JPS62232404A - Polymerization of ethylene of alpha-olefin - Google Patents

Polymerization of ethylene of alpha-olefin

Info

Publication number
JPS62232404A
JPS62232404A JP7246386A JP7246386A JPS62232404A JP S62232404 A JPS62232404 A JP S62232404A JP 7246386 A JP7246386 A JP 7246386A JP 7246386 A JP7246386 A JP 7246386A JP S62232404 A JPS62232404 A JP S62232404A
Authority
JP
Japan
Prior art keywords
catalyst
polymerization
olefin
titanium trichloride
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7246386A
Other languages
Japanese (ja)
Other versions
JPH075663B2 (en
Inventor
Kensei Sasaki
佐々木 建世
Akira Ito
昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61072463A priority Critical patent/JPH075663B2/en
Publication of JPS62232404A publication Critical patent/JPS62232404A/en
Publication of JPH075663B2 publication Critical patent/JPH075663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polymer of high quality, by deactivating the remaining catalyst when switching a catalyst system in polymerizing ethylene or an alpha- olefin by alternately using specified two catalyst systems of different properties in the same plant. CONSTITUTION:Two catalyst systems, i.e., a nonsupported catalyst system (A) based on titanium trichloride (-containing composition) and an organoaluminum compound and a supported catalyst system (B) based on an organoaluminum compound and a supported catalyst formed by allowing a magnesium compound to support a transition metal component are prepared. Ethylene or an alpha-olefin is (co)polymerized by alternately using the catalyst systems A and B in the same plant. When switching from catalyst A to catalyst B or from catalyst B to catalyst A in the above polymerization, the polymerization process and its main upstream lines are treated with a catalyst deactivator (e.g., ethanol or diethylene glycol monopropyl ether) to deactivate the remaining catalyst.

Description

【発明の詳細な説明】 本願発明はエチレンまたはα−オレフィンの(共)重合
に関し、更に詳細には一つのプラントで性質の異なる2
つ以上の触媒系を用いてエチレンまたはα−オレフィン
の(共)重合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the (co)polymerization of ethylene or α-olefins, and more specifically, the present invention relates to the (co)polymerization of ethylene or α-olefins, and more specifically, the copolymerization of ethylene or α-olefins.
The present invention relates to a method for (co)polymerizing ethylene or alpha-olefins using two or more catalyst systems.

エチレンまたはα−オレフィンの(共)重合には三塩化
チタンと有機アルミニウム化合物を用いる触媒系が従来
から使用されてきたが、最近マグネシウム化合物に遷移
金属化合物を担持した固体成分と有機アルミニウム化合
物より成る高活性な担体型触媒が実用化されている。
Catalytic systems using titanium trichloride and organoaluminum compounds have traditionally been used for the (co)polymerization of ethylene or α-olefins, but recently a catalyst system consisting of a solid component in which a transition metal compound is supported on a magnesium compound and an organoaluminum compound has been used. Highly active supported catalysts have been put into practical use.

重合面から考えると高活性な担体型触媒の使用が好まし
いが、生成ポリマーの性質が微妙に異なることであり、
従来から用いられている三塩化チタン型触媒で重合した
ポリマーを生産する必要もある。
From a polymerization perspective, it is preferable to use a highly active supported catalyst, but the properties of the resulting polymer are slightly different.
There is also a need to produce polymers polymerized with traditionally used titanium trichloride type catalysts.

触媒系の異なる重合を2つのプロントで製造する場合は
問題はないが、生産設備を効率良く運転するには一つの
プラントで製造する必要があるが性質の異なった2つの
触媒が混合すると性質の異なったポリマーが生成して好
ましくない。
There is no problem if polymerization with different catalyst systems is produced in two plants, but in order to operate the production equipment efficiently, it is necessary to produce it in one plant, but when two catalysts with different properties are mixed, the properties may change. Different polymers are produced, which is undesirable.

前述の2つの触媒系では生成するポリマーの分子量が異
なり、分子量調節剤として用いる水素濃度が同じ場合三
塩化チタン系触媒では高分子量、担体型触媒系では低分
子量ポリマーが生成して触媒の混入は大巾に分子量の異
なるポリマーが混入してポリマーの品質を悪くする。特
に三塩化チタン触媒系から担体型触媒系に変える場合に
は水素濃度を低くして重合する必要があるのできわめて
微量の三塩化チタンが混入しても超高分子量ポリマーが
生成するのでフィルムにした場合にフィンシュアイが発
生するので大きな問題になる。
The two catalyst systems mentioned above have different molecular weights of the polymers produced, but when the hydrogen concentration used as a molecular weight regulator is the same, the titanium trichloride catalyst produces a high molecular weight polymer, while the supported catalyst system produces a low molecular weight polymer, preventing catalyst contamination. Polymers with different molecular weights are mixed into the material, which deteriorates the quality of the polymer. In particular, when changing from a titanium trichloride catalyst system to a supported type catalyst system, it is necessary to polymerize at a low hydrogen concentration, so even if a very small amount of titanium trichloride is mixed in, an ultra-high molecular weight polymer will be produced, so it was necessary to use a film. This is a big problem because Fin Shuai occurs in some cases.

連続重合プロセスで触媒の混入を防止するために重合工
程以前の触媒供給槽、触媒貯槽などを不活性溶媒で洗浄
する方法について検討したが、バルブその他細かい部分
に付着した触媒の除去が不完全なため洗浄操作を操り返
してもフィンシュアイは消えなかった。
In order to prevent catalyst contamination during the continuous polymerization process, we investigated a method of cleaning the catalyst supply tank, catalyst storage tank, etc. with an inert solvent before the polymerization process, but it was found that the removal of catalyst attached to valves and other small parts was incomplete. Therefore, even after repeating the cleaning operation, the Fin Shuai did not disappear.

本発明者は上記問題点を回避するために検討した結果 (A) (a)三塩化チタンまたは三塩化チタン組成物
(b)有機アルミニウム化合物 を主成分とする非担体型触媒系 (B) (a)遷移金属成分をマグネシウム化合物に担
持した担体型触媒 (b)有機アルミニウム化合物 を主成分とする担体型触媒系 の(A)から(B)、または(B)から(^)に触媒系
を変更する際に重合工程以前の主要部分を(^)および
/または(B)触媒系の失活剤で処理することで解決す
ることを見出し本願発明に到達した。
As a result of studies conducted by the present inventors to avoid the above problems, (A) (a) titanium trichloride or titanium trichloride composition (b) non-supported catalyst system containing an organoaluminum compound as a main component (B) ( a) Supported catalyst in which a transition metal component is supported on a magnesium compound (b) Supported catalyst system in which the main component is an organoaluminum compound (A) to (B) or (B) to (^) The present inventors have found that the present invention can be solved by treating the main part before the polymerization process with a catalyst-based deactivator (^) and/or (B) when making the change.

本願発明の方法で用いられる三塩化チタンまたは三塩化
チタン組成物はポリオレフィン重合に用いられている公
知のものが用いられ、例えば四塩化チタンを水素、金属
アルミニウム、有機アルミニウム化合物等で還元して得
られる三塩化チタンまたは三塩化チタン組成物さらにこ
れらを粉砕または電子供与体などを添加粉砕したもの、
またはこれらを電子供与体で処理し、必要により四塩化
チタンのような電子受容体で処理する方法などで製造し
た三塩化チタンまたは三塩化チタン組成物が挙げられる
The titanium trichloride or titanium trichloride composition used in the method of the present invention may be a known titanium trichloride used in polyolefin polymerization, such as one obtained by reducing titanium tetrachloride with hydrogen, metallic aluminum, an organoaluminum compound, etc. titanium trichloride or titanium trichloride composition further pulverized or pulverized with addition of an electron donor, etc.;
Alternatively, examples include titanium trichloride or titanium trichloride compositions produced by treating these with an electron donor and, if necessary, an electron acceptor such as titanium tetrachloride.

本発明の方法で用いられる有機アルミニウム化合物とし
ては遷移金属化合物と組み合わせてポリオレフィンの触
媒成分として用いられる公知の有機アルミニウム化合物
が用いられ、例えばトリメチルアルミニウム、トリエチ
ルアルミニウム、トIJ  fi−プロピルアルミニウ
ム、トリー1so−フチルアルミニウム、トリーn−オ
クチルアルミニウム、ジエチルアルミニウムモノクロラ
イド、ジ−n−プロピルモノクロライド、ジー1so−
ブチルモノクロライド、エチルアルミニウムセスキクロ
ライド、エチルアルミニウムジクロライド、ジエチルア
ルミニウムモノブロマイド、ジエチルアルミニウムモノ
フロライド、ジエチルアルミニウムモノアイオダイド、
イソプレニルアルミニウム、トリフェニルアルミニウム
などが挙げられる。
As the organoaluminum compound used in the method of the present invention, known organoaluminum compounds which are used as catalyst components of polyolefins in combination with transition metal compounds are used, such as trimethylaluminum, triethylaluminum, tri-propylaluminum, tri-iso -phthyl aluminum, tri-n-octyl aluminum, diethylaluminium monochloride, di-n-propyl monochloride, di-1so-
Butyl monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminium monobromide, diethylaluminium monofluoride, diethylaluminium monoiodide,
Examples include isoprenylaluminum and triphenylaluminum.

担体型触媒系(B)の(a)成分である遷移金属成分を
マグネシウム化合物に担持した担体触媒としては公知の
担体触媒が用いられ、代表的製造方法の例としては塩化
マグネシウムを三塩化チタン、四塩化チタンなどと共粉
砕する方法、塩化マグネシウムを安息香酸エチル、フタ
ル酸イソブチルなどの公知な電子供与体で処理したのち
、さらに四塩化チタンで処理する方法、塩化マグネシウ
ムをアルコール類などに溶解させたのち、四塩化チタン
で処理する方法、マグネシウムアルコキシド、脂肪酸の
マグネシウム塩を四塩化チタンで処理する方法などがあ
げられる。
As the carrier catalyst in which the transition metal component (a) component of the carrier type catalyst system (B) is supported on a magnesium compound, a known carrier catalyst is used, and as an example of a typical production method, magnesium chloride is mixed with titanium trichloride, titanium trichloride, A method in which magnesium chloride is co-pulverized with titanium tetrachloride, etc., a method in which magnesium chloride is treated with a known electron donor such as ethyl benzoate or isobutyl phthalate, and then further treated with titanium tetrachloride, and a method in which magnesium chloride is dissolved in alcohol, etc. Examples include a method of subsequently treating with titanium tetrachloride, and a method of treating magnesium alkoxide or a magnesium salt of a fatty acid with titanium tetrachloride.

触媒系(B)の(b)成分として用いられる有機アルミ
ニウム化合物については前述の有機アルミニウム化合物
が用いられる。
As for the organoaluminum compound used as the component (b) of the catalyst system (B), the above-mentioned organoaluminum compounds are used.

また触媒系(A)及び(B)に於いて生成ポリマーの結
晶性を向上させる目的などで公知の種々の添加剤、特に
O,N、P、S、Siなどの電子供与性化合物を添加し
て重合することもできる。添加剤の代表的例としては安
息香酸エチル、P−)ルイル酸メチル、P−アニス酸メ
チル、フェニルトリメトキシシラン、などがあげられる
In addition, various known additives, particularly electron-donating compounds such as O, N, P, S, and Si, may be added to the catalyst systems (A) and (B) for the purpose of improving the crystallinity of the produced polymer. It can also be polymerized. Typical examples of additives include ethyl benzoate, methyl P-)ruylate, methyl P-anisate, and phenyltrimethoxysilane.

本願発明の方法で用いられる失活剤としては、いわゆる
チーグラーナツタ触媒の触媒分解剤または触媒の活性を
実質的に無くす失活剤なら特に限定は無く公知の失活剤
が用いられ、特に好ましくは触媒系(A)及び(B)の
(a)成分を不活性溶媒に可溶化し、しかも失活剤が不
活性溶媒に可溶であることである。
The deactivating agent used in the method of the present invention is not particularly limited, and any known deactivating agent can be used as long as it is a catalyst decomposing agent for a so-called Ziegler-Natsuta catalyst or a deactivating agent that substantially eliminates the activity of the catalyst. Particularly preferably, a known deactivating agent can be used. Component (a) of catalyst systems (A) and (B) is solubilized in an inert solvent, and the deactivator is soluble in the inert solvent.

しかし、触媒が重合系に入って重合触媒として活性を示
さなければ良いので上記好ましい条件が必須な条件では
ない。
However, the above-mentioned preferred conditions are not essential, since it is sufficient that the catalyst does not enter the polymerization system and show activity as a polymerization catalyst.

本願発明で用いる失活剤の代表的例としてはアルコール
類、有機酸類、金属アルコレート、有機酸金属塩、錯化
剤、ケトン類、酸無水物、アルキレンオキシド、アミン
類などがあげられ、具体的にはメタノール、エタノール
、2−エチルヘキサノール、ジエチレングリコール、ジ
エチレングリコールモノプロピルエーテル、プロピレン
オキサイドなどがあげられる。
Typical examples of the deactivating agent used in the present invention include alcohols, organic acids, metal alcoholates, organic acid metal salts, complexing agents, ketones, acid anhydrides, alkylene oxides, amines, etc. Examples include methanol, ethanol, 2-ethylhexanol, diethylene glycol, diethylene glycol monopropyl ether, and propylene oxide.

ポリオレフィンの重合プロセスは種々あるが本願発明で
は重合系に入る触媒系(A)または(B)中の(a)成
分が混合してないか混合していてもどちらか一方の活性
が実質的に無くする必要があり、重合工程以前の主要部
分を失活剤で処理する必要がある。
There are various polymerization processes for polyolefins, but in the present invention, even if the components (a) in the catalyst system (A) or (B) entering the polymerization system are unmixed or mixed, the activity of either one is substantially reduced. It is necessary to eliminate it, and it is necessary to treat the main part with a deactivator before the polymerization process.

一般的な重合プロセスの例としては(A)又は(B)の
(a)触媒成分の貯槽から直接、または不活性溶媒で希
釈されて、または(b)成分と混合されて、さらに必要
により少量のモノマーで予備処理されて重合器に供給さ
れるので本願発明の失活剤による処理を触媒の混合の起
こる主要部分について行う必要がある。
Examples of common polymerization processes include (A) or (B) directly from the reservoir of (a) catalyst component, or diluted with an inert solvent, or mixed with (b) component, and optionally in small amounts. Since the catalyst is pretreated with a monomer and then supplied to the polymerization vessel, it is necessary to treat the main portion where the catalyst is mixed with the deactivator of the present invention.

本願発明の方法で行われる失活剤による処理は前述の触
媒混合の起こる場所に失活剤を加えても良いが一般的に
はまず不活性溶媒で洗浄して切り換え前の残存触媒量を
減少させる事が好ましい。
In the treatment with a deactivating agent carried out in the method of the present invention, the deactivating agent may be added to the place where the catalyst mixing occurs as described above, but generally it is first washed with an inert solvent to reduce the amount of residual catalyst before switching. It is preferable to do so.

但し入念に洗浄しても触媒混入は避けられないので簡単
な洗浄の方が好ましい。次に不活性溶媒の存在または不
存在下で失活剤が添加される。失活剤の使用量はその種
類、処理条件によって異なるが残存している触媒成分に
対して0.1モル以上、好ましくは1モル以上である。
However, even with careful cleaning, catalyst contamination cannot be avoided, so simple cleaning is preferable. A quenching agent is then added in the presence or absence of an inert solvent. The amount of the deactivator used varies depending on its type and processing conditions, but is at least 0.1 mol, preferably at least 1 mol, based on the remaining catalyst components.

次に好ましくはか(はんを行なって残存触媒と失活剤を
接触させる。残存触媒をj+j 溶化するためには加熱
することが有効である場合が多い。
Next, preferably, heating is performed to bring the remaining catalyst into contact with the deactivator. Heating is often effective in dissolving the remaining catalyst.

続いて失活剤(または不活性溶媒含有)を排出し、必要
によつて不活性溶媒で洗浄することによって(必要によ
り失活剤を無害化するために洗浄時に有機アルミニウム
化合物を添加して洗浄しても良い)次に切り換える触媒
を装入することができる。
Subsequently, the quencher (or containing an inert solvent) is discharged, and if necessary, it is washed with an inert solvent (if necessary, an organoaluminum compound is added during washing to make the quencher harmless). The catalyst to be switched next can be charged.

以上の処理によって品質の良好なポリマーを与える触媒
系を準備することができる。本願発明の方法で失活剤に
よる処理を行っている間に、重合工程は失活剤による触
媒の失活を実施してたのち溶媒またはモノマーで置換し
失活剤を減少させて触媒切換後重合できるように準備し
ておくことが好ましい。
Through the above treatment, a catalyst system that provides a polymer of good quality can be prepared. During the treatment with a deactivating agent in the method of the present invention, the polymerization step is performed by deactivating the catalyst with the deactivating agent and then replacing it with a solvent or monomer to reduce the amount of the deactivating agent and switching the catalyst. It is preferable to prepare for polymerization.

本願発明の方法を用いることのできるのはエチレン、α
−オレフィンの重合及び共重合で、重合プロセスとして
は溶液法、懸濁法、塊状重合、気相重合など公知のすべ
て方法に適用することができる。
The method of the present invention can be used for ethylene, α
- In the polymerization and copolymerization of olefins, all known polymerization methods such as solution method, suspension method, bulk polymerization, and gas phase polymerization can be applied.

実施例1 本実施例では以下に示す(A)及び(B)の触媒系を用
いた。
Example 1 In this example, catalyst systems (A) and (B) shown below were used.

(A) (a)AA型型埋塩化チタン塩化アルミニウム
及びジフェニルエーテルを添加割砕しヘプタンで洗浄し
た変性三塩化チタン (b)ジエチルアルミニウムモノクロライド(B) (
a)塩化マグネシウムとフタル酸イソブチルより成る組
成物を四塩化チタンと共に加熱しヘプタンで洗浄した担
体触媒 (b)トリエチル7フルミニウム さらに立体規則性改良剤として (C)フェニルトリメトギシシラン を用いた。
(A) (a) AA type buried titanium Aluminum chloride and modified titanium trichloride crushed with addition of diphenyl ether and washed with heptane (b) Diethylaluminium monochloride (B) (
a) A carrier catalyst obtained by heating a composition consisting of magnesium chloride and isobutyl phthalate together with titanium tetrachloride and washing with heptane. (b) Triethyl 7-fluminium. Furthermore, (C) phenyltrimethoxysilane was used as a stereoregularity improver.

かくはん機、バッフルの付いた200 β槽を2つ接続
し、(I)を触媒貯槽として触媒(a)成分を50g/
 l濃度で貯蔵しくII)を触媒供給槽として(I)よ
り触媒計量器を通じて(II)に装入し5g/lの濃度
に希釈することによって重合系に触媒に供給するように
なる触媒ラインが組み立てられている。
Connect two 200 β tanks equipped with a stirrer and baffles, use (I) as the catalyst storage tank, and add 50g/g of the catalyst (a) component.
A catalyst line was created in which the catalyst was stored at a concentration of 5 g/l and then supplied to the polymerization system by charging II) into a catalyst supply tank from (I) through a catalyst meter and diluting it to a concentration of 5 g/l. It is assembled.

(1)には(^)(a)成分である変性三塩化チタンの
へブタンスラリーを、(II)には(A) (a)及び
(b)成分としてジエチルアルミニウムモノクロライド
をAI/Tiモル比3で装入し重合系に触媒の供給を続
けた。(■ )及び(II)槽の触媒のレベルが20%
に達した時に触媒系の供給を止め触媒の切換操作を行っ
た。
For (1), (^) Hebutane slurry of modified titanium trichloride as component (a) was used, and for (II), diethylaluminum monochloride was used as (A) (a) and (b) components in AI/Ti moles. The catalyst was charged at a ratio of 3 to continue supplying the catalyst to the polymerization system. Catalyst level in (■) and (II) tanks is 20%
When the amount reached, the supply of the catalyst system was stopped and a catalyst switching operation was performed.

すなわち(1)及び(II)槽にヘプタン1601を加
えてかくはんし触媒スラリーを排出して洗浄した0次に
ジエチレングリコールイソプロビルエーテル300g、
ヘプタン2001を加えて70℃で1時間加熱か(はん
し、(n)の内容物を排出したのち(1)も(II)へ
のラインを洗浄するため(■)より(II)に移液した
のち内容物を排出した。
That is, 300 g of zero-order diethylene glycol isopropyl ether, which was washed by adding heptane 1601 to tanks (1) and (II), stirring, and discharging the catalyst slurry;
Add heptane 2001 and heat at 70°C for 1 hour. After draining the contents of (n), move (1) from (■) to (II) to clean the line to (II). After the liquid was drained, the contents were discharged.

続いてヘプタンのみで同様の操作を2回くり返した。Subsequently, the same operation was repeated twice using only heptane.

以上のように整備した槽(1)及び(II)に(B) 
(a)触媒成分を装入した。
(B) in tanks (1) and (II) prepared as above.
(a) The catalyst components were charged.

(B) (a)触媒成分を槽(II)よりサンプリング
しトリエチルアルミニウム、フェニルトリメトキシシラ
ンを触媒成分として70℃で気相部の水素を2Volχ
にしてヘプタン中で重合し〔η) (135℃テトラリ
ン)1.63 、II 97.3%ポリマーを得た。
(B) (a) Sampling the catalyst component from tank (II) and using triethylaluminum and phenyltrimethoxysilane as the catalyst component, hydrogen in the gas phase was heated to 2 Volχ at 70°C.
Polymerization was carried out in heptane to obtain a polymer with [η) (tetralin at 135° C.) of 1.63 and II 97.3%.

得られたポリマーに安定剤を配合し201IIII押出
機で230℃の温度で製膜してフィルムを作ったところ
フィッシュアイの少ない良好なフィルムが得られた。
A stabilizer was added to the obtained polymer and a film was produced by using a 201III extruder at a temperature of 230°C, and a good film with few fish eyes was obtained.

実施例2 実施例1の方法に於いてジエチレングリコールイソプロ
ビルエーテルに代えて2−エチルヘキサノール300g
を用いた以外は全く同様の実験を繰り返した。
Example 2 In the method of Example 1, 300 g of 2-ethylhexanol was used instead of diethylene glycol isopropyl ether.
Exactly the same experiment was repeated except that .

この場合もラインシュアーfの少ない良好なフィルムが
得られた。
In this case as well, a good film with less line shear f was obtained.

比較例1 実施例1の方法に於いてジエチレングリコールイソプロ
ビルエーテルの添加を省略してヘプタンだけの洗浄を1
0回繰り返し、実施例1と同様に槽(I)及び(It)
に(B) (a)成分を装入し、槽(1I)より触媒成
分(B) (a)をサンプリングしこれを用いて実施例
1と同様に重合しフィルムを作ったがフィルムにはフィ
ッシュアイが多数存在し商品価値のあるフィルムは得ら
れなかった。
Comparative Example 1 In the method of Example 1, the addition of diethylene glycol isopropyl ether was omitted and cleaning with only heptane was performed.
Repeated 0 times, tanks (I) and (It) as in Example 1.
The catalyst component (B) (a) was sampled from the tank (1I) and polymerized in the same manner as in Example 1 to make a film. A film with a large number of eyes and commercial value could not be obtained.

Claims (1)

【特許請求の範囲】 エチレンまたはα−オレフィンの重合または共重合する
プロセスに於いて (A)(a)三塩化チタンまたは三塩化チタン組成物(
b)有機アルミニウム化合物 を主成分とする非担体型触媒 (B)(a)遷移金属成分をマグネシウム化合物に担持
した担体型触媒系 (b)有機アルミニウム化合物 を主成分とする担体型触媒系 の(A)から(B)、または(B)から(A)に触媒系
を変更する際に重合工程以前の主要部分を(A)および
/または(B)触媒系の失活剤で処理することを特徴と
するエチレンまたはα−オレフィンの重合または共重合
方法。
[Claims] In the process of polymerizing or copolymerizing ethylene or α-olefin, (A) (a) titanium trichloride or a titanium trichloride composition (
b) Non-supported catalyst containing an organoaluminum compound as the main component (B) (a) Supported catalyst system in which a transition metal component is supported on a magnesium compound (b) Supported catalyst system containing an organoaluminum compound as the main component (B) When changing the catalyst system from A) to (B) or from (B) to (A), it is recommended to treat the main part before the polymerization process with a deactivator for the catalyst system (A) and/or (B). A method for polymerizing or copolymerizing ethylene or α-olefin.
JP61072463A 1986-04-01 1986-04-01 Method for polymerizing ethylene or α-olefin Expired - Lifetime JPH075663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072463A JPH075663B2 (en) 1986-04-01 1986-04-01 Method for polymerizing ethylene or α-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072463A JPH075663B2 (en) 1986-04-01 1986-04-01 Method for polymerizing ethylene or α-olefin

Publications (2)

Publication Number Publication Date
JPS62232404A true JPS62232404A (en) 1987-10-12
JPH075663B2 JPH075663B2 (en) 1995-01-25

Family

ID=13490021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072463A Expired - Lifetime JPH075663B2 (en) 1986-04-01 1986-04-01 Method for polymerizing ethylene or α-olefin

Country Status (1)

Country Link
JP (1) JPH075663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833416B2 (en) 2003-03-21 2004-12-21 Univation Technologies, Llc Methods of polymerizing olefin monomers with mixed catalyst systems
US7629422B2 (en) 2004-12-21 2009-12-08 Univation Technologies, Llc Process for transitioning between Ziegler-Natta-based and chromium-based catalysts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998369A (en) * 1971-03-22 1974-09-18
JPS5981308A (en) * 1982-09-30 1984-05-11 ユニオン・カ−バイド・コ−ポレ−シヨン Direct conversion of catalytic polymerization reaction by ziegler catalyst to catalytic polymerization reaction by chromium-base catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998369A (en) * 1971-03-22 1974-09-18
JPS5981308A (en) * 1982-09-30 1984-05-11 ユニオン・カ−バイド・コ−ポレ−シヨン Direct conversion of catalytic polymerization reaction by ziegler catalyst to catalytic polymerization reaction by chromium-base catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833416B2 (en) 2003-03-21 2004-12-21 Univation Technologies, Llc Methods of polymerizing olefin monomers with mixed catalyst systems
US7629422B2 (en) 2004-12-21 2009-12-08 Univation Technologies, Llc Process for transitioning between Ziegler-Natta-based and chromium-based catalysts

Also Published As

Publication number Publication date
JPH075663B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
EP0355935B1 (en) Method of deactivating ethylene polymerization catalysts
JPH01129006A (en) Production of ultrahigh-mw polyethylene
JP4498925B2 (en) Liquid phase method for the polymerization of α-olefins
JPS6025444B2 (en) Manufacturing method of low density polyethylene
JPS62119205A (en) Polymerization of olefin using improved ziegler-natta catalyst
EP3036263B1 (en) Method for producing an ethylene based polymer in a polymerisation process using a self-limitng agent
JPS629601B2 (en)
US20070049709A1 (en) Olefin polymerisation process in the presence of an anti-fouling agent
JPH01289809A (en) Ziegler-natta catalyst
JPS62232404A (en) Polymerization of ethylene of alpha-olefin
US4331791A (en) Polymerization process using high molecular weight epoxides
KR0172119B1 (en) Process for preparing a vanadium-based catalyst suitable for olefin polymerization
US4273905A (en) Process for producing propylene polymer or copolymer
EP0585512B1 (en) Process for the preparation of an olefin polymerization catalyst component
US5086131A (en) Process for production of polyethylene
JPS61207403A (en) Polymerization of olefin
US5122493A (en) Catalyst for olefinic hydrocarbon polymerization and process for producing olefinic hydrocarbon polymer
GB2107722A (en) Process for producing alpha- olefin polymers
KR100286867B1 (en) Process for preparing ethylene copolymers
US4981928A (en) Supported polyolefin catalyst for polymerization of ethylene under high temperatures
US6015768A (en) Process for preparation of a heterogeneous catalyst useful for preparation of super high molecular weight polymers of alpha-olefin
US5191041A (en) Catalyst for olefinic hydrocarbon polymerization and process and producing olefinic hydrocarbon polymer
JPS5835525B2 (en) Polyolefin manufacturing method
JPS6363561B2 (en)
US4058653A (en) Process for the preparation of polymers of but-1-ene