JPS62232393A - Enzymatic production of peptide derivative - Google Patents

Enzymatic production of peptide derivative

Info

Publication number
JPS62232393A
JPS62232393A JP7378986A JP7378986A JPS62232393A JP S62232393 A JPS62232393 A JP S62232393A JP 7378986 A JP7378986 A JP 7378986A JP 7378986 A JP7378986 A JP 7378986A JP S62232393 A JPS62232393 A JP S62232393A
Authority
JP
Japan
Prior art keywords
amino acid
peptide
group
reaction
carboxypeptidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7378986A
Other languages
Japanese (ja)
Inventor
Rikimaru Hayashi
林 力丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP7378986A priority Critical patent/JPS62232393A/en
Publication of JPS62232393A publication Critical patent/JPS62232393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce a peptide derivative in high efficiency at a low cost, by reacting an N-terminal-protected amino acid with a C-terminal-protected amino acid ester, amino acid amide, etc., in the presence of serine carboxypeptidase. CONSTITUTION:The objective peptide of formula III can be produced by the condensation reaction of (A) an N-terminal-protected amino acid of formula II with (B) a C-terminal-protected amino acid ester, amino acid amide, peptide ester or peptide amide of formula III in an aqueous solution or a mixture of water and a hydrophilic organic solvent at <=6.5pH, preferably 4-6pH at 5-50 deg.C, preferably 30-40 deg.C in the presence of serine carboxypeptidase. The enzyme used in the above reaction is carboxypeptidase Y originated from yeast and the hydrophilic organic solvent is e.g. methanol, propanol, isopropanol, dioxane, ethylene glycol, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明ははプチドの酵素的製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for the enzymatic production of peptides.

(従来技術) 近年ペプチド類の生理活性や甘味効果等が医薬食品分■
において注目?あびるにおよび、より安価で安全性の高
い梗プチド製造法が研究対象として載げられるようにな
っている。特に、プロテア−ゼの逆反応を用いるペプチ
ドの酵素的合成法は■ラセミ体を伴わない、■側鎖官能
基の保護を必要としない、■副反応が少なく精製が容易
である、■宵害な試薬?用いる必要がないなどの化学的
合成法に勝る幾多の利点?あげることが出来、近年とみ
に研究が進み、総説(工、M、Chaikenら、Ap
pli’el Biochemistry and B
iotechnology、 7+385−399(1
982); 森原相之、蛋白質・核酸・酵素、29.4
9−56(1984)  など)も多数用されるに至っ
ている。
(Prior art) In recent years, the physiological activity and sweetening effects of peptides have been recognized as pharmaceutical and food products.
Interested in? In addition to Abiruni, cheaper and safer methods for producing infarctide are now being considered as research subjects. In particular, enzymatic synthesis of peptides using protease reverse reactions: ■ does not involve racemates; ■ does not require protection of side chain functional groups; ■ has few side reactions and is easy to purify; What reagent? Many advantages over chemical synthesis methods such as no need to use In recent years, research has progressed rapidly, and a review article (Eng., M., Chaiken et al., Ap.
pli'el Biochemistry and B
iotechnology, 7+385-399(1
982); Aiyuki Morihara, Proteins/Nucleic Acids/Enzymes, 29.4
9-56 (1984) etc.) have also come into widespread use.

(1)#素的合成法として代表的なカルスベルブ(Ca
rlsberg)法(特公表56−500519号公報
)は、セリンカルボキシペプチダーゼを用い、該酵素が
pH8以上で発揮するエステラーゼあるいはアミダーゼ
活性の逆反応を用いるもので、次の反応式で示すことが
出来る。
(1) #Calsberub (Ca
The method (Japanese Patent Publication No. 56-500519) uses serine carboxypeptidase and a reverse reaction of the esterase or amidase activity that the enzyme exhibits at pH 8 or higher, and can be expressed by the following reaction formula.

X’ −A’ −Y’ + H−B’ −Z’ −+ 
X’ −A’ −B’ −Z’ 十M’(酸成分)  
(アミン成分) (式中、X′は末端アミン基の保護基であり Y/およ
びZ′は末端カルボキシル基の保護基である。
X'-A'-Y' + H-B'-Z' -+
X'-A'-B'-Z'10M' (acid component)
(Amine component) (In the formula, X' is a protecting group for the terminal amine group, and Y/ and Z' are protecting groups for the terminal carboxyl group.

A′およびB′はアミノ酸残基あるいはペプチド歿基で
あり、B′はA′と同一または異なるアミノ酸残基ある
いは(プチド残基である。)このカルスベルブの反応は
置換反応あるいははプチド転移反応といわれるもので、
上式で説明すれば、X/  A/  Y/のY′とB/
  z/  が置換して合成物X/  A/  B/ 
 Y/が生成するものである。
A' and B' are amino acid residues or peptide residues, and B' is the same or different amino acid residue or peptide residue from A'. It is something that can be done,
Explaining with the above formula, Y' of X/ A/ Y/ and B/
z/ is substituted to form the compound X/ A/ B/
Y/ is generated.

これは酸成分とアミン成分が直接脱水縮合するいわゆる
縮合反応を利用する合成方法ではない点で反応機構が本
発明と異なる。事実、この条件では縮合反応はおこらな
い。
This reaction mechanism differs from the present invention in that it is not a synthesis method that utilizes a so-called condensation reaction in which an acid component and an amine component are directly dehydrated and condensed. In fact, no condensation reaction occurs under these conditions.

上記力ルスベルグの方法には、次のような問題点が知ら
れている。■アミン成分は遊離アミノ酸の状態で使用で
きるとされているが、実際にはZ′で保護して使用しな
いと合成速度ならびに収率が著しく低くなる。■置換反
応あるいはイプチド転移反応はアルカリ側(pH8〜1
05)で行われるため、アミノ酸のラセミ化や基質成分
および生成物のエステルの切断が非酵素的における。■
さらにこのようなエステル切断は酵素的にもおこり、こ
れに伴ない生成物へのアミン成分の付加が次々とおこる
と考えられ、そのために副反応生成物が多く、安定した
目的物の確保はなしがたい原因となっている。
The following problems are known in the Rusberg method. (2) It is said that the amine component can be used in the form of a free amino acid, but in reality, unless it is protected with Z', the synthesis rate and yield will be extremely low. ■ Substitution reaction or iptide transfer reaction is carried out on the alkaline side (pH 8 to 1).
05), racemization of amino acids and cleavage of substrate components and product esters are performed non-enzymatically. ■
Furthermore, such ester cleavage also occurs enzymatically, and it is thought that the addition of amine components to the product occurs one after another, resulting in a large number of side reaction products, making it difficult to secure a stable target product. It is the cause of this.

(2)  一方カルス(ルグ法とは別に、磯和らもプロ
テア−ゼによるにプチド合成?試みている( Isow
aら、Bull、Chem、Soc、Japan、  
50+2766(1977)。磯和らの方法は次式で表
わすことが出来、プロテア−ゼとしてはバチルス・サー
モプロテオリチカス(Bacillus thermo
prote−olyticus )由来の金属プロテア
ーゼやサーモリシンなどのエンドペプチダーゼを用いて
いる。
(2) On the other hand, callus (apart from the LUG method, Isowa et al. are also attempting to synthesize callus using protease.
a, Bull, Chem, Soc, Japan,
50+2766 (1977). The method of Isowa et al. can be expressed by the following formula, and the protease used is Bacillus thermoproteolyticus.
Endopeptidases such as metalloprotease derived from P. prote-olyticus and thermolysin are used.

X// A“−OH+H−B”−Z“→X“−Al1−
’f3“−Z“(酵A澹)     (アミ/成゛釣 (式中X“は末端アミン基の保護基であり、A”および
B“はアミノ酸残基またはにプチピ残基であり、Z“は
末端カルボキシル基の保護基である。)磯和らの方法は
、カルスベルブ法に比べ酸成分はアミノ基のみを保護す
れば良く、合成材料は安価となる。しかしサーモリシン
はエンド型プロテアーゼであるため反応生成物が加水分
解の基質となるという問題がある。例えばZ−A−B−
OMeの*部が切断分解され、目的の生成物の収率が低
くなるのみならず、分解物が更に合成基質となるなどの
副反応が理論的に起るおそれがある。そこで反応pH1
¥至適の7.0〜8.0ではなく50付近にしてこの副
反応生成物?沈澱不溶化させる方法?とっている。その
ため合成反応の効率は最適条件にくらべ著しく1ヨいと
いう問題がある。さらに、サーモリシンの特異性は脂肪
属側鎖をもつアミノ酸に対して高く、その他の側鎖?も
つアミノ酸の合成反応には難点があるなどの問題もある
X// A"-OH+H-B"-Z"→X"-Al1-
'f3''-Z'' (Ami / Sei゛fishing (in the formula, " is a protecting group for the terminal carboxyl group.) Compared to the Kalsberb method, the method of Isokazu et al. only needs to protect the amino group of the acid component, and the synthetic material is cheaper. However, thermolysin is an endo-type protease. Therefore, there is a problem that the reaction product becomes a substrate for hydrolysis.For example, Z-A-B-
The * part of OMe is cleaved and decomposed, which not only lowers the yield of the desired product, but also theoretically may cause side reactions such as the decomposed product becoming a synthetic substrate. Therefore, the reaction pH 1
¥Is this side reaction product around 50 instead of the optimal 7.0-8.0? How to make the precipitate insoluble? I'm taking it. Therefore, there is a problem that the efficiency of the synthesis reaction is significantly lower than the optimal conditions. Furthermore, the specificity of thermolysin is high for amino acids with aliphatic side chains; what about other side chains? There are also problems, such as difficulties in the synthesis reaction of amino acids.

(3)  これらの酵素合成法の他、ハハイン(Kul
lmann。
(3) In addition to these enzyme synthesis methods, Hahain (Kul
lmann.

W、、 Biochem、 Biophys、 Res
、 Commun、、 91 。
W, Biochem, Biophys, Res
, Commun,, 91.

693(1979);  Takai ら、  Pep
tide Chemistryl 980 (Okaw
a 、 K、 Ea、) Protein Res、F
’ound、。
693 (1979); Takai et al., Pep
tide Chemistryl 980 (Okaw
a, K, Ea,) Protein Res, F
'ound,.

0saka P−213)力どのチオールプロテアーゼ
によるエンケアリン、セルレインの合成が行われてい↓ るが、加水分解作用個所がPhe(Vaρ、Leu)−
A−(Aは特異性なし)であり、広範囲のペプチド合成
に対応出来ないという問題がある。その他更に基質特異
性か限定されたトリジン/、キモ) IJプシン、啄プ
シンなどを用い限定的な酵素合成法が開発てれているが
、パパイン同様用途拡大は困難である(森原和之、蛋白
質・核酸・酵素26゜1979−1998(1981)
)。
0saka P-213) Encarin and caerulein are synthesized by thiol proteases↓, but the site of hydrolytic action is Phe (Vaρ, Leu)-
A- (A means no specificity), and there is a problem that it cannot be applied to a wide range of peptide synthesis. In addition, limited enzyme synthesis methods have been developed using tolysine/Kimo) IJpusin, Takupusin, etc., which have even more limited substrate specificity, but similar to papain, it is difficult to expand the use (Kazuyuki Morihara, Protein・Nucleic acids/enzymes 26゜1979-1998 (1981)
).

(発明が解決しようとする問題点) 本発明は、上記従来技術の諸問題を解消し、酵素法によ
るはプチド合成の基本的、普遍的な合成法を提供せんと
するものである。
(Problems to be Solved by the Invention) The present invention aims to solve the problems of the above-mentioned prior art and to provide a basic and universal method for synthesizing peptides using an enzymatic method.

即ち、本発明は酵素法による啄プチド合成法において、
酵素の基質特異性が広いため種々のアミノ酸に適用でき
;原料アミノ酸の保護の必要性が少ないため基質原料が
安価であシ;副反応が起シ雉いため生成物の収率や純度
が高く;そして、反応生成物が酵素の基質となって分解
されるおそれがないRプテド合成方法を提供せんとする
ものである。
That is, the present invention provides a method for synthesizing takuputide using an enzymatic method,
The substrate specificity of the enzyme is wide, so it can be applied to a variety of amino acids; the substrate material is inexpensive because there is little need to protect the starting amino acids; the yield and purity of the product are high because no side reactions occur; Another object of the present invention is to provide a method for synthesizing R-ptedo in which there is no fear that the reaction product becomes a substrate for an enzyme and is degraded.

本発明者は上記目的達成のため、種々検討した結果、基
質特異性の広いセリンカルボキシ(ブチダーゼ(以下S
CPと略記することがある)を選出し、カルスベルブの
置換反応よりも基質原料が安価で、しかも副反応が起り
にくぃ縮合反応をSCPで行いうろこと?見出し、本発
明を完成した。この縮合反応は従来SCPにおいては起
らないとされていたものである(森原和之、蛋白質・核
酸・酵素、呂49−56(1984))。
In order to achieve the above objective, the present inventors conducted various studies and found that serine carboxy (butidase (hereinafter referred to as S) has a wide substrate specificity.
(Sometimes abbreviated as CP) is selected, and the substrate raw material is cheaper than the substitution reaction of Kalsberb, and side reactions are less likely to occur. The present invention has been completed. This condensation reaction was previously thought not to occur in SCP (Kazuyuki Morihara, Proteins, Nucleic Acids, Enzymes, 49-56 (1984)).

(発明の構成) 本発明の方法は、セリンカルボキシペプチダーゼの存在
下、基質成分をアミン成分と反応でせることによシ、一
般式(I): X−A−B−Y     (1) (式中Xはアミン基の保護基を表わし、Aはアミノ酸残
基を表わし、Bはアミノ酸残基またははプチド残基ン表
わし、Yはカルボキシル基の保護基またはアミノ基を表
わす) を有するはプチド誘導体?製造する方法において、一般
式(■): X−A−OH(I[) (式中XおよびAは上記定義の通シである)ヲ有するN
−末端保護アミノ酸(酸成分)を、6.5より小さいp
H,好ましくは4〜6.0のpHを有する水溶液または
水と親水性有機溶媒の混合溶媒中、セリンカルボキシペ
プチダーゼの存在下、5°〜50℃、好ましくは30〜
40℃の温度で、一般式(■): H−B −’I’      ([1)(式中Bおよび
Yは上記定義の通りである)を有するC末端が保護され
たアミノ酸エステル、アミノ酸アミド−11,3プテド
エステル又はペプチドアミド 乞特徴とする。
(Structure of the Invention) The method of the present invention involves reacting a substrate component with an amine component in the presence of serine carboxypeptidase to produce a compound of general formula (I): X-A-B-Y (1) (formula X represents a protecting group for an amine group, A represents an amino acid residue, B represents an amino acid residue or a peptide residue, Y represents a protecting group for a carboxyl group or an amino group) ? In the manufacturing method, N having the general formula (■): X-A-OH(I[) (wherein X and A are as defined above)
- terminally protected amino acids (acid components) with a p of less than 6.5
H, preferably in an aqueous solution or a mixed solvent of water and a hydrophilic organic solvent having a pH of 4 to 6.0, in the presence of serine carboxypeptidase, 5° to 50°C, preferably 30 to
At a temperature of 40° C., a C-terminally protected amino acid ester, amino acid amide having the general formula (■): H-B-'I' ([1), where B and Y are as defined above. -11,3 ptedoester or peptide amide.

上記のとおり、本発明の方法は、式■のアミン基保護酸
成分と弐■のカルボキシル基保護アミン成分を、弱酸性
付近において直接脱水縮合させるものであシ、前記カル
スブルグの方法とは異る、新規なSCP触媒合成反応で
ある◎ 本発明で使用する酵素(SCP)は真核生物の細胞内に
広く分布するセリンカルボキシペプチダーゼであれば何
でも良いが、特に入手しゃすいものとしては酵母カルボ
キシ(ブチダーゼYなどの酵母由来のもの、カテプシン
Aなどの動物由来のもの、Kニシロ力ルポキシペプチダ
ーゼ(Penici−11ium Janthinel
l−由来)、アス纜ルギルスヵルボキシはブチダーゼ(
Aspergillus saitoi。
As mentioned above, the method of the present invention is different from the aforementioned Kalsburg method in that the amine group-protected acid component of formula (1) and the carboxyl group-protected amine component of formula (2) are directly dehydrated and condensed in a weakly acidic environment. , is a novel SCP-catalyzed synthesis reaction ◎ The enzyme (SCP) used in the present invention may be any serine carboxypeptidase that is widely distributed in eukaryotic cells, but yeast carboxypeptidase (SCP), which is particularly easily available, can be used. Those derived from yeast such as butidase Y, those derived from animals such as cathepsin A, and K-11ium lupoxypeptidase (Penici-11ium Janthinel).
l-derived), Ascirugillus carboxyl is butidase (derived from
Aspergillus saitoi.

As.pergillus oryzaeなど由来)な
どカビ由来のもの、オレンジやミカンの葉、皮のカルボ
キシRブチダーゼC1その他発芽中の大麦、トマト、パ
イナツプル粉など植物由来のセリンのカルボキシRブチ
ダーゼ群が載げられる。
As. These include those derived from fungi such as those derived from pergillus oryzae, carboxy R-butidase C1 from orange and tangerine leaves and peels, and serine carboxy R-butidases derived from plants such as germinating barley, tomato, and pineapple flour.

SCPは真核生物の細胞内に普遍的に存在し、その基質
特異性はきわめて広く、カルボ1条端よジアミノ酸1つ
づつを遊離させるエキソ型Rブチダーゼである。SCP
の一種、酵母由来カルポキンにブチダーゼY(以下CP
Y)は(ゴチダーゼ活性の至適pHが微酸性(pH5,
5〜65)に存在し、さらにエステラーゼ活性がアルカ
!J(pH8)に存在することが明らかになっている(
林力丸、蛋白質・核酸・酵素、28.1421−143
1(1983))。
SCP exists ubiquitously in eukaryotic cells, has extremely broad substrate specificity, and is an exo-type R-butidase that liberates one diamino acid from the carbo-1 end. SCP
Butidase Y (hereinafter CP
Y) is (optimum pH for gotidase activity is slightly acidic (pH 5,
5-65), and esterase activity is present in Alka! It has been revealed that it exists in J (pH 8) (
Rikimaru Hayashi, Proteins/Nucleic Acids/Enzymes, 28.1421-143
1 (1983)).

これらの5CPI使用するには、完全に精製したものは
必ずしも必要でなく、例えば酵母の自己消化上澄液を用
いるか、あるいは該上澄液に混在するプロテアーゼA1
アミノ(ブチダーゼを失活させるため0.1 mモルは
プスタチンや1mモルEDTAで30分はど前処理した
ものも十分使用しうる。
To use these 5CPIs, it is not necessarily necessary to completely purify them; for example, yeast autolysis supernatant may be used, or protease A1 mixed in the supernatant may be used.
To inactivate amino (butidase), 0.1 mmol may be pretreated with pustatin or 1 mmol EDTA for 30 minutes and may be used.

本発明の方法は、セリンカルボキシペプチダーゼを反応
成分の混合液中に溶解して行なってもよく、あるいは該
酵素?適当な支持体に固定化して行なってもよい。酵素
の固定化は既知の固定化法のいずれによるものでも良い
。固定化の担体としては使用水性媒体に溶解せず、かつ
膨潤の少ないものが好ましい。
The method of the present invention may be carried out by dissolving serine carboxypeptidase in a mixture of reaction components, or by dissolving the serine carboxypeptidase in a mixture of reaction components. It may be immobilized on a suitable support. The enzyme may be immobilized by any known immobilization method. The immobilization carrier is preferably one that does not dissolve in the aqueous medium used and exhibits little swelling.

次て、酸成分X −A −OH中末端アミノ基の保護基
Xとしては、当業界において一般的に使用さレルカルポ
ベンゾキシ基(Z−)、p−メトキシRンジルオキシカ
ルポニル基(pMZ−)、t−ブチルオキシカルボニル
基(Boa−)のごときウレタン型保護基、ベンゾイル
基(BZ−)、トシル基、アセチル基のようなアシル型
保護基、p−トルエンスルホニル基(Toc−)、o−
ニトロフェニルスルフェニル基(Npθ−)などを使用
出来る。特に適当な保護基としてはカルボベンゾキシ基
およびt−ブチルオキシカルボニル基があるが、それは
これら誘導体がつくり易く、使用が経済的であシ、再び
容易に開裂除去出来るからである。
Next, as the protecting group X for the terminal amino group in the acid component -), urethane-type protecting groups such as t-butyloxycarbonyl group (Boa-), acyl-type protecting groups such as benzoyl group (BZ-), tosyl group, acetyl group, p-toluenesulfonyl group (Toc-), o-
A nitrophenylsulfenyl group (Npθ-) or the like can be used. Particularly suitable protecting groups include carbobenzoxy and t-butyloxycarbonyl groups, since these derivatives are easy to make, economical to use, and can be easily cleaved off again.

酸成分X −A −OH中のアミノ酸としてはこの分野
で使用されるモノアミノモノカルボン酸、オキシアミノ
酸、イオウな含むアミノ酸、モノアミノジカルボン酸、
ジアミノモノカルボン酸などの脂肪族アミノ酸ならびに
芳香族核または複素環?もつアミノ酸が例示される。本
明細書ではアミノ酸の残基は、この分野で通常使用され
る略号により表示される。
The amino acids in the acid component
Aliphatic amino acids such as diaminomonocarboxylic acids as well as aromatic nuclei or heterocycles? Examples include amino acids with Amino acid residues are represented herein by abbreviations commonly used in this field.

アミン成分H−B−Y中、Bは上記Aと同一または異な
るアミノ酸またはにプチド残基であり、アミン基は保護
する必要はない。Yは末端カルボキシル基の保護基?示
し、アミド型、エステル型(メチル、エチル、ベンジル
など)の型で保護すると良い。
In the amine component H-BY, B is the same or different amino acid or peptide residue from A above, and the amine group does not need to be protected. Is Y a protecting group for the terminal carboxyl group? It is best to protect it with an amide type or ester type (methyl, ethyl, benzyl, etc.).

捷た、酸成分、アミン成分ともにアミノ酸残基および梗
プチド残基の側鎖の官能基は保護しなくても保護する場
合と一般にほぼ閏様に反応は進行する。保護しない場合
はXが水素原子の場合と同様の利点を生ずるが、生成物
の溶解性を考慮する必要がある。保護する場合には、ω
−アミン基(No)の保護にはNo−ベンジルオキシカ
ルボニル(No−Z)、t−ブトキシカルボニル(No
−Boc)およびトシル(No−Tos)が、アルギニ
ンのN−グアニジノ基(N )の保護にはニトロ基のほ
かN−ベンジルオキシカルボニル(No−Z)およヒN
 G・No−ジベンジルオキシカルボニル基(N −Z
−Z)が、イミダゾール核(Nim)の保検にはNl 
m−べ/ジル基(N  −BZI)およびトシル基(N
  −Tos )が、ω−カルボキシル基の保護にはω
−ベンジルオキシ基(−0BZI)が、オキシアミノ酸
の水酸基には0−エーテル型、たとえばQ−ベンジル基
(0−BZI)が、システィンのメルカプト基のS−保
護基トシてはS−ベンジル基(S−Bzx)がそれぞれ
代表的な例として使用される。
In both the acid component and the amine component, the reaction generally proceeds in a substantially leap-like manner even if the functional groups of the side chains of amino acid residues and infarcted residues are not protected. When unprotected, the same advantages as when X is a hydrogen atom occur, but the solubility of the product must be taken into consideration. When protecting, ω
-To protect the amine group (No), No-benzyloxycarbonyl (No-Z), t-butoxycarbonyl (No-Z) is used to protect the amine group (No).
-Boc) and tosyl (No-Tos), but in addition to the nitro group, N-benzyloxycarbonyl (No-Z) and
G・No-dibenzyloxycarbonyl group (N -Z
-Z), but for the inspection of imidazole nucleus (Nim), Nl
m-benzyl group (N-BZI) and tosyl group (N-BZI)
-Tos), but for protection of ω-carboxyl group, ω
-benzyloxy group (-0BZI), O-ether type for the hydroxyl group of oxyamino acid, for example Q-benzyl group (0-BZI), S-protecting group for the mercapto group of cysteine, S-benzyl group ( S-Bzx) are respectively used as representative examples.

本発明においてイプチド結合を生成する縮合反応は、原
料系を溶解し、生成系を不溶化する水性媒体中で行なう
。原料を水に溶解した後、適当に稀釈したリン酸、硫酸
、塩酸、カセイアルカリ、などの無機酸、無機アルカリ
、あるいは各種緩衝液を用いてpH’jt調節する。は
とんどすべての原料はpH5付近において溶解が容易で
あるため、溶解?容易ならしめる親水性溶媒は加えなく
てもよいが、原料系および生成系?可溶化するために親
水性有機溶媒を加えても良い、という利点もある。
In the present invention, the condensation reaction for producing an iptide bond is carried out in an aqueous medium that dissolves the raw material system and insolubilizes the product system. After dissolving the raw material in water, the pH is adjusted using an appropriately diluted inorganic acid such as phosphoric acid, sulfuric acid, hydrochloric acid, caustic acid, inorganic alkali, or various buffer solutions. Almost all raw materials are easily dissolved at around pH 5, so it is difficult to dissolve them. It is not necessary to add a hydrophilic solvent to make it easier, but is it necessary to add a hydrophilic solvent to the raw material system and production system? Another advantage is that a hydrophilic organic solvent may be added for solubilization.

ここでいう親水性有機溶媒としては、メタノール、エタ
ノール、フロパノール、イソプロパノール等のアルコー
ル系溶媒、テトラヒドロフラン、ジオキサン、ジメトキ
シエタン等のエーテル系溶媒、ジ・メチルスルホキシド
、ジメチルホルムアミド、ジメチルアセトアミド、エチ
レングリコールなどが挙げられる。
The hydrophilic organic solvents mentioned here include alcohol solvents such as methanol, ethanol, furopanol, and isopropanol, ether solvents such as tetrahydrofuran, dioxane, and dimethoxyethane, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and ethylene glycol. Can be mentioned.

次に反応に必要な各成分の使用量について述べる。原料
の使用量は酸成分0.7〜1.0mモルに対し、アミン
成分1〜1.5mモルが好ましい。反応に要する酵素前
は、遊離の酵素として酸成分1mモルに対し0.1■以
上、特に0.1〜10■用いるのが好ましい。水性媒体
中の原料の濃度は実用的収率乞あげるためには特に制限
はないが、酸成分およびアミン成分の−Kaの数倍以上
に濃度が高い方が高収率をあげることが出来る。
Next, the amounts of each component necessary for the reaction will be described. The amount of raw materials used is preferably 1 to 1.5 mmol of the amine component to 0.7 to 1.0 mmol of the acid component. Before the enzyme required for the reaction, it is preferable to use 0.1 .mu. or more, particularly 0.1 to 10 .mu.m of free enzyme per mmol of acid component. The concentration of the raw materials in the aqueous medium is not particularly limited in order to obtain a practical yield, but a high yield can be obtained if the concentration is several times or more higher than -Ka of the acid component and amine component.

反応温度は酵素活性を維持する観点から一般に5〜60
℃が好ましく、反応pHは弱酸性4.0〜6.0が好ま
しい。
The reaction temperature is generally 5-60℃ from the viewpoint of maintaining enzyme activity.
℃ is preferable, and the reaction pH is preferably weakly acidic 4.0 to 6.0.

前記の条件で反応を行わせることにより、円滑に反応が
進行する。通常反応時間は1〜24時間であるが、固定
化酵素?用いる場合には更にすみやかに反応が終了する
By carrying out the reaction under the above conditions, the reaction proceeds smoothly. Normal reaction time is 1 to 24 hours, but immobilized enzyme? When used, the reaction completes more quickly.

反応終了後必要に応じ固定化酵素を除いた後、溶液から
目的物の単離するには、不溶化した沈澱物を分離し、保
護基の脱離ケ起さない酸水溶液(例えばクエン酸、希塩
酸水溶液など)およびアルカリ水溶液(例えばアンモニ
ア水、重炭酸ナトリウム水溶液など)および水で順次洗
滌し、乾燥すれば良い。なお要すればさらに例えば熱メ
タノールなどから再結晶しても良い。また、通常はプチ
ドの精製に用いられるその他の精製手段も適用可能であ
る。
After the reaction is complete and the immobilized enzyme is removed as necessary, to isolate the target product from the solution, separate the insolubilized precipitate and add an acid aqueous solution (e.g. citric acid, dilute hydrochloric acid) that does not cause removal of the protecting group. Aqueous solution, etc.), alkaline aqueous solution (for example, ammonia water, sodium bicarbonate aqueous solution, etc.), and water may be used to sequentially wash and dry. If necessary, it may be further recrystallized from, for example, hot methanol. Other purification means commonly used for purification of putide are also applicable.

次に実施例によって本発明?、さらに具体的に説明する
が、本発明がこれら実施例の範囲に限定されるものでな
いことはいうまでもない。
Next, is the present invention based on examples? , will be explained more specifically, but it goes without saying that the present invention is not limited to the scope of these examples.

なお実施例中の略記号は以下の通シである。The abbreviations in the examples are as follows.

CbZ=ベンジルオキシカルボニル基 Met:L−メチオニン残基 phe:L−フェニルアラニン残基 AQa:L−アラニン残基 Tyr:L−チロシン残基 Thr:L−スレオニン残基 工Le:L−イソロイシン残基 Vaρ:L−バリン残基 実施例I CbZ −Met −PheNH2の合成CbZ−Me
t  (酸成分)1mモルとPh e NH2(アミン
成分)1.2mモルfj!::10罵tの水に溶解しp
HYIN#4酸またはカセイソーダで5.3に調節した
後、カルボキシペプチダーゼYlqを加え35℃に25
時間反応させた。この反応液ン扁4ガラスフィルターで
濾過し、生成物を集め、次いで少量の水、少量の5%重
炭酸ナトリウム溶液、0.2N塩酸で順次洗滌し未反応
物を除き最後に十分量の水で洗滌、乾燥させたものにつ
いて、重量測定、予想生成物状景は98%であった。
CbZ = benzyloxycarbonyl group Met: L-methionine residue phe: L-phenylalanine residue AQa: L-alanine residue Tyr: L-tyrosine residue Thr: L-threonine residue Le: L-isoleucine residue Vaρ :L-valine residue Example I Synthesis of CbZ-Met-PheNH2 CbZ-Me
t (acid component) 1 mmol and Ph e NH2 (amine component) 1.2 mmol fj! ::Dissolved in 10 ml of water
After adjusting the temperature to 5.3 with HYIN #4 acid or caustic soda, add carboxypeptidase Ylq and incubate at 35°C for 25 minutes.
Allowed time to react. The reaction solution was filtered through a flat 4-glass filter to collect the product, and then washed sequentially with a small amount of water, a small amount of 5% sodium bicarbonate solution, and 0.2N hydrochloric acid to remove unreacted materials, and finally with a sufficient amount of water. After washing and drying, the weight measurement and expected product condition were 98%.

尚反応の進行度あるいは純度をシリカゲル6O−F25
4(メルク社)上の薄層クロマトグラフィーによシ定性
的に検定した。用いた溶媒系はクロロホルム/n−ズタ
ノール/酢酸/水(11:5:2:1)を用いた。
The progress or purity of the reaction can be determined using silica gel 6O-F25.
4 (Merck & Co., Ltd.) by thin layer chromatography. The solvent system used was chloroform/n-tanol/acetic acid/water (11:5:2:1).

合成反応の追跡は更にODSカラムを用いたシマズ5A
型高速クロマトグラフィーにより定量化した。溶媒は3
0%アセトニトリル/緩衝液(10mモルKH2PO4
,10mモルH3PO4,50モルNa2SO4ヲ含む
水溶液)を用いた。硫速は1だ27分である。
The synthesis reaction was further tracked using Shimaz 5A using an ODS column.
quantified by high performance chromatography. The solvent is 3
0% acetonitrile/buffer (10 mmol KH2PO4
, 10 mmol H3PO4, and 50 mmol Na2SO4) was used. The sulfur rate is 1.27 minutes.

生成物の同定はマス7にクトルで行った。日立製、M−
80型質量分析計を使用し、二次イオン化法にて分析し
た。−次イオン種はXE+、−次イオン加速電圧8KV
、二次イオン加速電圧3KW。
Identification of the product was carried out in mass 7. Made by Hitachi, M-
Analysis was performed using a model 80 mass spectrometer using a secondary ionization method. -Next ion species is XE+, -nth ion acceleration voltage 8KV
, secondary ion acceleration voltage 3KW.

マトリックス剤としてグリセロールを使用した。Glycerol was used as a matrix agent.

予想通りのマススイクトルが得られ生成物がCbz−M
et−PheNH2であると同定した(図参照)。
The expected mass quictor was obtained and the product was Cbz-M.
It was identified as et-PheNH2 (see figure).

実施例2゜ 実施例1の場合と同様の方法に従がい、アミン成分をP
heNH2と固定し、酸成分?夫々A、[la。
Example 2゜Following the same method as in Example 1, the amine component was
Fixed with heNH2, acid component? A, [la.

Tyr、 Thr、 Met、 Phe、 IpeのC
’bz誘導体として、合成反応を行わせたところ、表1
のごとき生成物が得られ、夫々のKm値、VmaXも記
述したごとき値が得られた。
C of Tyr, Thr, Met, Phe, Ipe
When a synthetic reaction was carried out as a 'bz derivative, Table 1
The following products were obtained, and the respective Km values and VmaX values were also obtained as described.

表1. アミン成分として、フェニルアラニンアミドを
用いるCPY触媒合成反応 実施例3゜ 実施例1の場合と同様の方法に従がい、酸成分4Met
およびVai  とし、アミン成分として表2のごとき
誘導体を用いたところ、同表に示す生成物が得ら、れ、
夫々のKm値も同表に記述したごときとなった。
Table 1. CPY Catalyst Synthesis Reaction Example 3 Using Phenylalanine Amide as the Amine Component Following the same method as in Example 1, the acid component 4Me
and Vai and using the derivatives shown in Table 2 as the amine component, the products shown in the same table were obtained.
The respective Km values were also as described in the same table.

表2.  ff成分としてC’bz−メチオニンあるい
はCbz−Va(lを用いるCPY触媒合成反応実施例
4゜ 粗酵素を用いたCbz−Met−Phe−NH2の製造
パン酵母(オリエンタル酵母製0435gに10ILt
のクロロフォルムを加え、混ぜ合わせ液化後30分室温
で撹拌し九。次いで20プの水を加え十分に混合し、p
H%!ニア、 0に調製し念。約2時間後にpay7.
oに再調整し、25℃にて18時間放置後遠心分離機に
かけ、上澄部?得た。これ?セロファンチューブ中に圧
加し、−晩流水下に透析した内容物をカルボキシくブチ
ダーゼYの粗酵素標品とした。
Table 2. Example 4 of CPY catalytic synthesis reaction using C'bz-methionine or Cbz-Va(l) as the ff component. Production of Cbz-Met-Phe-NH2 using crude enzyme.
Add chloroform, mix and liquefy, then stir at room temperature for 30 minutes. Next, add 20 ml of water and mix thoroughly.
H%! Near, make sure to set it to 0. About 2 hours later pay7.
After being left at 25°C for 18 hours, the supernatant was centrifuged. Obtained. this? The contents were pressurized into a cellophane tube and dialyzed under running water overnight, and the contents were used as a crude enzyme preparation of carboxybutidase Y.

Cbz−Met  l +nモルとPheNHz L 
2 mモル?10mtの水に溶解し、pHfj!::l
N塩酸またはINカセイソーダで53に調節した後、こ
の粗酵素標品 凍結乾燥物15■?加え、35℃に25
時間反応させた。以下実施例1の場合と同様に処理し同
様の合成生成物420■?得た。収率98%。
Cbz-Met l + nmol and PheNHz L
2 mmol? Dissolved in 10 mt of water, pH fj! ::l
After adjusting to 53 with N hydrochloric acid or IN caustic soda, this crude enzyme preparation freeze-dried product 15■? Add and heat to 35℃ for 25 minutes.
Allowed time to react. The following treatment was carried out in the same manner as in Example 1 to obtain a similar synthetic product 420? Obtained. Yield 98%.

実施例5 1m1定化酵素を用いたCbz−Met−Phe−NH
2の製造ティ0ンネツト109’にモリス(Morri
s)らの方法(Biochem、J、、147,593
(1975))K従がい、トリエチルオキノニウム・テ
トラフロロポレートで0−アルキル化し、ひきつづき1
.6− ジアミノヘキサ/により処理してアミン基の入
ったス槓−サー?入れた。この処理したナイロンネット
?水に浸し、pHを60に調整後カルボジイミドとカル
ボキン(ブチダーゼY夫々0.59づつ?少量の水に溶
解し、ナイロンネットの入った水中に分取させ、室温に
て一晩放置することで固定化が完了した。よく水洗し、
以後ネット表面を乾かさないよう注意して使用した。
Example 5 Cbz-Met-Phe-NH using 1ml regulated enzyme
Morris (Morri
(Biochem, J, 147,593)
(1975)) 0-alkylated with triethyloquinonium tetrafluoroporate, followed by 1
.. 6- Diaminohexane treated with amine group? I put it in. This treated nylon net? After soaking in water and adjusting the pH to 60, dissolve 0.59 each of carbodiimide and carboquine (butidase Y) in a small amount of water, place in water containing a nylon net, and fix by leaving overnight at room temperature. The process has been completed. Wash thoroughly with water.
After that, I was careful not to let the surface of the net dry out.

このネット1gを切りとυ、実施例1と同様のCbz−
MetとPh e NH2各々1mモルづつを可溶化し
た20耐の水溶液(pH5,3に調節)中に入れ、ゆる
やかに振盪させ、15分後にネット&とり去る。以下こ
の反応終了溶液?実施例1の場合と同様に処理し、同様
の合成生成物380m91得た。
Cut 1 g of this net, υ, and Cbz- as in Example 1.
1 mmol each of Met and Ph e NH2 are placed in a solubilized 20-proof aqueous solution (adjusted to pH 5.3), shaken gently, and netted and removed after 15 minutes. Below is this reaction completed solution? The same procedure as in Example 1 was carried out to obtain 380m91 of the same synthetic product.

収率90%。Yield 90%.

(発明の効果) (11本発明の方法を、従来の代表的方法であるカルス
ベルブ法と比較すると、次のような利点がある。
(Effects of the Invention) (11) When the method of the present invention is compared with the Kalsberb method, which is a typical conventional method, it has the following advantages.

■ カルスベルブ法によるにプチド合成はSCPのエス
テラーゼ活性の逆反応を用いたものであるが、本発明は
にブチダーゼ活性の逆反応を用いるのでRブチド合成に
おけるCPY本来の用い方に叶っており、効率も良い。
■ Synthesis of butidase by the Kalsberb method uses a reverse reaction of the esterase activity of SCP, but the present invention uses a reverse reaction of the butidase activity of SCP, which corresponds to the original use of CPY in the synthesis of R-butide, resulting in high efficiency. Also good.

■ 本発明の方法は縮合反応でもあるため酸成分の基質
はアミン基のみ乞保穫すれば良く原料が安価になるとい
う利点もある。
(2) Since the method of the present invention is also a condensation reaction, it has the advantage that only amine groups need to be used as the substrate for the acid component, and the raw materials are inexpensive.

■ またpH5近くにおいては、反応生成物が晶出しや
すく、反応の平衡が合成の方向に進行しやすいという利
点もある。
(2) Further, at a pH close to 5, there is an advantage that the reaction product tends to crystallize and the reaction equilibrium tends to proceed in the direction of synthesis.

■ 合成生成物はX−A−B−Yとなり、これはpH3
〜10.5ではエステラーゼ活性による分解を受けるか
、さらに転移反応の基質になることが予測されるのに対
し、pH5ではカルボキシル末端が保護されているため
CPY本来の性質としてにブチダーゼの活性の加水分解
基質とはならず、その他の反応も起らないことから副反
応生成物がほとんど存在しないことが大きな特徴と言え
る。
■ The synthesis product is X-A-B-Y, which has a pH of 3.
At pH 10.5, it is predicted that it will be degraded by esterase activity or become a substrate for rearrangement reaction, whereas at pH 5, the carboxyl terminus is protected, so CPY's inherent property is that it is hydrated by butidase activity. A major feature is that there are almost no side reaction products because it does not become a decomposition substrate and no other reactions occur.

かかる特徴?有するため弱酸性下におけろにブチダーゼ
活性の逆反応を利用する本発明は種々の点においてエス
テラーゼの逆反応である置換反応(ペプチド転移反応)
?利用する方法よりも浸れているものである。
Features like that? The present invention utilizes the reverse reaction of butidase activity under weakly acidic conditions.
? It is more immersive than the method used.

(2)本発明の方法をサーモリシンを用いる方法と比較
すると、次のような利点がある。
(2) When the method of the present invention is compared with the method using thermolysin, it has the following advantages.

■ サーモリシン法では纜ブチダーゼ活性の至適pHB
から著しく離れたpH5で合成反応を行うため、サーモ
リシン本来の活性を有効に利用しているとは言いがたい
が、本発明の場合は至適pH付近において逆反応を行わ
せており、CPY本来の特徴?最大限に利用し、能率よ
く合成することが出来る。
■ The thermolysin method uses the optimal pHB for butidase activity.
Since the synthesis reaction is carried out at a pH of 5, which is significantly far away from CPY, it cannot be said that the inherent activity of thermolysin is effectively utilized. Features? It can be utilized to the maximum and synthesized efficiently.

■ 基質特異性の面でもCPYの方が圧倒的に広く種々
の4プテドの合成に対応しつる酵素と言える。
■ In terms of substrate specificity, CPY is by far the most versatile enzyme that can be used to synthesize a variety of 4-ptedos.

■ サーモリシンはエンド型(ブチダーゼであることか
ら反応生成物が加水分解の基質となりうるが、CPYに
よる本発明では反応生成物が、基質として分解されるこ
とはない。
(2) Since thermolysin is an endo-type (butidase), the reaction product can serve as a substrate for hydrolysis, but in the present invention using CPY, the reaction product is not decomposed as a substrate.

(3)  本発明による啄プチド合成法は、生成物が基
質として分解されないため、生成物?結晶にして分離(
反応系外に出る)することは必ずしも必要がなく、それ
由親水性の有機溶媒を用いることもできる。このような
溶媒を使用すれば、原料アミン成分および酸成分?、固
定化SCPカラムに連続供給し、親水性有機溶媒に溶解
した生成イプチドヲカラムから連続的に流出させて連続
合成反応を行なうことも可能である。
(3) In the method of synthesizing Takuputide according to the present invention, the product is not decomposed as a substrate. Crystallize and separate (
It is not necessarily necessary to remove the solvent from the reaction system, and a hydrophilic organic solvent can also be used. If you use such a solvent, will the raw amine component and acid component be removed? It is also possible to carry out a continuous synthesis reaction by continuously supplying the immobilized SCP to an immobilized SCP column and continuously flowing out the produced peptide dissolved in a hydrophilic organic solvent from the column.

【図面の簡単な説明】[Brief explanation of drawings]

図は実施例1の生成物のマス7にクトル図である。 特許出願人 サン) IJ−株式会社 (外5名) The figure is a vector diagram for cell 7 of the product of Example 1. Patent applicant Sun) IJ-Co., Ltd. (5 other people)

Claims (5)

【特許請求の範囲】[Claims] (1)セリンカルボキシペプチダーゼの存在下基質成分
をアミン成分と反応させることにより一般式:X−A−
B−Y (式中Xはアミノ基の保護基を表わし、Aはアミノ酸残
基を表わし、Bはアミノ酸残基またはペプチド残基を表
わし、Yはカルボキシル基の保護基またはアミノ基を表
わす) を有するペプチドを製造する方法において、一般式: X−A−OH (式中XおよびAは上記定義の通りである)を有するN
−末端保護アミノ酸を、4〜6.5のpHを有する水溶
液または水と親水性有機溶媒の混合溶媒中、セリンカル
ボキシペプチダーゼの存在下に、5°〜50℃の温度で
、 一般式: H−B−Y (式中BおよびYは上記定義の通りである)を有するC
末端が保護されたアミノ酸エステル、アミノ酸アミド、
ペプチドエステル又はペプチドアミドと縮合反応させる
ことを特徴とするペプチドの製造方法。
(1) By reacting the substrate component with the amine component in the presence of serine carboxypeptidase, the general formula:
B-Y (in the formula, X represents a protecting group for an amino group, A represents an amino acid residue, B represents an amino acid residue or a peptide residue, and Y represents a protecting group for a carboxyl group or an amino group) A method for producing a peptide having the general formula: X-A-OH, in which X and A are as defined above.
- the terminally protected amino acid is prepared in an aqueous solution or a mixed solvent of water and a hydrophilic organic solvent with a pH of 4 to 6.5 in the presence of serine carboxypeptidase at a temperature of 5° to 50°C, with the general formula: H- C having B-Y (wherein B and Y are as defined above)
terminally protected amino acid esters, amino acid amides,
A method for producing a peptide, which comprises carrying out a condensation reaction with a peptide ester or peptide amide.
(2)6.5より低いpHにおいてペプチダーゼ活性を
示すセリンカルボキシペプチダーゼ酵素を使用する特許
請求の範囲第1項記載の方法。
(2) The method according to claim 1, which uses a serine carboxypeptidase enzyme that exhibits peptidase activity at a pH lower than 6.5.
(3)セリンカルボキシペプチダーゼとして酵母からの
カルボキシペプチダーゼYを使用する特許請求の範囲第
1項記載の方法。
(3) The method according to claim 1, wherein carboxypeptidase Y from yeast is used as the serine carboxypeptidase.
(4)固定化したセリンカルボキシペプチダーゼを使用
する特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, which uses immobilized serine carboxypeptidase.
(5)親水性有機溶媒がメタノール、エタノール、プロ
パノール、イソプロパノール、ジオキサン、テトラヒド
ロフラン、ジメチルスルホキシドおよびエチレングリコ
ールからなる群から選ばれる特許請求の範囲第1、2、
3または4項記載の方法。
(5) Claims 1 and 2, wherein the hydrophilic organic solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, dioxane, tetrahydrofuran, dimethyl sulfoxide, and ethylene glycol;
The method described in item 3 or 4.
JP7378986A 1986-03-31 1986-03-31 Enzymatic production of peptide derivative Pending JPS62232393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7378986A JPS62232393A (en) 1986-03-31 1986-03-31 Enzymatic production of peptide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7378986A JPS62232393A (en) 1986-03-31 1986-03-31 Enzymatic production of peptide derivative

Publications (1)

Publication Number Publication Date
JPS62232393A true JPS62232393A (en) 1987-10-12

Family

ID=13528308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7378986A Pending JPS62232393A (en) 1986-03-31 1986-03-31 Enzymatic production of peptide derivative

Country Status (1)

Country Link
JP (1) JPS62232393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707826A (en) * 1993-07-20 1998-01-13 Bionebraska, Incorporated Enzymatic method for modification of recombinant polypeptides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707826A (en) * 1993-07-20 1998-01-13 Bionebraska, Incorporated Enzymatic method for modification of recombinant polypeptides

Similar Documents

Publication Publication Date Title
Robertson et al. A general and efficient route for chemical aminoacylation of transfer RNAs
JP2011139667A (en) DIPEPTIDE HAVING PROLINE OR beta-ALANINE AT N-TERMINUS AND METHOD FOR ENZYMATICALLY SYNTHESIZING CYCLIC DIPEPTIDE THEREOF
CA2092721C (en) Process for the preparation of c-terminally amidated peptides
US5580751A (en) Process for the preparation of C-terminally amidated peptides
Hojo et al. Amino acids and peptides. XXXV. Facile preparation of p-nitroanilide analogs by the solid-phase method
JPS62232393A (en) Enzymatic production of peptide derivative
US5776903A (en) Peptide derivatives usable as zinc endopeptidase 24-15 inhibitors
ES2340885T3 (en) SELECTIVE ENZYMATIC HYDROLYSIS OF TERC-BUTILIC ESTERS C PEPTIDES TERMINAL.
Ohno et al. Partial enzymic deprotection in the synthesis of a protected octapeptide bearing a free terminal carboxyl group
IE883462L (en) A method for the selective cleavage of fusion proteins
HUT57794A (en) Enzymatic process for producing immunomodulatory pentapeptides and intermediates usable in the process
US3655636A (en) Process for the synthesis of peptides using 4-pyridylmethyl and related groups for the protection of c-terminal carboxyl groups
EP2167673B1 (en) Process for the conversion of c-terminal peptide esters or acids to amides employing subtilisin in the presence of ammonium salts
JPS58209991A (en) Synthesis of peptide or peptide derivative
EP0269390B1 (en) Enzymatic l-aspartyl-l-phenylalanine alkyl ester production
CN114181993B (en) Method for producing ubiquitin-like or ubiquitin-like protein based biochemical tools
CN103467567B (en) Chemical synthesis method for furan allyl fluorescent dipeptide metalloproteinase substrate
JPS63219374A (en) Chemically modified carboxypeptidase and use thereof
Lee et al. Design of mechanism-based carboxypeptidase A inactivators on the basis of the X-ray crystal structure and catalytic reaction pathway
JPH04187095A (en) Production of physiologically active dipeptide
Chen et al. Chemo‐Enzymatic Synthesis of Optically Active Amino Acids and Peptides
JP2764725B2 (en) Production of Optically Active Peptide by Modification Enzyme
AU591557B2 (en) Enzymatic synthesis
CA1177429A (en) Process for enzymatic production of peptides
Bizzozero et al. Enzyme‐Catalyzed Peptide‐Bond Formation: Elastase‐and δ‐Chymotrypsin‐Assisted Synthesis of Oligopeptides