 1
The temperature shall be 650 to 2050°C. The temperature of this mixed gas is 16
The range was set at 50 to 2050°C because pressurizing and heating the sintered body at temperatures below 1650°C and above 2050°C is not suitable for forming the oxide glass phase, which is the grain boundary phase. be.

実験例1 窒化ケイ素92%、アルミナ 6%、イツトリア 2%
からなる粉末(不純物1300ppm 、酸素 1.8
%、炭素0.40%、α化率94%、比表面積8.5 
m27g )にパラフィンを 1%加え、攪拌型ボール
ミルを使ってアセトン中で4時間粉砕混合し、噴霧乾燥
、脱脂させ、得られた粉末を原料として一釉ブレス成形
、CIP処理して、密度率57.0%の成形体くサイズ
60mmX 60mmX 15n+m)を形成し、この
成形体を窒化アルミニウム粉末中に埋め、1750℃、
1気圧の窒素ガス:囲気中て 2.5時間焼結し、密度
率925%の焼結体を得た。
Experimental example 1 Silicon nitride 92%, alumina 6%, ittria 2%
Powder consisting of (impurities 1300 ppm, oxygen 1.8
%, carbon 0.40%, gelatinization rate 94%, specific surface area 8.5
Add 1% paraffin to m27g), pulverize and mix in acetone for 4 hours using a stirring ball mill, spray dry, degrease, and use the resulting powder as a raw material for monoglaze press molding and CIP treatment to obtain a density ratio of 57. 0% molded body (size 60 mm x 60 mm
Sintering was carried out for 2.5 hours in a nitrogen gas atmosphere of 1 atm to obtain a sintered body with a density ratio of 925%.

次に、この焼結体を、窒化アルミニウム粉中に埋め、こ
れをHIP装置の炉内に装入し、この炉内に窒素ガスを
導入して、窒素ガスτ囲気の圧力をlθ気圧とするとと
もに、炉内温度を1750℃まで昇温させ、この温度を
保持させたままコンプレッサーで炉内にアルゴンガスを
圧入してガス雰囲気の全圧を2001気圧とし、この状
態で1.75時間保持し、その後放ン令した。
Next, this sintered body is buried in aluminum nitride powder, and this is charged into the furnace of the HIP device. Nitrogen gas is introduced into the furnace, and the pressure of the nitrogen gas τ atmosphere is set to lθ atmospheric pressure. At the same time, the temperature inside the furnace was raised to 1,750°C, and while maintaining this temperature, argon gas was injected into the furnace using a compressor to bring the total pressure of the gas atmosphere to 2,001 atm, and this state was maintained for 1.75 hours. He was then ordered released.

この処理によって得られた焼結体の密度率は987%で
あった。また、この焼結体より曲げ試験用試験片(3m
mx 4mm x 40mm) 20本を切り出し、こ
の試験片について常温3点曲げ試験を行なったところ、
曲げ強さは98.1kg/mm’、ワイブル係数は27
0であった。
The density ratio of the sintered body obtained by this treatment was 987%. In addition, a bending test specimen (3 m
When we cut out 20 specimens (mx 4mm x 40mm) and conducted a three-point bending test at room temperature, we found that
Bending strength is 98.1kg/mm', Weibull coefficient is 27
It was 0.

実験例2 前述の実験例1と同一の手順で得た密度率57.0%、
60mmx 60mmx 15mmの成形体を、窒化ア
ルミニウム粉中に埋め、これをHIP装置に装入し、真
空吸引しながら1000℃まで加熱し、0.2Torr
で2時間保持して脱気し、窒素ガスを入れて1気圧に保
持しつつ1750℃まで昇温し2.5時間保持し、炉温
を1750℃に保持しつつ、コンプレッサーによりアル
ゴンガスを導入して1001気圧とし、この状態で1.
75時間保持し、その後放冷した。
Experimental Example 2 Density rate 57.0% obtained by the same procedure as in Experimental Example 1 above,
A molded body of 60 mm x 60 mm x 15 mm was buried in aluminum nitride powder, placed in a HIP device, heated to 1000°C while vacuum suction, and heated to 0.2 Torr.
Hold for 2 hours to degas, then add nitrogen gas and maintain the pressure at 1 atm while raising the temperature to 1750°C and hold for 2.5 hours. While maintaining the furnace temperature at 1750°C, argon gas is introduced using a compressor. The pressure was set to 1001 atm, and in this state 1.
It was held for 75 hours and then allowed to cool.

3%てあった。また、この焼結体から曲げ試験用試験片
Nmm X4mm x40mm) 20本を切り出し、
これらの試験片について常温3点曲げ試験を行なったと
ころ、曲げ強さは102.0kg/mm2.ワイブル係
数は25.6であった。
It was 3%. In addition, 20 test pieces for bending tests (Nmm x 4mm x 40mm) were cut out from this sintered body.
When these test pieces were subjected to a three-point bending test at room temperature, the bending strength was 102.0 kg/mm2. The Weibull coefficient was 25.6.

比較例 前述の実験例1と同一の手順で得た密度率57.0%、
60mmx 60mmx 15+nmの成形体を、窒化
アルミニウム粉中に埋め、1750℃、1気圧の窒素ガ
スτ囲気中で2.5時間焼結し、密度率92.5%の焼
結体を得、次に、この焼結体を窒化アルミニウム粉末中
に埋め、これをHIP装置に装入し、1750℃、11
00気圧の窒素ガス雰囲気中で1.75時間焼結した。
Comparative Example Density rate 57.0% obtained by the same procedure as in Experimental Example 1 above.
A molded body of 60 mm x 60 mm x 15+ nm was buried in aluminum nitride powder and sintered at 1750°C for 2.5 hours in an atmosphere of nitrogen gas τ of 1 atm to obtain a sintered body with a density rate of 92.5%. This sintered body was buried in aluminum nitride powder, charged into a HIP device, and heated at 1750°C for 11 hours.
Sintering was carried out for 1.75 hours in a nitrogen gas atmosphere of 0.00 atm.

この処理によって得られた焼結体の密度率は99.2%
であった。また、この焼結体から曲げ試験用試験片(サ
イズ3 mmx 4 mmx 40mm) 20本を切
り出し、これらの試験片について常温3点曲げ試験を行
ったところ、曲げ強さは68.2kg/mm2、ワイブ
ル係数は18.7であった。
The density rate of the sintered body obtained by this treatment is 99.2%
Met. In addition, 20 test pieces for bending tests (size 3 mm x 4 mm x 40 mm) were cut out from this sintered body, and a 3-point bending test at room temperature was performed on these test pieces, and the bending strength was 68.2 kg/mm2. The Weibull coefficient was 18.7.

この発明は以上説明したとおり、:囲気ガスの圧力を8
00〜2150気圧と高圧にしたにもかかわらず、窒素
ガスの分圧を 03〜lO気圧と低くしたので、焼結中
に7囲気窒素の一部が焼結体の結晶粒及び粒界相に拡散
固溶することが殆どなく、冷却する過程で焼結体内に高
圧窒素を内蔵した微小気孔は形成されず、製造された高
密度焼結体内に内部応力が発生せす、従って強度の高い
焼結体を製造することかできるという効果がある。
As explained above, this invention: increases the pressure of surrounding gas to 8
Although the pressure was high (00 to 2150 atm), the partial pressure of nitrogen gas was kept low at 03 to 100 atm, so that part of the nitrogen gas was absorbed into the crystal grains and grain boundary phase of the sintered body during sintering. There is almost no diffusion and solid solution, and micropores containing high-pressure nitrogen are not formed in the sintered body during the cooling process, causing internal stress in the produced high-density sintered body, resulting in high-strength sintered bodies. It has the effect of being able to produce solids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス圧と理論密度比との関係を示すグラフであ
る。 代理人 弁理士 佐 藤 正 年 0    500   1α)O15002α力力゛ス
斥 (気/E)
FIG. 1 is a graph showing the relationship between gas pressure and theoretical density ratio. Agent Patent Attorney Tadashi Sato Year 0 500 1α) O15002α Force Repulsion (Ki/E)

Claims (1)

【特許請求の範囲】[Claims] 開気孔のない窒化ケイ素の焼結体を混合ガスで加圧加熱
する方法であり、該混合ガスは不活性ガスと窒素ガスと
からなり、該混合ガスの全圧は800〜2150気圧、
該窒素ガスの分圧は0.3〜10気圧、該混合ガスの温
度は1650〜2050℃である窒化ケイ素の高密度焼
結体の製造方法。
This is a method of pressurizing and heating a sintered body of silicon nitride without open pores with a mixed gas, the mixed gas consists of an inert gas and nitrogen gas, and the total pressure of the mixed gas is 800 to 2150 atmospheres,
A method for producing a high-density sintered body of silicon nitride, wherein the partial pressure of the nitrogen gas is 0.3 to 10 atm, and the temperature of the mixed gas is 1650 to 2050°C.
JP61078340A 1986-04-07 1986-04-07 Manufacture of high density sintered body of silicon nitride Granted JPS62235261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61078340A JPS62235261A (en) 1986-04-07 1986-04-07 Manufacture of high density sintered body of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61078340A JPS62235261A (en) 1986-04-07 1986-04-07 Manufacture of high density sintered body of silicon nitride

Publications (2)

Publication Number Publication Date
JPS62235261A true JPS62235261A (en) 1987-10-15
JPH0375506B2 JPH0375506B2 (en) 1991-12-02

Family

ID=13659251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61078340A Granted JPS62235261A (en) 1986-04-07 1986-04-07 Manufacture of high density sintered body of silicon nitride

Country Status (1)

Country Link
JP (1) JPS62235261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215762A (en) * 1988-02-24 1989-08-29 Fujitsu Ltd Production of silicon nitride sintered form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215762A (en) * 1988-02-24 1989-08-29 Fujitsu Ltd Production of silicon nitride sintered form

Also Published As

Publication number Publication date
JPH0375506B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
US4354990A (en) Process for sintering silicon nitride compacts
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JPS61242960A (en) Manufacture of formed body comprising reaction bonded silicon nitride by nitriding under high pressure of nitrogengas
US4179486A (en) Method of protecting Si3 N4 ceramic alloy during heating
JPS62235261A (en) Manufacture of high density sintered body of silicon nitride
JPH021793B2 (en)
JPS6152110B2 (en)
EP0648717A2 (en) Reaction sintered ceramics and method of producing the same
JPS6146431B2 (en)
JPH0146472B2 (en)
JPH01215761A (en) Production of silicon nitride sintered form
JPH0610115B2 (en) Manufacturing method of composite ceramics
JP3667064B2 (en) Silicon nitride-based sintered body and method for producing the same
JPS62252388A (en) Silicon nitride sintered body
JPS5939769A (en) Method of sintering silicon nitride
JPS5884184A (en) Manufacture of high strength silicon nitride sintered body
JPH0242792B2 (en)
JPS59111981A (en) Manufacture of silicon nitride-containing fine sintered body
JPS61209955A (en) Manufacture of nitroxide ceramic material
JPH06166569A (en) Production of sintered silicon nitride
JPS6363515B2 (en)
JPH0416562A (en) Production of silicon nitride sintered body
JPH0782032A (en) Silicon nitride sintered compact and its production
Plucknett et al. Hot Isostatic Pressing of Sintered Si3N4 Ceramics
JPH0570235A (en) Production of silicon nitride sintered body