JPS62231641A - Imaging surface variable type mri apparatus - Google Patents

Imaging surface variable type mri apparatus

Info

Publication number
JPS62231641A
JPS62231641A JP61076273A JP7627386A JPS62231641A JP S62231641 A JPS62231641 A JP S62231641A JP 61076273 A JP61076273 A JP 61076273A JP 7627386 A JP7627386 A JP 7627386A JP S62231641 A JPS62231641 A JP S62231641A
Authority
JP
Japan
Prior art keywords
magnetic field
coils
imaging surface
nmr
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61076273A
Other languages
Japanese (ja)
Other versions
JPH0811114B2 (en
Inventor
博志 大原
明徳 藤田
礒田 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61076273A priority Critical patent/JPH0811114B2/en
Publication of JPS62231641A publication Critical patent/JPS62231641A/en
Publication of JPH0811114B2 publication Critical patent/JPH0811114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は盪像面可変型MHI装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a variable image plane MHI device.

〈従来の技術〉 MHI装置によるNMR信号励起操作は、例えば第3図
のタイム・チャートに示すようなシーケンスに基づいて
行われる。このようなシーケンスによればNMR用主静
磁場の方向を2軸として2方向磁場勾配(Gz)3.4
によって2軸に直交する被検体中の撮像断面が選択され
、y軸方向磁場勾配(Gy)5とX軸方向磁場勾配(G
X)6゜7の付加によってスピン・エコー信号8に上記
断面層に係わる2次元情報を含ませるようになっている
<Prior Art> An NMR signal excitation operation by an MHI device is performed based on, for example, a sequence as shown in the time chart of FIG. According to such a sequence, the magnetic field gradient (Gz) in two directions is 3.4 with the direction of the main static magnetic field for NMR as the two axes.
An imaging section in the subject perpendicular to the two axes is selected by , and the y-axis magnetic field gradient (Gy) 5 and the
By adding X) 6°7, the spin echo signal 8 is made to include two-dimensional information related to the above-mentioned cross-sectional layer.

ところで、z軸方向であるNMR用主静磁場の方向は、
磁場発生コイルの構造上、被検体の長手方向(人体の場
合には身長方向)に選ぶのが普通である。また磁場勾配
発生用のコイル群は、コイル軸をそれぞれZ軸方向、y
軸方向およびX軸方向に向けた3組のコイルで構成され
ている。
By the way, the direction of the main static magnetic field for NMR, which is the z-axis direction, is
Due to the structure of the magnetic field generating coil, it is usually selected in the longitudinal direction of the subject (in the case of a human body, the height direction). In addition, the coils for generating magnetic field gradients have their coil axes aligned in the Z-axis direction and y-axis direction, respectively.
It is composed of three sets of coils oriented in the axial direction and the X-axis direction.

〈発明が解決しようとする問題点〉 従ってこのような従来技術によるMRI装置では、3つ
の磁場勾配(Gz、Gy、Gx)の方向の組み合わせを
どうのように変えても、撮像断面はx−y面+Y−2面
およびz−x面のいづれかに限られる。
<Problems to be Solved by the Invention> Therefore, in the MRI apparatus according to the prior art, no matter how the combination of the directions of the three magnetic field gradients (Gz, Gy, Gx) is changed, the imaging cross section is x- It is limited to either the y plane+Y-2 plane or the z-x plane.

本発明は従来技術における、撮像断面の選択に係わる上
記のような欠点に解決を与える。
The present invention provides a solution to the above-mentioned drawbacks related to the selection of imaging sections in the prior art.

〈問題点を解決するための手段〉 問題点の解決のため、本発明によるMRT装置において
は、コイル軸がそれぞれz軸方向、y軸方向およびX軸
方向に配向させた3組の磁場勾配発生用コイルに供給す
べき電流(パルス電流)の大きさの組み合わせを変える
ことにより、磁場勾配テンソルの主軸方向が任意に変え
られるようになっている。
<Means for solving the problem> In order to solve the problem, the MRT device according to the present invention generates three sets of magnetic field gradients in which the coil axes are oriented in the z-axis direction, the y-axis direction, and the x-axis direction, respectively. By changing the combination of the magnitudes of the currents (pulse currents) to be supplied to the magnetic field coils, the direction of the principal axis of the magnetic field gradient tensor can be changed arbitrarily.

〈作用〉 磁場勾配テンソルの主軸方向が任意に変えられるので、
同主軸方向を撮像すべき被検体中の断面層に直交させる
ことにより、任意の向きの断面層の撮像が可能となる。
<Effect> Since the principal axis direction of the magnetic field gradient tensor can be changed arbitrarily,
By making the principal axis direction orthogonal to the cross-sectional layer in the object to be imaged, it becomes possible to image the cross-sectional layer in any direction.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は被検体11中の撮像すべき断面層13と、そ五
に直交する軸ξの方向を示す図である。
FIG. 1 is a diagram showing a cross-sectional layer 13 to be imaged in a subject 11 and the direction of an axis ξ perpendicular to the cross-sectional layer 13.

このような断面層13を撮像したい場合には、先ず第3
図に示す通常のNMR信号励起・検出シーケンスにより
z軸に直交する断面層12を撮像し、例えば第2図(A
)(B)(C)(D)に示すよ、うな複数枚の断面像を
得る。これらの断面像により軸ξが断面層12を貫通す
る点を2つ選び(例えば第2図(A)のP点と同図(D
>のQ点)、これにより軸ξの方程式ないしは方向余弦
を求めこの値から成る座標変換マトリックスを作れば、
磁場勾配発生用の3組のコイルに流すべき電流値の組み
合わせが得られる。
If you want to image such a cross-sectional layer 13, first
The cross-sectional layer 12 perpendicular to the z-axis is imaged by the normal NMR signal excitation/detection sequence shown in the figure.
) A plurality of cross-sectional images as shown in (B), (C), and (D) are obtained. From these cross-sectional images, select two points where the axis ξ penetrates the cross-sectional layer 12 (for example, point P in FIG. 2(A) and point D in the same figure).
> Q point), from this we find the equation or direction cosine of the axis ξ and create a coordinate transformation matrix consisting of this value.
Combinations of current values to be passed through the three sets of coils for generating magnetic field gradients are obtained.

ところで第4図は、上記実施例の構成を示すブロック図
であるが、静磁場を付与する装置部分と画像表示に関す
る装置部分は省略した。構成は通常のNMRイメージン
グ装置と同様、NMR信号励起・検出用アンテナ21と
信号送・受信部22との間でNMR励起信号と検出信号
の授受が行われ、一方、磁場勾配発生用コイル群23は
磁場勾配用の電流電源24により電流の供給を受ける。
By the way, FIG. 4 is a block diagram showing the configuration of the above embodiment, but the device portion for applying a static magnetic field and the device portion related to image display are omitted. The configuration is similar to a normal NMR imaging apparatus, in which NMR excitation signals and detection signals are exchanged between an NMR signal excitation/detection antenna 21 and a signal transmission/reception section 22, while a magnetic field gradient generation coil group 23 is supplied with current by a current power source 24 for magnetic field gradient.

信号送・受信部22と電流電源24は共にコンピュータ
25によって制御されている。コンピュータ25のRO
Mには第3図に示した通常のNMR信号励起・検出シー
ケンスにょるNMR信号励起・検出操作のプログラム、
および、上記に説明した位相オフセット値の演算と、通
常のNMRイメージングに係わる演算に関するプログラ
ムが記憶されている。またRAMは第1図に示したNM
R信号励起・検出シーケンスによって得られたスピン・
エコー信号8と、第2図のNMR信号励起・検出シーケ
ンスにより得られたスピン・エコー信号8aを記憶する
Both the signal transmitting/receiving section 22 and the current power source 24 are controlled by a computer 25. RO of computer 25
M contains a program for NMR signal excitation/detection operation according to the normal NMR signal excitation/detection sequence shown in Fig. 3;
Further, programs related to the calculation of the phase offset value described above and calculations related to normal NMR imaging are stored. Also, the RAM is NM shown in Figure 1.
The spins obtained by the R signal excitation/detection sequence
The echo signal 8 and the spin echo signal 8a obtained by the NMR signal excitation/detection sequence of FIG. 2 are stored.

〈発明の効果〉 以上説明から明らかなように、本発明によれば、被検体
の外形に基づく座標軸以外に、例えば心臓など、被検体
の特定の臓器の形状に基づいた座標軸を基準として撮像
断面層を選ぶことができる。
<Effects of the Invention> As is clear from the above description, according to the present invention, in addition to the coordinate axes based on the external shape of the subject, the imaging cross section is You can choose the layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例により撮像することのできる被検
体中の断層面の例を示す図である。第2図は第1図にお
けるz軸に垂直な断面層撮像画像を示す。第3図は本発
明実施例において、第2図に示す断面層を撮像する場合
のNMR信号励起・検出シーケンスを示す。第4図は本
発明実施例の構成を示すブロック図である。 1.2−・スピン・エコー法による信! 励起パルス 3.4.5,6.7−・磁場勾配 8−エコー信号
FIG. 1 is a diagram showing an example of a tomographic plane in a subject that can be imaged according to an embodiment of the present invention. FIG. 2 shows a cross-sectional layer image perpendicular to the z-axis in FIG. 1. FIG. 3 shows an NMR signal excitation/detection sequence when imaging the cross-sectional layer shown in FIG. 2 in the embodiment of the present invention. FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention. 1.2-・Faith using spin echo method! Excitation pulse 3.4.5, 6.7-・Magnetic field gradient 8-Echo signal

Claims (1)

【特許請求の範囲】[Claims] 被検体にNMR用の主静磁場と、この主静磁場に所定の
シーケンスでテンソル量としての磁場勾配を付加した状
態でスピン・エコー法によるNMR信号励起・検出操作
を実行し、得られたスピン・エコー信号を2次元フーリ
エ変換処理を通じて画像信号に変換し、この画像信号に
基づいて上記被検体中の所定の断面層をCRT上に画像
表示する装置において、上記磁場勾配を発生する装置が
3組のコイルと、これら3組のコイルにパルス電流を供
給する電源より成り、この電源より上記3組のコイルに
供給される上記パルス電流の値の組み合わせを変えるこ
とにより、上記テンソル量としての磁場勾配の主軸方向
を任意に変化させ得るよう構成されたことを特徴とする
、撮像面可変型MR装置。
The spin echo method is used to excite and detect NMR signals using a main static magnetic field for NMR on the specimen, and a magnetic field gradient as a tensor quantity is added to this main static magnetic field in a predetermined sequence. - In an apparatus that converts an echo signal into an image signal through two-dimensional Fourier transformation processing and displays an image of a predetermined cross-sectional layer in the subject on a CRT based on this image signal, the apparatus that generates the magnetic field gradient comprises three It consists of a set of coils and a power source that supplies pulsed currents to these three sets of coils, and by changing the combination of the values of the pulsed currents supplied from this power supply to the three sets of coils, the magnetic field as the tensor quantity can be adjusted. A variable imaging surface type MR device, characterized in that it is configured to arbitrarily change the principal axis direction of the gradient.
JP61076273A 1986-03-31 1986-03-31 Imaging plane variable MRI device Expired - Lifetime JPH0811114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61076273A JPH0811114B2 (en) 1986-03-31 1986-03-31 Imaging plane variable MRI device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61076273A JPH0811114B2 (en) 1986-03-31 1986-03-31 Imaging plane variable MRI device

Publications (2)

Publication Number Publication Date
JPS62231641A true JPS62231641A (en) 1987-10-12
JPH0811114B2 JPH0811114B2 (en) 1996-02-07

Family

ID=13600642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61076273A Expired - Lifetime JPH0811114B2 (en) 1986-03-31 1986-03-31 Imaging plane variable MRI device

Country Status (1)

Country Link
JP (1) JPH0811114B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129749A (en) * 1984-07-23 1986-02-10 Shimadzu Corp Simultaneous image pickup method of many crossing sectional layers by nmr-ct
JPS6184549A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Inspecting device using nuclear magnetic resonance
JPS62117542A (en) * 1985-08-27 1987-05-29 レソネツクス インコ−ポレ−テツド Non-orthogonal nmr imaging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129749A (en) * 1984-07-23 1986-02-10 Shimadzu Corp Simultaneous image pickup method of many crossing sectional layers by nmr-ct
JPS6184549A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Inspecting device using nuclear magnetic resonance
JPS62117542A (en) * 1985-08-27 1987-05-29 レソネツクス インコ−ポレ−テツド Non-orthogonal nmr imaging method

Also Published As

Publication number Publication date
JPH0811114B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US7199583B2 (en) MR image production method and MRI apparatus
JP2000139876A (en) Magnetic resonance imaging method and its device
US5003264A (en) MR imaging method and apparatus
US5113137A (en) Method and apparatus for reducing image noises
EP0527462B1 (en) Magnetic resonance imaging method and system capable of measuring short &#34;T2&#34; signal components
US4646023A (en) Nuclear magnetic resonance imaging
JPH01207044A (en) Receiving device of nuclear magnetic resonance image diagnostic apparatus
JPH03224538A (en) Mri device provided with process for correcting primary magnetostatic field ununiformity and executing measurement
US5999838A (en) Spread spectrum MRI
JPS62231641A (en) Imaging surface variable type mri apparatus
US5349295A (en) Magnetic resonance imaging method and apparatus
US5352980A (en) Magnetic resonance imaging apparatus
US5227726A (en) Nuclear magnetic resonance methods and apparatus
JPH0751124B2 (en) NMR inspection device using chemical shift value
EP0153703A2 (en) NMR imaging apparatus
US20240069137A1 (en) Capturing Magnetic Resonance Image Data
GB2182451A (en) Nuclear magnetic resonance imaging
US20080042647A1 (en) Magnetic Resonance Imaging Method and Magnetic Resonance Imaging Apparatus
JPH0374100B2 (en)
JPH06254063A (en) Magnetic resonance imaging system
JPS60201242A (en) Nmr tomography device
JP3274879B2 (en) Magnetic resonance imaging equipment
JPS62231646A (en) Nmr imaging apparatus
JPH0335933B2 (en)
GB2160660A (en) Nuclear magnetic resonance (NMR) imaging