JPS62233781A - Measuring instrument for arrival direction - Google Patents

Measuring instrument for arrival direction

Info

Publication number
JPS62233781A
JPS62233781A JP61076920A JP7692086A JPS62233781A JP S62233781 A JPS62233781 A JP S62233781A JP 61076920 A JP61076920 A JP 61076920A JP 7692086 A JP7692086 A JP 7692086A JP S62233781 A JPS62233781 A JP S62233781A
Authority
JP
Japan
Prior art keywords
circuit
fourier transform
plural
signals
input signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61076920A
Other languages
Japanese (ja)
Other versions
JPH0766046B2 (en
Inventor
Tsuneaki Daishidou
大師堂 経明
Kuniyuki Yuma
遊馬 邦之
Seiichiro Iwase
岩瀬 清一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61076920A priority Critical patent/JPH0766046B2/en
Publication of JPS62233781A publication Critical patent/JPS62233781A/en
Publication of JPH0766046B2 publication Critical patent/JPH0766046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

PURPOSE:To easily correct deviations of phases and amplitude of plural input signals at respective analog circuit parts with high accuracy and to uniform them by providing plural complex multiplying circuits between plural A/D converters and a Fourier transform processing circuit. CONSTITUTION:The plural complex multiplying circuits 39-42 corresponding to plural wave receiving elements 1-4 are provided which are interposed between the plural A/D converters 22-29 and the Fourier transform processing circuit 30 and supplied with correcting multiplying values. The correcting multiplying values corresponding to the deviations of the phases and amplitudes of signals of respective channels at the analog circuit parts are supplied to the plural complex multiplying circuits 39-42 to correct the deviations. Consequently, the constitution is simplified and the cost is reduced to easily correct the deviations of the phases and amplitudes of the plural input signals at the respective analog circuit part with high accuracy, thereby uniforming them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電波望遠鏡、レーダー、ソナー等に適用して好
適な到来方向測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a direction of arrival measuring device suitable for application to radio telescopes, radars, sonar, etc.

〔発明のm要〕[Essentials of invention]

本発明は、複数の人力信号のO変位相のものと90度変
位相ものとを各別にデジタル化し、かかる複数のデジタ
ル信号をフーリエ変換し、この複数の変換出力によって
、複数の入力信号の到来方向を測定するようにした到来
方向測定装置において、複数のA/D変換器及びフーリ
エ変換回路間に、補正乗算値の与えられる、複数の入力
信号に夫々対応した複数の複素乗算回路を設けたことに
より、構成WI単、価格低源にして、複数の入力信号の
各々の各アナログ回路部による位相及び振幅の偏差を容
易且つ高精度に補正して揃えることができるようにした
ものである。
The present invention separately digitizes the O-shift phase and 90-degree phase shift signals of a plurality of human input signals, performs Fourier transform on the plurality of digital signals, and uses the plurality of conversion outputs to generate a plurality of input signals. In a direction-of-arrival measuring device configured to measure direction, a plurality of complex multiplication circuits each corresponding to a plurality of input signals are provided between a plurality of A/D converters and a Fourier transform circuit to which a correction multiplication value is given. As a result, deviations in phase and amplitude due to each analog circuit section of each of a plurality of input signals can be easily and highly accurately corrected and made equal to each other with a simple structure and low cost.

〔従来の技術〕[Conventional technology]

以下に、第3図を参照して、従来の広視野電波望遠鏡に
ついて説明する。(1)〜(4)は、直線的に等間隔に
配列された4個(一般的には複数個であるが、ここでは
説明を容易にするために例えば4([lilとする)の
受信アンテナ(ホーンアンテ・ノ・)で、これにより天
体からの電波を受波する。
A conventional wide-field radio telescope will be described below with reference to FIG. (1) to (4) are the reception of 4 pieces (generally, there is a plurality of pieces, but for ease of explanation, for example, 4 pieces (referred to as [lil)) arranged in a straight line at equal intervals. An antenna (horn antenna) that receives radio waves from celestial bodies.

この場合、受波信号が狭帯域であれば、瞬時毎の各アン
テナ(1)〜(4)の受波電圧は電波到来方向によって
空間周波数の異なる正弦波状の分布と成る。従って、各
アンテナ(1)〜(4)の受波電圧をフーリエ変換する
ことによって、同時に多方向から到来する電波の到来方
向及び強度を測定することができる。
In this case, if the received signal is a narrow band, the received voltage of each of the antennas (1) to (4) at each instant has a sinusoidal distribution with a spatial frequency that differs depending on the radio wave arrival direction. Therefore, by Fourier transforming the received voltages of each of the antennas (1) to (4), it is possible to measure the directions and intensities of radio waves arriving from multiple directions at the same time.

しかして、アンテナ(1)〜(4)よりのS HF帯(
10Gllz帯)のθ〜3チャンネルの受渡信号を、夫
々第1の混合回路(5)〜(8)に供給して、0〜3チ
ヤンネルのIGIIz帯の中間周波信号に周波数変換す
る。尚、ここでチャンネルは受波素子としてのアンテナ
(1)〜(4)に対応した番号を表わしている。(9八
)は、これら混合回路(5)〜(8)に局部発振信号を
供給する第1局部発振器である。各混合回路(5)〜(
8)より00〜3チヤンネルの各周波数変換された信号
は、その各信号の90度移相器(10)〜(13)によ
って90度移和されたものと共に、夫々が第2の混合回
路(14)  、  (15)  ;  (16)  
、  (17)  ;(18)  。
Therefore, the S HF band from antennas (1) to (4) (
The delivery signals of θ to 3 channels of 10Gllz band) are supplied to the first mixing circuits (5) to (8), respectively, and frequency-converted into intermediate frequency signals of 0 to 3 channels of IGIIz band. Note that the channels here represent numbers corresponding to antennas (1) to (4) as wave receiving elements. (98) is a first local oscillator that supplies local oscillation signals to these mixing circuits (5) to (8). Each mixing circuit (5) to (
8), the frequency-converted signals of channels 00 to 3, together with the signals shifted by 90 degrees by the 90 degree phase shifters (10) to (13), are sent to the second mixing circuit ( 14), (15); (16)
, (17); (18).

(19)  ;  (20) 、  (21)に供給さ
れて、夫々0〜3チヤンネルの2.0MIIz帯域の直
交2相ベ一スバンド信号、即ち夫々混合回路(14) 
、  (16) 、  (18) 。
(19) ; (20) and (21) are supplied with orthogonal two-phase baseband signals in the 2.0 MIIz band of channels 0 to 3, that is, the respective mixing circuits (14);
, (16), (18).

(20)よりの実数信号及び混合回路(15) 、  
(17) 。
Real signal and mixing circuit (15) from (20),
(17).

(19) 、  (21)よりの虚数信号から成る0〜
3チヤンネルの複素信号に変換される。(9B)は、こ
れら混合回路(14)〜(21)に局部発振信号を供給
する第2局部発振器である。かかる2段の周波数変換は
、受波信号の周波数を下げて、デジタル変換を容易なら
しめるために行ったものである。
(19), 0~ consisting of imaginary signals from (21)
It is converted into a 3-channel complex signal. (9B) is a second local oscillator that supplies local oscillation signals to these mixing circuits (14) to (21). This two-stage frequency conversion is performed to lower the frequency of the received signal to facilitate digital conversion.

混合回路(14)〜(21)よりの各信号は、A/D変
換器(22)〜(29)に供給してデジタル信号(デジ
タル化の際のサンプリング周波数は、電波望遠鏡の場合
可及的に高くして、広帯域処理することが望ましい)に
変換した後、高速フーリエ変換回路(30)に供給する
。尚、上述のようにアンテナ(1)〜(4)からの受波
信号を周波数変換した後でも位相勾配情報が残るため、
空間的フーリエ変換により電波到来方向の分解が可能で
ある。
Each signal from the mixing circuits (14) to (21) is supplied to the A/D converters (22) to (29) to provide a digital signal (the sampling frequency at the time of digitization is as high as possible in the case of a radio telescope). After converting the signal into a high-speed Fourier transform circuit (preferably, wideband processing is performed), the signal is supplied to a fast Fourier transform circuit (30). Furthermore, as mentioned above, even after frequency converting the received signals from antennas (1) to (4), phase gradient information remains.
Spatial Fourier transform allows decomposition of the direction of arrival of radio waves.

この場合、アンテナの個数が4なので、フーリエ変換回
路(30)では、4次のフーリエ交換を行う。
In this case, since the number of antennas is four, the Fourier transform circuit (30) performs fourth-order Fourier exchange.

フーリエ変11!回路(30)からは4方向の出力(複
素信号)が得られる。かかる高速フーリエ変換回路(3
0)については特訓昭60−5449号が参考に成る。
Fourier strange 11! Outputs (complex signals) in four directions are obtained from the circuit (30). Such a fast Fourier transform circuit (3
Regarding 0), Special Training No. 60-5449 is a good reference.

高速フーリエ変換回路(30)からの4方向の複素出力
は、自乗積分回路(31)〜(34)に供給されて、電
力が求められ積分されて4つの方向の出力が出力端子(
35)〜(38)に出力され、図示を省略したが、デー
タ処理用コンピュータを経由してディスプレイ装置に供
給される。かかる自乗積分回路(31)〜(34)及び
この種の電波望遠鏡については、特開昭(30−165
079号が参考に成る。
The complex outputs in four directions from the fast Fourier transform circuit (30) are supplied to the square integration circuits (31) to (34), where the power is determined and integrated, and the outputs in the four directions are sent to the output terminal (
35) to (38), and are supplied to a display device via a data processing computer (not shown). Such square integration circuits (31) to (34) and this type of radio telescope are described in Japanese Patent Application Laid-Open No. 30-165.
No. 079 can be used as a reference.

尚、アンテナの数を増やしたり、2次元配列したりする
と、方向分解数が増えて、2次元化される。光学望遠鏡
では到来光をレンズによってフーリエ変換し、得られた
実像を写真乾板上に形成しているが、電波望遠鏡で2次
元化が行われると、高速フーリエ変換回路がレンズの代
わりと成る。
Note that if the number of antennas is increased or the antennas are arranged in a two-dimensional array, the number of direction resolutions increases and the antenna becomes two-dimensional. In an optical telescope, the incoming light is Fourier transformed using a lens, and the resulting real image is formed on a photographic plate, but when two-dimensionalization is performed with a radio telescope, a fast Fourier transform circuit takes the place of the lens.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の電波望遠鏡は、アナログ回路部及びデジタル回路
部から成っている。デジタル回路部は正確且つ安定に動
作するが、アナログ回路部には不安定要素があるため、
アナログ回路部の性能によって、電波望遠鏡の性能が決
まってしまう。この電波望遠鏡で最も重要なことは、各
アンテナの受信信号の僅かな時間差から方向が分解され
るので、各チャンネルのアナログ回路部間での位相差や
利得差を如何に少なくするかである。
The radio telescope described above consists of an analog circuit section and a digital circuit section. The digital circuit section operates accurately and stably, but the analog circuit section has unstable elements.
The performance of a radio telescope is determined by the performance of the analog circuit. The most important thing in this radio telescope is how to minimize the phase difference and gain difference between the analog circuit sections of each channel, since the direction is resolved from the slight time difference between the received signals of each antenna.

従来のこの問題の解決方法としては、適当なテスト信号
に対してアンテナからA/D変換器の入力側まで、どれ
だけチャンネル毎の位相差、利得差があるかを調べ、そ
の分をl目の混合回路の後で、各チャンネルの信号を位
相補正したり、利得補正したりしていた。
The conventional method for solving this problem is to find out how much phase difference and gain difference there is for each channel from the antenna to the input side of the A/D converter for a suitable test signal, and calculate the amount by After the mixing circuit, each channel's signal was phase-corrected and gain-corrected.

しかしかかる方法は、測定が煩雑であるし、中間周波信
号の位相を微調整できる部品は高価であり、また、周波
数特性及び可変範囲の上で問題があった。しかもアナロ
グ回路は、経時変化や温度特性などの問題があり、常に
各チャンネルのアナログ回路部間の位相特性、振幅特性
が同じに成るように揃えておくことは殆ど不可能である
However, in this method, the measurement is complicated, the components that can finely adjust the phase of the intermediate frequency signal are expensive, and there are problems in terms of frequency characteristics and variable range. Moreover, analog circuits have problems such as changes over time and temperature characteristics, and it is almost impossible to always align the phase characteristics and amplitude characteristics of the analog circuit sections of each channel to be the same.

又、各チャンオルの回路部間の位相補正、振幅補正は、
中間周波段で行うと困難なので、かかる補正をベースバ
ンドでアナログ的に行うことも考えられるが、中間周波
段と異なり、取り扱う中心周波数対帯域幅の比、即ち比
帯域が大きく成るので、一層実現困難である。
In addition, phase correction and amplitude correction between the circuit sections of each channel are as follows.
Since it would be difficult to perform such correction in the intermediate frequency stage, it may be possible to perform such correction in an analog manner at the baseband, but unlike the intermediate frequency stage, the ratio of the center frequency to the bandwidth to be handled, that is, the ratio bandwidth to be handled is large, so it is more practical. Have difficulty.

かかる点に鑑み、本発明は、複数の入力信号のO変位相
のものと90度変位相ものとを各別にデジタル化し、か
かる複数のデジタル受波信号をフーリエ変換し、この複
数の変換出力によって、複数の受波素子への到来波の到
来方向を測定するようにした到来方向測定装置において
、構成簡単2価格低置にして、複数の入力信号の各々の
各アナログ回路部による位相及び振幅の偏差を容易且つ
高精度に補正して揃えることのできるものを提案しよう
とするものである。
In view of these points, the present invention separately digitizes the O-shift phase and 90-degree phase shift of a plurality of input signals, subjects the plurality of digital received signals to Fourier transform, and uses the plurality of converted outputs to perform a Fourier transform. , a direction-of-arrival measurement device that measures the direction of arrival of an incoming wave to a plurality of receiving elements, has a simple configuration, a low cost, and a method for measuring the phase and amplitude of each of the plurality of input signals by each analog circuit section. The purpose is to propose something that can easily and accurately correct and even out deviations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、複数の入力信号が各別に供給される複数の9
0度移相器(10)〜(13)と、複数の入力信号及び
複数の90度移相器(10)〜(13)からの各出力信
号が各別に供給される複数のA/D変換器(22)〜(
29)と、複数のA/D変換器(22)〜(29)より
のデジタル信号が供給されるフーリエ変換回路(30)
とを有し、フーリエ変換回路(30)よりの複数の変換
出力により、複数の入力信号の到来方向を測定するよう
にした到来方向測定装置において、複数のA/D変換器
(22)〜(29)及びフーリエ変換回路(30)間に
介挿され、補正乗算値が与えられる、複数の受波素子(
1)〜(4)に、夫々対応した複数の複素乗算回路(3
9)〜(42)を設けたことを特徴とするものである。
The present invention provides a plurality of nine
0 degree phase shifters (10) to (13), and a plurality of A/D conversions to which the plurality of input signals and each output signal from the plurality of 90 degree phase shifters (10) to (13) are separately supplied. Vessel (22) ~ (
29) and a Fourier transform circuit (30) to which digital signals from the plurality of A/D converters (22) to (29) are supplied.
In a direction-of-arrival measuring device that measures the directions of arrival of a plurality of input signals using a plurality of conversion outputs from a Fourier transform circuit (30), the direction-of-arrival measurement device includes a plurality of A/D converters (22) to ( 29) and the Fourier transform circuit (30), and a plurality of receiving elements (
1) to (4), a plurality of complex multiplication circuits (3
9) to (42) are provided.

〔作用〕[Effect]

かかる本発明によれば、複数の複素乗算回路(39)〜
(42)に、各チャンネルの信号のアナログ回路部によ
る位相と振幅の偏差に応じた補正乗算値を与えることに
より、その偏差を補正する。
According to the present invention, a plurality of complex multiplication circuits (39) to
(42) is corrected by giving a correction multiplication value corresponding to the deviation in phase and amplitude of the signal of each channel due to the analog circuit section, thereby correcting the deviation.

〔実施例〕〔Example〕

以下に、第1図及び第2図を参照して本発明の一実施例
を詳細に説明するも、第1図において第3図と対応する
部分には同一符号を付して重複説明を省略する。即ち本
発明では、A/D変換器(22) 、  (23)  
;  (24) 、  (25)  ;  (26) 
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2, but parts in FIG. 1 that correspond to those in FIG. do. That is, in the present invention, A/D converters (22), (23)
; (24) , (25) ; (26)
.

(27)  ;  (2B) 、  (2’l)と高速
フーリエ変換回路(30)との間にO〜3チャンネルの
複素乗算回路(39)〜(42)を設けて、各チャンネ
ルのアナログ部分で生じた複素信号の偏差を補正する。
(27); (2B), (2'l) and the fast Fourier transform circuit (30) are provided with O to 3 channels of complex multiplication circuits (39) to (42), and the analog part of each channel is Correct the deviation of the resulting complex signal.

次ぎに、第2図を参照して、第1図の複素乗算回路(3
9)〜(42)の回路構成(同一構成)を説明する。例
えばOチャンネルの複素信号を基準としたときの、1〜
3チヤンネルの複素信号に対する振幅補正必要量を夫々
R1,R2,R3とし、Oチャンネルの複素信号を基準
としたときの、1〜3チヤンネルの複素信号に対する位
相補正必要量を夫々φt +  Φ2 +  ! 3と
すると、1〜3チヤンネルの複素乗算回路(40)〜(
42)では、1〜3チヤンネルのベースバンドのデジタ
ル複素信号に、複素乗算補正値 Rk ・ exp(iΦk) = (Rk−cos (Φk)) + i  (Rk−sin ((1’k ) )(但し
、k=1.2.3) を乗算するようにする。
Next, referring to FIG. 2, the complex multiplication circuit (3
The circuit configurations (same configuration) of 9) to (42) will be explained. For example, when using the O channel complex signal as a reference, 1 to
Let the necessary amounts of amplitude correction for the complex signals of three channels be R1, R2, and R3, respectively, and the necessary amounts of phase correction for the complex signals of channels 1 to 3 when using the O channel complex signal as a reference, respectively, φt + Φ2 +! 3, the complex multiplication circuits (40) to (40) of channels 1 to 3 (
42), the complex multiplication correction value Rk exp (iΦk) = (Rk-cos (Φk)) + i (Rk-sin ((1'k)) ( However, it should be multiplied by k=1.2.3).

しかして、(51)は、A/D変換器(22) 。Therefore, (51) is an A/D converter (22).

(24) 、  (26)又は(28)からの実数信号
の供給される入力端子、(52)は、A/D変換器(2
3) 。
The input terminal (52) to which the real signal from (24), (26) or (28) is supplied is the A/D converter (2).
3).

(25) 、  (27)又は(29)からの虚数信号
の供給される入力端子である。入力端子(5()よりの
実数入力は、掛算器(53) 、  (54)に供給さ
れる。
This is an input terminal to which an imaginary number signal from (25), (27) or (29) is supplied. Real number input from the input terminal (5()) is supplied to multipliers (53) and (54).

入力端子(52)よりの虚数入力は、掛算器(55) 
The imaginary number input from the input terminal (52) is sent to the multiplier (55).
.

(56)に供給される。(56).

次ぎに、この複素乗算回路における複素乗算補正値の作
り方について説明する。入力端子(65)よりの位相補
正必要量Φk  (k=1.2.3)を夫々ROM (
63) 、  (64)にアドレスとして供給して、夫
々の出力 cos (Φk) sin (Φk) を得、これらをIt)算器(66) 、  (67)に
供給して、入力端子(70)より供給される振幅補正必
要1qRkと掛算して、夫々 Rk−cos(Φk) Rk −5in(Φk) を得て、レジスタ(68) 、  (69)に記憶させ
る。
Next, how to create a complex multiplication correction value in this complex multiplication circuit will be explained. The necessary phase correction amount Φk (k=1.2.3) from the input terminal (65) is stored in the ROM (
63) and (64) as addresses to obtain the respective outputs cos (Φk) sin (Φk), and supply these to the calculators (66) and (67), and input terminals (70). Rk-cos(Φk) and Rk-5in(Φk) are obtained by multiplying by the amplitude correction required 1qRk supplied by Rk-cos(Φk) and stored in registers (68) and (69), respectively.

そして、レジスタ(68)よりの、 Rk −cos(Φk) を掛算器(53) 、  (55)に供給して、夫々実
数入力及び虚数入力と掛算する。又、レジスタ(69)
よりの、 Rk −5in(Φk) を掛算器(54) 、  (56)に供給して、夫々実
数入力及び虚数入力と掛算する。
Then, Rk - cos(Φk) from the register (68) is supplied to multipliers (53) and (55) to be multiplied by the real number input and the imaginary number input, respectively. Also, register (69)
, Rk −5in(Φk) is supplied to multipliers (54) and (56) to be multiplied by the real number input and the imaginary number input, respectively.

掛算器(53)の出力と掛算器(56)の出力とを減算
器(58)に供給して、前者から後者を差し引いて、出
力端子(60)に実数出力を得る。掛算器(54)及び
掛算器(55)の両出力を、加算器(59)に供給して
加算して、出力端子(61)に虚数出力を得る。
The output of the multiplier (53) and the output of the multiplier (56) are fed to a subtracter (58) to subtract the latter from the former to obtain a real output at the output terminal (60). Both outputs of the multiplier (54) and the multiplier (55) are fed to an adder (59) and summed to obtain an imaginary output at the output terminal (61).

尚、0チヤンネルの複素乗算器(39)では、Φに=O Rk=1 とすれば良い。In addition, in the 0 channel complex multiplier (39), Φ = O Rk=1 It's fine.

かかる複素乗算回路ではデジタル演算が行われるので、
周波数特性の問題は無い。
Since digital operations are performed in such a complex multiplication circuit,
There are no problems with frequency characteristics.

かかるデジタル複累乗算回路は、デジタル回路構成なの
で、マイクロコンピュータを用いた自動補正制御が可能
となり、経時変化等にも対応し易く成る。
Since such a digital compound multiplication circuit has a digital circuit configuration, automatic correction control using a microcomputer is possible, and it becomes easy to cope with changes over time.

上述の振幅補正量は、第1図のフーリエ変換回路(30
)にバイパス機能を持たせることによって(4ることが
できる。即ち、フーリエ変換回路(30)の入力端子と
出力端子とを直結すると、自乗積分回路(31)〜(3
4)はフーリエ変換回路(30)によって識別された方
向毎の電力を積分するのでは無く、各チャンネル別の電
力を積分することに成る。そこで、各アンテナ(1)〜
(4)によって互いに等しい受信信号が得られるような
、例えば、天体の点源の如き電波放射源よりの電波を各
アンテナ(1)〜(4)で受波するようにすれば、各チ
ャンネルのアナログ回路の利得差、叩ち振幅偏差を得る
ことができる。又、各チャンネルの信号の電力積分結果
から、振幅補正必要量を求めるためには、第1図の自乗
積分回路(31)〜(34)の出力が供給されるデータ
処理用コンピュータ等の処理回路や、観測結果を記録す
る大規模記録装置の制御のだめのコンピュータに行わせ
れば良い。
The above amplitude correction amount is determined by the Fourier transform circuit (30
) can be provided with a bypass function. In other words, by directly connecting the input terminal and output terminal of the Fourier transform circuit (30), the square integration circuits (31) to (3
4) does not integrate the power for each direction identified by the Fourier transform circuit (30), but integrates the power for each channel. Therefore, each antenna (1) ~
For example, if each antenna (1) to (4) receives radio waves from a radio wave radiation source such as a point source on a celestial body so that equal received signals can be obtained by (4), each channel Gain differences and striking amplitude deviations of analog circuits can be obtained. In addition, in order to obtain the necessary amount of amplitude correction from the power integration results of the signals of each channel, a processing circuit such as a data processing computer to which the outputs of the square integration circuits (31) to (34) in FIG. 1 are supplied is required. Alternatively, the computer that controls the large-scale recording device that records the observation results can do this.

又、位相補正必要量は、振幅補正された後フーリエ変換
回路(30)を通った信号を自乗積分回路(31)〜(
34)に導き、その出力を上述のコンピュータに与えて
解析させれば、算出できる。位相補正必要量を求めると
きの電波放射源も、振幅補正必要量を求めるときのもの
と同じでよい。
In addition, the necessary amount of phase correction is determined by converting the signal that has been amplitude corrected and passed through the Fourier transform circuit (30) into square integration circuits (31) to (
34) and its output is given to the computer mentioned above for analysis. The radio wave radiation source used when determining the required amount of phase correction may be the same as that used when determining the required amount of amplitude correction.

上述の複素乗算回路(39)〜(42)は、チャンネル
数分、即ちNチャンネルの場合N個必要であるが、高速
フーリエ変換回路(30)の2段分の回路量なので、高
速フーリエ変換回路の一部を流用することができるので
、とくに回路設計を増やす必要はない。
The above-mentioned complex multiplication circuits (39) to (42) are required for the number of channels, that is, N in the case of N channels, but the circuit amount is equivalent to two stages of the fast Fourier transform circuit (30), so the fast Fourier transform circuit Since a part of the circuit can be reused, there is no need to increase the circuit design.

即ち、複素乗算回路が、高速フーリエ変換回路(30)
の2段分で代用できる理由は、N次高速フーリエ変換回
路(30)の1段はN/21[1i1のバタフライ演算
回路から成り、各バタフライ回路は必ず1回路の複素乗
算回路を有するからである。但し、バタフライ回路には
複素乗算回路の他に、複素加算回路が2回路別にあるの
で、その分冗長となる。
That is, the complex multiplication circuit is a fast Fourier transform circuit (30).
The reason why two stages of can be used instead is that one stage of the N-order fast Fourier transform circuit (30) consists of an N/21[1i1 butterfly operation circuit, and each butterfly circuit always has one complex multiplication circuit. be. However, since the butterfly circuit has two separate complex addition circuits in addition to the complex multiplication circuit, it becomes redundant.

尚、受波素子の個数は任意である。又、本発明はソナー
(その整相器)、レーダー等にも適用できる。
Note that the number of wave receiving elements is arbitrary. Further, the present invention can also be applied to sonar (its phaser), radar, etc.

〔発明の効果〕〔Effect of the invention〕

上述せる本発明によれば、複数の入力信号のO変位相の
ものと90度変位相ものとを各別にデジタル化し、かか
る複数のデジタル信号をフーリエ変換し、この複数の変
換出力によって、複数入力信号の到来方向を測定するよ
うにした到来方向測定装置において、構成簡単、l1l
Ii格低廉にして、複数の入力信号の各々の各アナログ
回路部による位相及び振幅の偏差を容易且つ高精度に補
正してfIIiiえることができる。
According to the present invention described above, the O-shift phase and 90-degree shift phase of a plurality of input signals are digitized separately, the plurality of digital signals are Fourier transformed, and the plurality of input signals are processed by the plurality of transform outputs. A direction-of-arrival measuring device for measuring the direction of arrival of a signal has a simple configuration, l1l
It is possible to easily and accurately correct deviations in phase and amplitude of each of a plurality of input signals due to each analog circuit section at a low cost.

又、マイクロコンピュータを使用することにより、ビッ
ト数に応じた任意の精度を以てかかる補正を自動的に、
何度でも行うことができる。
In addition, by using a microcomputer, such correction can be automatically performed with arbitrary precision according to the number of bits.
You can do it as many times as you like.

更に、複素乗算回路は、高速フーリエ変換回路のバタフ
ライ回路を流用することができ、LSI化した場合回路
設計を共用できる。複素乗算回路はデジタル回路構成な
ので、アナログ回路に比し、価格が低廉となる。複素乗
算回路として高速フーリエ変換回路のバクフライ回路を
流用した場合、ハードウェアの増量分は2段分で済む。
Furthermore, the complex multiplication circuit can utilize the butterfly circuit of the fast Fourier transform circuit, and when integrated into an LSI, the circuit design can be shared. Since the complex multiplication circuit has a digital circuit configuration, it is less expensive than analog circuits. If the backfly circuit of the fast Fourier transform circuit is used as the complex multiplication circuit, the amount of hardware required will only need to be increased by two stages.

更に、複素乗算回路は、従来のデジタル位相器(例えば
、アナログ遅延線をデジタル的に数ビットで切り替える
もの、導波管内にフェライトに巻装されたコイルの通電
電流を数ビットで制御するもの)に比べて大幅に低廉と
成ると共に、誤差が大幅に少なく成る。
Furthermore, the complex multiplier circuit is a conventional digital phase shifter (for example, one that digitally switches an analog delay line with several bits, or one that controls the current flowing through a coil wrapped in ferrite in a waveguide with several bits). It is much cheaper and has much less error.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック線図、第2図
はその複素乗算回路、第3図は従来例を示すブロック線
図である。 (1)〜(4)は受波素子としてのアンテナ、(10)
〜(13)は90度移相器、(22)〜(29)はA/
D変換器、(30)はフーリエ変換回路、(39)〜(
42)は複素乗算器、(31)〜(34)は自乗積分回
路である。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a complex multiplication circuit thereof, and FIG. 3 is a block diagram showing a conventional example. (1) to (4) are antennas as receiving elements; (10)
- (13) are 90 degree phase shifters, (22) - (29) are A/
D converter, (30) is Fourier transform circuit, (39) to (
42) is a complex multiplier, and (31) to (34) are square integration circuits.

Claims (1)

【特許請求の範囲】 複数の入力信号が各別に供給される複数の90度移相器
と、上記複数の入力信号及び上記複数の90度移相器か
らの各出力信号が各別に供給される複数のA/D変換器
と、該複数のA/D変換器よりのデジタル信号が供給さ
れるフーリエ変換回路とを有し、該フーリエ変換回路よ
りの複数の変換出力により、上記複数の入力信号到来方
向を測定するようにした到来方向測定装置において、 上記複数のA/D変換器及び上記フーリエ変換回路間に
介挿され、補正乗算値が与えられる、上記複数の入力信
号に夫々対応した複数の複素乗算回路を設けたことを特
徴とする到来方向測定装置。
[Claims] A plurality of 90-degree phase shifters to which a plurality of input signals are separately supplied, and each of the plurality of input signals and each output signal from the plurality of 90-degree phase shifters is separately supplied. It has a plurality of A/D converters and a Fourier transform circuit to which digital signals from the plurality of A/D converters are supplied, and the plurality of input signals are converted by the plurality of conversion outputs from the Fourier transform circuit. In the direction-of-arrival measurement device configured to measure the direction of arrival, a plurality of input signals corresponding to the plurality of input signals, respectively, are inserted between the plurality of A/D converters and the Fourier transform circuit, and are given correction multiplier values. A direction-of-arrival measuring device characterized by comprising a complex multiplication circuit.
JP61076920A 1986-04-03 1986-04-03 Direction of arrival measuring device Expired - Lifetime JPH0766046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61076920A JPH0766046B2 (en) 1986-04-03 1986-04-03 Direction of arrival measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61076920A JPH0766046B2 (en) 1986-04-03 1986-04-03 Direction of arrival measuring device

Publications (2)

Publication Number Publication Date
JPS62233781A true JPS62233781A (en) 1987-10-14
JPH0766046B2 JPH0766046B2 (en) 1995-07-19

Family

ID=13619136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61076920A Expired - Lifetime JPH0766046B2 (en) 1986-04-03 1986-04-03 Direction of arrival measuring device

Country Status (1)

Country Link
JP (1) JPH0766046B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196716A (en) * 1991-08-02 1993-08-06 Koden Electron Co Ltd Direction finder
JPH06180711A (en) * 1992-10-13 1994-06-28 Fujitsu Ltd Delay time correcting device for discrete fourier transformation value

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3920953B2 (en) * 1996-08-27 2007-05-30 経明 大師堂 3D FFT device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196716A (en) * 1991-08-02 1993-08-06 Koden Electron Co Ltd Direction finder
JPH06180711A (en) * 1992-10-13 1994-06-28 Fujitsu Ltd Delay time correcting device for discrete fourier transformation value

Also Published As

Publication number Publication date
JPH0766046B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US5477230A (en) AOA application of digital channelized IFM receiver
US9467178B2 (en) Pseudo true time delay for multi-antenna systems
Rader A simple method for sampling in-phase and quadrature components
US4532515A (en) Angle of arrival measurements for two unresolved sources
US5109188A (en) Instantaneous frequency measurement receiver with bandwidth improvement through phase shifted sampling of real signals
US6600438B2 (en) Broadband IF conversion using two ADCs
US7668509B2 (en) Frequency selective leveling loop for multi-signal phased array transmitters
US5497161A (en) Angle of arrival (AOA) solution using a single receiver
Zarb-Adami et al. Beamforming techniques for large-N aperture arrays
US5499391A (en) Digital channelized IFM receiver
US4180814A (en) Multiple beam receiving array signal processor
EP0521961A1 (en) Monopulse processor digital correction circuit.
US5793327A (en) CW radar range measuring system
Saily et al. Pilot signal-based real-time measurement and correction of phase errors caused by microwave cable flexing in planar near-field tests
US5235287A (en) Frequency measurement receiver with bandwidth improvement through phase shifted sampling of real signals using sampling rate selection
US4107692A (en) Radio frequency signal direction finding system
CN110109150A (en) A kind of high-precision array signal simulator and method
JPS62233781A (en) Measuring instrument for arrival direction
US11402458B2 (en) Circuits and methods for using compressive sampling to detect direction of arrival of a signal of interest
CN115361741B (en) High-precision channel signal delay automatic calibration device and method
US6469661B1 (en) Correction of I/Q channel errors without calibration
Harris Spectroscopy with multichannel correlation radiometers
EP0798806B1 (en) Method and apparatus for bias error reduction in an N-port modeformer of the butler matrix type
JP4088109B2 (en) A method for correcting the orientation of a reflector array antenna.
US6384657B1 (en) Phase startable clock device having improved stability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term