JPS6223363A - Alternating current mhd generator - Google Patents

Alternating current mhd generator

Info

Publication number
JPS6223363A
JPS6223363A JP16008285A JP16008285A JPS6223363A JP S6223363 A JPS6223363 A JP S6223363A JP 16008285 A JP16008285 A JP 16008285A JP 16008285 A JP16008285 A JP 16008285A JP S6223363 A JPS6223363 A JP S6223363A
Authority
JP
Japan
Prior art keywords
electromotive force
guide
generated
explosion
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16008285A
Other languages
Japanese (ja)
Inventor
Noriaki Kimura
憲明 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP16008285A priority Critical patent/JPS6223363A/en
Publication of JPS6223363A publication Critical patent/JPS6223363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To enable electric power of commercial frequencies to be generated, by generating shock waves with explosion, and by reflecting the waves to reverse the direction of gas stream. CONSTITUTION:An alternating current MHD generator for obtaining an AC electromotive force by reflecting shock waves due to explosion is organized of a combustion chamber 1, a guide 2, an electrode terminal 3, a coil 4 for magnetic flux generation, an igniter 5, a supply valve 6, a fuel tank 7, an exhaust valve 8 and a one-way valve 9. Then, fuel is fed to the combustion chamber 1a, and is ignited and exploded in the igniter 5a. Shock waves are generated by the explosion, and ionized gas passes through the guide 2 at high speed. As a result, an electromotive force is generated at the electrode terminal 3, and the shock wave is struck against a wall and returned to the original way, and so the direction of the following generated electromotive force is reversed. Accordingly, an AC electromotive force is obtained from the electrode terminal 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ・ハイドローダイナミクス)発電機に関するものである
[Detailed Description of the Invention] [Industrial Field of Application] - Hydrodynamics) Generators.

〔従来の技術〕[Conventional technology]

従来、イオン化したガスを磁界中で移動させると、起電
力が得られるklHD発電が知られており、各種の研究
が行なわれている。
Conventionally, klHD power generation is known in which an electromotive force is obtained by moving ionized gas in a magnetic field, and various studies are being conducted on it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこの方法によって交流を得ようとすると、
質量のあるガス流の方向を反転させねばならないので、
超低周波程度の周波数の発電は行なえても、商用周波数
の発電を行なうことはできなかった。
However, if you try to obtain communication using this method,
Since the direction of the massed gas flow must be reversed,
Although it was possible to generate electricity at frequencies around ultra-low frequencies, it was not possible to generate electricity at commercial frequencies.

〔問題点を解決するための手段〕[Means for solving problems]

このような欠点を解決するためにこの発明は、爆発によ
るショックウェーブを利用してガス流の高速反転を行な
うようにしたものである。
In order to solve these drawbacks, the present invention utilizes shock waves caused by explosions to perform high-speed reversal of gas flow.

〔作 用〕[For production]

ショックウェーブが反射部で反射されることによってガ
ス流の高速反転が行なわれる。
A high-speed reversal of the gas flow is performed by reflecting the shock wave at the reflector.

〔実施例〕〔Example〕

図はこの発明の一実施例を示す要部断面図である。図に
おいて、1ae1bは燃焼室、2はガイド、3はガイド
2の内壁側面に取付けられた電極ターミナル、4は図で
上下方向に磁束全発生させるコイル、sa、5bは点火
装置、6a−6bは供給弁、Tは燃料タンク、8aJb
は排気弁、9a、9bは燃焼室1m、1 bから外方へ
のガラス流だけを通過させるワンウェイパルプである。
The figure is a sectional view of a main part showing an embodiment of the present invention. In the figure, 1ae1b is a combustion chamber, 2 is a guide, 3 is an electrode terminal attached to the inner wall side of guide 2, 4 is a coil that generates the entire magnetic flux in the vertical direction in the figure, sa, 5b are ignition devices, 6a-6b are Supply valve, T is fuel tank, 8aJb
is an exhaust valve, and 9a and 9b are one-way pulps that allow only the glass flow outward from the combustion chambers 1m and 1b to pass through.

このよう(て構成された装置の動作は次の通りである。The operation of the device configured in this way is as follows.

今、供給弁6aが開となり燃料タンクTから燃焼室1a
に燃料が供給され、燃焼室内が所定圧力になった時点で
、点火装ff15aによって点火し、爆発をおこさせる
。この爆発によって燃焼室内のガスはワンウェイパルプ
9aから外方、すなわち燃焼室1bの方向へ急速に送り
出されるのでショックウェーブが発生する。
Now, the supply valve 6a is opened and the fuel tank T is transferred to the combustion chamber 1a.
When fuel is supplied to the combustion chamber and a predetermined pressure is reached within the combustion chamber, the ignition device ff15a ignites the combustion chamber to cause an explosion. Due to this explosion, the gas in the combustion chamber is rapidly sent out from the one-way pulp 9a toward the outside, that is, toward the combustion chamber 1b, thereby generating a shock wave.

このショックウェーブが発生することによってショック
ウェーブ近傍のガスが高温になってイオン化され、ショ
ックウェーブとともに高速でガイド2の中を通過する。
As this shock wave is generated, the gas near the shock wave becomes hot and ionized, and passes through the guide 2 at high speed together with the shock wave.

ガイド2にはコイル4によってショックウェーブの進行
方向と直角な磁界が与えられているので、ショックウェ
ーブとともにガイド中を流れるイオンはその磁界によっ
て進向方向が曲げられ、電極ターミナル3に衝突する。
Since the guide 2 is provided with a magnetic field perpendicular to the traveling direction of the shock wave by the coil 4, the traveling direction of the ions flowing through the guide together with the shock wave is bent by the magnetic field and collides with the electrode terminal 3.

このことによって電極ターミナル3に起電力が発生する
This generates an electromotive force at the electrode terminal 3.

ショックウェーブは更に進行するとやがて燃焼室1bの
壁に突当たるが、ワンウェイパルプsbは左から右方向
のショックウェーブは1通さないので、壁に突当ったシ
ョックウェーブはそこで反射され、元の道を戻るので、
今度は発生する起電力の向きが反対となる。そしてこの
ショックウェーブは、燃焼81aの壁に衝突し、再度反
射される。このようにショックウェーブが久々と反射さ
れることによって、ガイド中のガス流はそのS度進行方
向が反転し、電極ターミナル3から得られる起電力は交
流となる。
As the shockwave advances further, it eventually hits the wall of the combustion chamber 1b, but since the one-way pulp sb does not allow any shockwave from the left to right to pass through, the shockwave that hits the wall is reflected there and returns to its original path.
This time, the direction of the electromotive force generated is opposite. This shock wave then collides with the wall of the combustion chamber 81a and is reflected again. As the shock wave is reflected for a long time in this way, the direction of the gas flow in the guide is reversed by S degrees, and the electromotive force obtained from the electrode terminal 3 becomes alternating current.

ショックウェーブは反射される度にエネルギが小さくな
るので、やがては発aを行なうには不十分なエネルギと
なる。この時、排気弁8a * 8bを開くと不要なガ
スが排出される。
Since the energy of the shock wave decreases each time it is reflected, the energy eventually becomes insufficient to cause a shock wave. At this time, when the exhaust valves 8a*8b are opened, unnecessary gas is discharged.

ショックウェーブがガイド2内を往復している期間に、
供給弁6bを介して燃焼室1bK燃料が供給され、燃焼
室内の圧力を所定の[tで高めておく。
During the period when the shockwave is reciprocating within Guide 2,
Fuel is supplied to the combustion chamber 1bK via the supply valve 6b, and the pressure within the combustion chamber is increased by a predetermined value t.

そして、排気が終了し、排気弁8a、8bが閉じられた
後、点火装flt5bKよって点火をすると、燃焼室1
b内で爆発が発生し、前述したと同様な動作によって交
流の起電力が得られる。したがってガイド2の長さ、爆
発時の圧力、燃焼室1a*1bの広さを適嶺に設定すれ
ば、5oまたは60H2の商用周波数の発電が行なわれ
る。
After the exhaust is finished and the exhaust valves 8a and 8b are closed, the ignition device flt5bK ignites the combustion chamber 1.
An explosion occurs within b, and an alternating current electromotive force is obtained by the same operation as described above. Therefore, if the length of the guide 2, the pressure at the time of explosion, and the width of the combustion chambers 1a*1b are set appropriately, power generation at a commercial frequency of 5o or 60H2 can be performed.

なお、以上の実施例はショックウェーブがガイド2の中
を複数回往復した後、排気を行なっているが、この排気
動作はショックウェーブの1往復毎に行なっても良く、
この場合は発電電力の変動量が少なくなる。
Note that in the above embodiment, exhaust is performed after the shock wave has reciprocated within the guide 2 a plurality of times, but this exhaust operation may be performed for each reciprocation of the shock wave.
In this case, the amount of fluctuation in generated power is reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにとの発明は、爆発によって’/1ツ
クタエーブを発生させ、このショックウェーブを反射さ
せることによってガス流の方向を反転させているので、
ガス流の高速反転が実現でき、このため商用周波数の電
力を発電することができるという効果を有する。
As explained above, the invention generates a '/1 Tsukta wave by an explosion and reverses the direction of the gas flow by reflecting this shock wave.
This has the effect of realizing high-speed reversal of the gas flow, thereby enabling power generation at commercial frequencies.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の一実施例を示す要部断面図である。 1ajb@Φ・・燃焼室、2・φ・・ガイド、3φ・[
株]・Wj柩ターミナル、4@−・・コイル、5as5
b@・・・点火装置、6a、6b11・・自供、拾弁、
T・・・−燃料タンク、8a、8b・・・・排気弁、9
−・・・ワンウェイパルプ。
The figure is a sectional view of a main part showing an embodiment of the present invention. 1ajb@Φ・・Combustion chamber, 2・φ・・Guide, 3φ・[
Stock]・Wj Coffin Terminal, 4@-・・Coil, 5as5
b@...Ignition device, 6a, 6b11...Confession, Juben,
T...-Fuel tank, 8a, 8b...Exhaust valve, 9
−・・・One-way pulp.

Claims (1)

【特許請求の範囲】[Claims] 供給された燃料の爆発によつてガスをイオン化させるた
めのショックウェーブを発生させる燃焼部と、燃焼部に
接続されそこで発生したショックウェーブを伝達するガ
イドと、伝達されたショックウェーブを反射させる反射
部と、ガイドの内壁に設けられた電極ターミナルと、ガ
イドを通るショックウェーブの進行方向と直角方向の磁
界を発生させる界磁部とから構成される交流MHD発電
機。
A combustion section that generates shock waves for ionizing gas by explosion of supplied fuel; a guide connected to the combustion section that transmits the shock waves generated there; a reflection section that reflects the transmitted shock waves; and a guide. An AC MHD generator consisting of an electrode terminal provided on the inner wall of the AC MHD generator, and a field section that generates a magnetic field in a direction perpendicular to the direction in which the shock wave travels through the guide.
JP16008285A 1985-07-22 1985-07-22 Alternating current mhd generator Pending JPS6223363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16008285A JPS6223363A (en) 1985-07-22 1985-07-22 Alternating current mhd generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16008285A JPS6223363A (en) 1985-07-22 1985-07-22 Alternating current mhd generator

Publications (1)

Publication Number Publication Date
JPS6223363A true JPS6223363A (en) 1987-01-31

Family

ID=15707476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16008285A Pending JPS6223363A (en) 1985-07-22 1985-07-22 Alternating current mhd generator

Country Status (1)

Country Link
JP (1) JPS6223363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110089023A (en) * 2016-12-22 2019-08-02 亚萨合莱有限公司 Control motor movement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110089023A (en) * 2016-12-22 2019-08-02 亚萨合莱有限公司 Control motor movement
CN110089023B (en) * 2016-12-22 2023-03-31 亚萨合莱有限公司 Motor controller, motor assembly, electronic lock and method for controlling movement of motor

Similar Documents

Publication Publication Date Title
RU2287713C2 (en) Pulsating detonation engine with magnetohydrodynamic control of flow (versions) and method of detonation control
US3234395A (en) Free piston electrical generator
US4589398A (en) Combustion initiation system employing hard discharge ignition
WO2009113693A1 (en) Plasma device using cylinder head
US4134034A (en) Magnetohydrodynamic power systems
WO1992002718A1 (en) Improved ignition assisting device for internal combustion engines
JP2009221945A (en) Plasma device using valve
KR20050120718A (en) Internal explosion engine and generator using non-combustible gases
CA1311795C (en) Formation of electric field discharges
WO2012105568A2 (en) Plasma device
WO2012111700A2 (en) Internal combustion engine
JPS6223363A (en) Alternating current mhd generator
US3185871A (en) Alternating current magnetohydrodynamic generator
JPH02503261A (en) High energy pulse forming generator
JP2002324649A (en) Ignition device for use in internal combustion engine and ignition method to fuel injected into combustion chamber
JPS63501520A (en) Electromagnetic Ignition System - Large, strong, capacitive and inductive spark ignition system
JPS5970886A (en) Firing method of internal-combustion engine
JPS6225870A (en) Ac magnetohydrodynamic generator
CA1088608A (en) Magnetohydrodynamic power systems with combustor for generating shock waves in combustion products
CA1180743A (en) Disc-shaped m.h.d. generator
RU2044252C1 (en) Explosive magnetocumulative generator
US3154703A (en) Magnetohydrodynamic generators of alternating current
JPS60153464A (en) Combustion efficiency improving device
RU95110712A (en) METHOD FOR PRODUCING ELECTRIC ENERGY AND RESONANT MHD GENERATOR FOR ITS IMPLEMENTATION
GB1571925A (en) Magnethydrodynamic power systems