JPS6223218Y2 - - Google Patents

Info

Publication number
JPS6223218Y2
JPS6223218Y2 JP59282U JP59282U JPS6223218Y2 JP S6223218 Y2 JPS6223218 Y2 JP S6223218Y2 JP 59282 U JP59282 U JP 59282U JP 59282 U JP59282 U JP 59282U JP S6223218 Y2 JPS6223218 Y2 JP S6223218Y2
Authority
JP
Japan
Prior art keywords
inner tube
tube
bellows
pipe
bend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59282U
Other languages
Japanese (ja)
Other versions
JPS58103535U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59282U priority Critical patent/JPS58103535U/en
Publication of JPS58103535U publication Critical patent/JPS58103535U/en
Application granted granted Critical
Publication of JPS6223218Y2 publication Critical patent/JPS6223218Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、低温2重配管曲り部機構に係り、大
容量の電流を高密度で送る極低温ケーブル配管な
どの曲り部において高い断熱性能を確保すると共
に内圧による推力、温度伸縮等に対して充分な対
応を図ろうとするものである。 送電ケーブルにおいて、大容量の電流を送る1
つの方法として金属を低温にすると電気抵抗が低
下する現象を応用し送電ケーブルを流体窒素など
の冷媒に浸す方法が知られている。即ち、この方
法によれば、例えばステンレスなどの鋼管内部に
送電ケーブルを通し、その中に冷媒を入れる方式
を採るが、この場合に該冷媒の温度が上昇しない
ように高度の断熱性を確保することが要求され
る。その断熱方法としては送電ケーブルと冷媒を
有する前記鋼管の外周を更に径の大きい鋼管で囲
んで2重管とし、その間隙を真空とする方法が用
いられ、しかもそれら内外管の間の輻射を防ぐた
め内管にアルミ蒸着のマイラーを多層巻とした
り、内外管の間に粉末を充填するようなことが行
われている。ところが斯かる2重管構造において
は前記内管に冷媒を通すことにより内外管の間に
伸縮差が生ずるという問題があり、このような問
題を解決するために第1図に示すようにアルミ蒸
着マイラー3を層着した内管1とその外管2とを
直管部分において夫々ベローズ4,4aを用いて
管材単位ユニツトを接続することが行われてい
る。ところで上記のような送電ケーブルの曲り管
部分は管内にケーブルを通すために管径の15〜20
倍程度の曲率半径をもつて形成されるが、このよ
うな曲り管部分において第1図に示したような直
管部分と同じ構造を第2図に示す如く採るなら
ば、該曲り管における屈曲半径の内径側面積より
も外径側面積が大きくなることから内圧によつて
内管の曲り部に(ベローズの存否如何に拘わら
ず)不平衡力Pが生じ、内管の接続端部間にベロ
ーズ4が用いられているこの構成においては、該
ベローズ4が伸縮し不平衡力Pが曲り部両側の直
線部に伝えられることがなく、従つて内管が曲り
部中心から遠のく方向に変形する不都合を生ず
る。即ち、前記不平衡力について説明すると、内
圧によつて内管曲り部に生ずる不平衡力Pは、 P=2pAsinψ 但しp:内圧、A:管内断面積、2ψ:曲り部
の曲り角度である。 によつて示され、ちなみに内径250A、内圧20
Kg/cm2、90゜曲り角の配管曲り部には、p=約
14tonの不平衡力が曲り部の中心から遠ざかる方
向に作用する。然して、このように大きな不平衡
力が作用すると内管のベローズ4には伸びが生
じ、従つてそのスペーサ5部分が外管と接触して
スペーサ5に大きな応力が発生し、該スペーサの
破損、更に断熱性能劣化を生ぜしめる。一方、上
記のような内管冷却により曲り管内部の例えば第
3図に示すような約60mmψのものを3本組んだケ
ーブル6も冷却されるから該ケーブル6は軸方向
に収縮するので曲り部におけるケーブル6は曲り
部中心に移動しようとし、前記のように曲り部中
心から遠のく方向に変形する内管1とケーブル6
とがせり合い、ケーブル6に大きな張力を生ずる
ことになる。なお、上記のような不平衡力による
内管の移動を防ぐためにスペーサを数多く設置す
ることが考えられるが、斯うしてスペーサの配置
数を大とすれば、それらスペーサからの外部侵入
熱量が多くなり、前記した断熱効果が甚だしく損
われることとなる。 本考案は、上記したような実情に鑑み検討を重
ねて考案されたものである。即ち、本考案による
ものの実施態様は第4図以下に示す通りであつ
て、上記したような曲り部Rを形成するに当つて
その内管1に関してはベローズを用いることな
く、単位部材を直接に接続し外管2に関しては複
数個のベローズ14,14a(後述する14′も
含む)を用い、曲り部R両端には端部固定サポー
ト7を用いると共にこれら固定サポート7以外の
中間部分をスライデイングサポート8で支持せし
め、しかもこのような曲り部の中間部分に防振ハ
ンガー9を設けたものである。前記スライデイン
グサポート8は例えばテフロンのような摩擦係数
の低い部材が用いられ、外管2が低い外荷重で移
動できるようにされる。スペーサ5の具体的構成
の1つは第5,6図に示す通りであつて、内管1
と外管2の中間に、内管1側に取付けられた環状
のスペーサー本体15に複数個のベークライトの
ような断熱子15aを配設して内管1を外管2の
中心部に保持するようにされ、防振ハンガー、ス
ライデイングサポート8についての1例は第7図
の通りであつて、外管2を上記したテフロンなど
の摩擦係数の小さい摺動部材8a,8bを介して
支持させてスライデイングサポート8となし、こ
のようなスライデイングサポート構成のものに対
して油圧ダンパー18,18を対設して防振ハン
ガーとしたものである。 即ちこのような本考案の構成によるときは、内
管1において圧入された冷媒の圧力により不平衡
力Pが生ずると該内管1がベローズなしで連結さ
れていることから内管1の曲り部両端側の直線部
分に対する引張力となつて内管自体でこの不平衡
力Pに耐えることができ、内管1自体については
曲り部の中心から遠ざかる方向に作用する力が殆
んど生じない。又外管2についての温度差による
挙動はスライデイングサポート8およぶ防振ハン
ガー9によつて解消し得る。 上記したような本考案によるものを具体的に第
8図に示すように半径10mの曲り部を形成した内
管250A、外管4000Aの場合についてその変形状
況を外管2における固定サポート側ベローズ14
および中間ベローズ14a部分についてその変形
前内外管中心aと変形後内管中心b、変形後外管
中心cとの間の回転変形、軸方向伸縮、半径方向
伸縮を求めた結果は次表の通りであつて、ベロー
ズ14としてヒンジ型、ベローズ14aとしてヒ
ンジ型とアキシアル型の機能を備えるものを用い
ることにより有効に対処でき、前記した従来のも
のにおける問題点を適切に解消し得ることを確認
した。
This invention relates to a low-temperature double-pipe bend mechanism, which ensures high insulation performance in the bends of cryogenic cable piping that transmits large amounts of current at high density, and is sufficient to withstand thrust caused by internal pressure, temperature expansion and contraction, etc. This is an attempt to take appropriate measures. Transmitting large amounts of current in power transmission cables1
One known method is to immerse the power transmission cable in a coolant such as liquid nitrogen, which takes advantage of the phenomenon that the electrical resistance of metal decreases when it is cooled. That is, according to this method, a power transmission cable is passed inside a steel pipe such as stainless steel, and a refrigerant is placed inside the pipe. In this case, a high degree of insulation is ensured so that the temperature of the refrigerant does not rise. This is required. The insulation method used is to surround the outer periphery of the steel pipe containing the power transmission cable and refrigerant with a steel pipe with a larger diameter to form a double pipe, and create a vacuum in the gap between them, which also prevents radiation between the inner and outer pipes. For this reason, the inner tube is wrapped in multiple layers of aluminum-deposited Mylar, and powder is filled between the inner and outer tubes. However, in such a double-pipe structure, there is a problem in that a difference in expansion and contraction occurs between the inner and outer pipes when the refrigerant is passed through the inner pipe. An inner tube 1 layered with Mylar 3 and an outer tube 2 thereof are connected to each other as pipe material units using bellows 4, 4a at the straight pipe portions, respectively. By the way, the bent pipe part of the power transmission cable as mentioned above has a diameter of 15 to 20 mm in order to pass the cable through the pipe.
However, if the same structure as the straight pipe part shown in Fig. 1 is adopted in such a bent pipe part as shown in Fig. 2, the bending radius in the bent pipe is Since the outer diameter side area of the radius is larger than the inner diameter side area, an unbalanced force P is generated at the bent part of the inner tube due to internal pressure (regardless of whether there is a bellows or not), and an unbalanced force P is generated between the connecting ends of the inner tube. In this configuration in which the bellows 4 is used, the bellows 4 expands and contracts, and the unbalanced force P is not transmitted to the straight parts on both sides of the bend, so that the inner tube is deformed in a direction away from the center of the bend. causing inconvenience. That is, to explain the unbalanced force, the unbalanced force P generated at the bent portion of the inner pipe due to internal pressure is as follows: P=2pAsinψ where p: internal pressure, A: cross-sectional area within the pipe, 2ψ: bending angle of the bent portion. By the way, the inner diameter is 250A, the inner pressure is 20
Kg/cm 2 , for pipe bends with a 90° bend, p = approx.
An unbalanced force of 14 tons acts in a direction away from the center of the bend. However, when such a large unbalanced force acts, the bellows 4 of the inner tube will stretch, and the spacer 5 portion will come into contact with the outer tube, generating a large stress on the spacer 5, which may cause damage to the spacer or damage to the spacer. Furthermore, it causes deterioration of insulation performance. On the other hand, as the inner tube is cooled as described above, the cable 6, which is made up of three wires of approximately 60 mmψ as shown in FIG. 3, is also cooled inside the bent tube. The cable 6 tries to move toward the center of the bend, and as described above, the inner tube 1 and cable 6 deform in the direction away from the center of the bend.
This will cause a large tension in the cable 6. It is possible to install a large number of spacers to prevent movement of the inner tube due to the unbalanced force as described above, but if the number of spacers is increased in this way, the amount of heat that will infiltrate to the outside from these spacers will increase. As a result, the above-described heat insulating effect will be severely impaired. The present invention was devised after repeated studies in view of the above-mentioned actual circumstances. That is, the embodiment of the present invention is as shown in FIG. For the connecting outer tube 2, a plurality of bellows 14, 14a (including 14' to be described later) are used, and end fixing supports 7 are used at both ends of the bent portion R, and the intermediate portion other than these fixing supports 7 is slidable. It is supported by a support 8, and a vibration-proof hanger 9 is provided in the middle of such a bent portion. The sliding support 8 is made of a material with a low coefficient of friction, such as Teflon, so that the outer tube 2 can be moved with a low external load. One of the specific configurations of the spacer 5 is as shown in FIGS.
A plurality of heat insulators 15a, such as Bakelite, are arranged between the annular spacer body 15 attached to the inner tube 1 and the outer tube 2 to hold the inner tube 1 at the center of the outer tube 2. An example of the anti-vibration hanger and sliding support 8 is shown in FIG. A sliding support 8 is constructed, and hydraulic dampers 18, 18 are provided oppositely to the sliding support structure to form a vibration isolation hanger. That is, with the configuration of the present invention, when an unbalanced force P is generated in the inner tube 1 due to the pressure of the refrigerant pressurized, the bent portion of the inner tube 1 is The inner tube itself can withstand this unbalanced force P, which acts as a tensile force on the straight portions at both ends, and almost no force is generated on the inner tube 1 itself that acts in a direction away from the center of the bend. Furthermore, the behavior of the outer tube 2 due to temperature differences can be eliminated by the sliding support 8 and the vibration isolation hanger 9. Specifically, as shown in FIG. 8, the deformation state of the inner tube 250A and the outer tube 4000A, each of which has a bent portion with a radius of 10 m, according to the present invention as described above, is explained as follows:
The rotational deformation, axial expansion/contraction, and radial expansion/contraction between the center of the inner and outer tubes before deformation a, the center of the inner tube after deformation b, and the center of the outer tube after deformation c for the intermediate bellows 14a portion are determined as shown in the following table. It has been confirmed that this problem can be effectively addressed by using a hinge type bellows 14 and a bellows 14a that has hinge type and axial type functions, and that the above-mentioned problems with the conventional ones can be appropriately solved. .

【表】 以上説明したような本考案によるときは、この
種2重管構造の曲り部において内管に冷媒を通し
たときに生ずる内外管の伸縮差に原因した変形を
多数のスペーサなどを用いることなく又、内外管
間に無理を生ぜしめないで有効に解消することが
でき、高い断熱性能を確保しながら伸縮差による
内圧に原因した推力、温度伸縮等に充分に対応し
得るものであるから実用上その効果の大きい考案
である。
[Table] According to the present invention as explained above, a large number of spacers etc. are used to reduce the deformation caused by the difference in expansion and contraction between the inner and outer tubes that occurs when refrigerant is passed through the inner tube at the bend in this type of double tube structure. This can be effectively resolved without creating strain between the inner and outer tubes, and can sufficiently cope with thrust caused by internal pressure due to expansion and contraction differences, temperature expansion and contraction, etc. while ensuring high insulation performance. This is a highly effective idea in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本考案の技術的内容を示すものであつ
て、第1図は低温2重配管の直管部構成を示した
説明図、第2図はその曲り部の連結支持構成の従
来技術による説明図、第3図はその断面図、第4
図は本考案による曲り部の全般的な構成関係の説
明図、第5図はそのスペーサ部分の横断面図、第
6図はその縦断面図、第7図は防振ハンガースラ
イデイングサポートの説明図、第8図は本考案に
よるものの具体的変形状況についての説明図であ
る。 然して、これら図面において、1は内管、2は
外管、3はアルミ蒸着マイラー、4,4aはベロ
ーズ、5はスペーサ、6はケーブル、7は固定サ
ポート、8はスライデイングサポート、9は防振
ハンガー、14,14aはベローズ、15はスペ
ーサ本体、15aは断熱子、18は油圧ダンパー
を示すものである。
The drawings show the technical contents of the present invention, and Fig. 1 is an explanatory diagram showing the configuration of the straight pipe part of the low-temperature double pipe, and Fig. 2 is an explanatory diagram showing the configuration of the straight pipe part of the bent part according to the conventional technology. Explanatory drawing, Fig. 3 is its sectional view, Fig. 4
The figure is an explanatory diagram of the general structural relationship of the bending part according to the present invention, Fig. 5 is a cross-sectional view of the spacer portion, Fig. 6 is a longitudinal sectional view thereof, and Fig. 7 is an explanation of the anti-vibration hanger sliding support. FIG. 8 is an explanatory diagram of a specific deformation state of the device according to the present invention. In these drawings, 1 is an inner tube, 2 is an outer tube, 3 is aluminum vapor-deposited mylar, 4 and 4a are bellows, 5 is a spacer, 6 is a cable, 7 is a fixed support, 8 is a sliding support, and 9 is a preventive material. In the swing hanger, 14 and 14a are bellows, 15 is a spacer body, 15a is a heat insulator, and 18 is a hydraulic damper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内管と外管より成り、該内管中に送電ケーブル
などを挿通すると共に冷媒を通し外管との間で断
熱を図るようにした低温2重配管の曲り部におい
て、前記内管をベローズを用いることなく内管相
互を直接に接続し、上記した外管はベローズを介
装して連結すると共にスライデイングサポートを
用いて支持し、しかも防振ハンガーを配設したこ
とを特徴とする低温2重管曲り部機構。
The inner tube is fitted with a bellows at the bend of the low-temperature double piping, which consists of an inner tube and an outer tube, and a power transmission cable, etc. is inserted into the inner tube, and a refrigerant is passed through the tube to provide insulation between the inner tube and the outer tube. Low temperature 2 characterized in that the inner tubes are directly connected to each other without using a bellows, the outer tubes are connected with a bellows interposed therebetween and supported using a sliding support, and a vibration-proof hanger is provided. Heavy pipe bending mechanism.
JP59282U 1982-01-08 1982-01-08 Low temperature double pipe bending mechanism Granted JPS58103535U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59282U JPS58103535U (en) 1982-01-08 1982-01-08 Low temperature double pipe bending mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59282U JPS58103535U (en) 1982-01-08 1982-01-08 Low temperature double pipe bending mechanism

Publications (2)

Publication Number Publication Date
JPS58103535U JPS58103535U (en) 1983-07-14
JPS6223218Y2 true JPS6223218Y2 (en) 1987-06-13

Family

ID=30013658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59282U Granted JPS58103535U (en) 1982-01-08 1982-01-08 Low temperature double pipe bending mechanism

Country Status (1)

Country Link
JP (1) JPS58103535U (en)

Also Published As

Publication number Publication date
JPS58103535U (en) 1983-07-14

Similar Documents

Publication Publication Date Title
US9006576B2 (en) System with a superconductive cable and a surrounding cryostat
JP4899808B2 (en) Curved pipe section of heat insulating multi-pipe for superconducting power transmission
JP2002527697A (en) Support mechanism for super insulator
JP2019526218A (en) How to set up a transmission link for electrical energy
JP2013016482A5 (en) Equipment with superconductor cable and cryostat
JPS6223218Y2 (en)
JPH0253666B2 (en)
CN217328989U (en) Equal-drift-diameter corrugated expansion joint
JPS6316950Y2 (en)
JPS6031398Y2 (en) Spacer for bent parts of low-temperature double piping
JP3568659B2 (en) Superconducting cable
JPS60245895A (en) Double even pipe structure
JP5547465B2 (en) Vacuum insulation piping
CN216813238U (en) Corrugated compensator for prefabricated heat-preservation reinforced overhead pipeline rigidity
CN214947038U (en) Low-temperature transmission pipeline device
US3387449A (en) Method of making hose for low-temperature liquids
JPS5817979Y2 (en) Metal double pipe insulation bulkhead structure
US5036305A (en) Segmented interlayer spacer bars for multilayer superconducting solenids
CN214410887U (en) Insulating silicon rubber fiber sleeve
US20230272874A1 (en) Thermally insulated transfer line
US20230272875A1 (en) Thermally insulated transfer line with coupling element
JPS6121674Y2 (en)
JPH0532717Y2 (en)
JPS5850486B2 (en) Cable installation method
GB2026648A (en) Spacing Spiral for Coaxial Tube Systems