JPS62231190A - Collision warning device - Google Patents

Collision warning device

Info

Publication number
JPS62231190A
JPS62231190A JP61072525A JP7252586A JPS62231190A JP S62231190 A JPS62231190 A JP S62231190A JP 61072525 A JP61072525 A JP 61072525A JP 7252586 A JP7252586 A JP 7252586A JP S62231190 A JPS62231190 A JP S62231190A
Authority
JP
Japan
Prior art keywords
dimensional coordinate
dimensional
distance
dimensional coordinates
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072525A
Other languages
Japanese (ja)
Inventor
Yutaka Masuda
裕 増田
Toshio Suzuki
俊夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP61072525A priority Critical patent/JPS62231190A/en
Publication of JPS62231190A publication Critical patent/JPS62231190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To accurately forecast a collision in a short period by detecting the presence of a body to be measured and two-dimensional coordinates by using a camera and then calculating three-dimensional coordinates. CONSTITUTION:A body recognizing means 3 compares data on several closed areas from an image processing means 2 with data on various bodies which are stored previously to decide the closed areas are an image indicating a body whose three-dimensional coordinates should be measured or not. Then, a two-dimensional coordinate calculating means 4 calculates the coordinates of the geometric center of gravity of a closed area regarding an object based on the input data and outputs the calculation result to a three-dimensional coordinate calculating means 5 and a distance sensor control means 6. Here, the distance to an actual point corresponding to the two-dimensional coordinate point is measured to calculate the three-dimensional coordinates, thereby forecasting a collision based on the three-dimensional coordinate data.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車輌等の移動体に搭載され、この移動体を原点
として対象物の相対的三次元座標を自動的に計測し、こ
の対象物と移動体とが衝突する可能性が高まったときに
所定の警報を行う衝突警報装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is mounted on a moving object such as a vehicle, automatically measures the relative three-dimensional coordinates of an object using this moving object as the origin, and measures the relative three-dimensional coordinates of the object. This invention relates to a collision warning device that issues a predetermined warning when the possibility of a collision between a vehicle and a moving object increases.

〔従来の技術〕[Conventional technology]

対象物との衝突の可能性を判断するためには、対象物の
相対的三次元座標を算出する必要があり、三次元座標を
計測する方法として、2つ以上のカメラを用いて立体視
し、視差に基づいて物体までの距離を計算する方法や、
レーダーを用いる方法が既に考えられている。
In order to determine the possibility of collision with an object, it is necessary to calculate the relative three-dimensional coordinates of the object, and one way to measure the three-dimensional coordinates is to use two or more cameras for stereoscopic viewing. , how to calculate the distance to an object based on parallax,
A method using radar has already been considered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前者の方法では各カメラの捕らえた画像中の同
一物を認識するための計算が困難であり長時間を要する
。したがって、時々刻々と変化する対象物の三次元座標
を瞬時に認識して対象物の運動方向や速度を求めるには
この方法は不適当である。また、この方法では対象物が
遠方になるにしたがって視差が非常に小さくなるため、
十数m以上遠方にある対象物に対しては距離測定精度が
悪い。したがって、このような対象物の三次元座標の計
測にも不適当である。
However, in the former method, calculations for recognizing the same object in images captured by each camera are difficult and take a long time. Therefore, this method is inappropriate for instantly recognizing the three-dimensional coordinates of an object, which change from moment to moment, and determining the moving direction and speed of the object. In addition, with this method, the parallax becomes very small as the object becomes farther away, so
Distance measurement accuracy is poor for objects that are more than ten meters away. Therefore, it is also inappropriate for measuring the three-dimensional coordinates of such an object.

一方、後者の方法による場合も、1つの立体画面を得る
のに時間がかかり、運動中の物体に対応するのに限界が
ある。
On the other hand, even when using the latter method, it takes time to obtain one stereoscopic screen, and there is a limit to the ability to deal with moving objects.

そのため、これらの三次元座標計測方法を利用した従来
の衝突警報装置は、信頼性に乏しいものであった。
Therefore, conventional collision warning devices using these three-dimensional coordinate measurement methods lack reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の衝突警報装置は上記問題点に鑑みてなされたも
のであり、移動体に取り付けられ所定の視野範囲を光学
的に走査して画像信号を出力するカメラと、前記画像信
号に基づいて画面から特徴的な領域を抽出する画像処理
手段と、画像処理手段で抽出された領域が予め定めた物
体であるか否かを判定する物体認識手段と、物体認識手
段により所定物体を示すものと判定された画像領域の内
部にある適当な点の二次元座標を算出する二次元座標算
出手段と、前記二次元座標に基づいて決定される方向に
存在する物体と当該移動体との距離を測定する距離測定
手段と、距離測定手段の測定した距離データと二次元座
標算出手段の算出した二次元座標データとに基づいて三
次元座標を算出する三次元座標算出手段と、三次元座標
算出手段が算出した三次元座標データの時間的推移から
当該物体の将来の相対運動状態および位置を予測し、当
該物体と当該移動体との衝突の可能性が高まった場合に
警報信号を出力する物体運動予測手段と、前記警報信号
に基づいて所定の警報を行う警報手段とを備えたもので
ある。
The collision warning device of the present invention has been made in view of the above problems, and includes a camera attached to a moving body that optically scans a predetermined field of view and outputs an image signal, and a camera that outputs an image signal based on the image signal. an image processing means for extracting a characteristic region from the image processing means; an object recognition means for determining whether the region extracted by the image processing means is a predetermined object; and an object recognition means for determining that the region represents a predetermined object. two-dimensional coordinate calculating means for calculating two-dimensional coordinates of a suitable point within the image area, and measuring the distance between the moving body and an object existing in a direction determined based on the two-dimensional coordinates; a distance measuring means; a three-dimensional coordinate calculating means for calculating three-dimensional coordinates based on distance data measured by the distance measuring means and two-dimensional coordinate data calculated by the two-dimensional coordinate calculating means; and a three-dimensional coordinate calculating means calculating the three-dimensional coordinates. Object movement prediction means that predicts the future relative motion state and position of the object from the temporal transition of three-dimensional coordinate data, and outputs a warning signal when the possibility of a collision between the object and the moving object increases. and an alarm means for issuing a predetermined alarm based on the alarm signal.

〔作用〕[Effect]

カメラのとらえた画像から種々の物体に対応する画像領
域が抽出され、抽出された画像領域が特定の対象物であ
ると認定されると、当該領域内の適当な点の二次元座標
が求められ、その二次元座標点に対応する実際の点まで
の距離が測定され、その結果から対象物の三次元座標が
算出される。
Image regions corresponding to various objects are extracted from images captured by the camera, and when the extracted image regions are recognized as specific objects, the two-dimensional coordinates of appropriate points within the regions are determined. , the distance to the actual point corresponding to the two-dimensional coordinate point is measured, and the three-dimensional coordinate of the object is calculated from the result.

そして、その三次元座標の推移から対象物の将来の運動
および位置を予測し、移動体との衝突の可能性が高まっ
た時点で警報が発せられる。
Then, the future movement and position of the object is predicted from changes in the three-dimensional coordinates, and a warning is issued when the possibility of collision with a moving object increases.

〔実施例〕〔Example〕

以下、実施例と共に本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail along with examples.

図は本発明の一実施例を示すブロック図である。The figure is a block diagram showing one embodiment of the present invention.

カメラ1は公知のTVカメラであり、車輌や船舶等の移
動体に取り付けられている。このカメラlは所定の視野
範囲を光学的に走査してアナログの画像信号を出力する
ものであり、この画像信号は画像処理手段2に供給され
る。
The camera 1 is a well-known TV camera, and is attached to a moving object such as a vehicle or a ship. This camera 1 optically scans a predetermined viewing range and outputs an analog image signal, and this image signal is supplied to the image processing means 2.

画像処理手段2は、カメラ1の捕らえた1画面を480
x512画素に分解して把握するものであり、画素毎に
カメラlからのアナログ画像信号を8ビツト(256レ
ベル)のディジタル画像信号に変換し、1画面分をフレ
ームメモリに記憶する。さらに、画像処理手段2は輝度
レベルの共通部分を拾ったり、輝度レベルの変化点の軌
跡を追ったりして、画面上に現れているいくつかの閉じ
た領域を抜き出す。このようにして抜き出された閉じた
領域に関するデータは、物体認識手段3に供給される。
The image processing means 2 converts one screen captured by the camera 1 into 480 pixels.
The analog image signal from the camera 1 is converted into an 8-bit (256 level) digital image signal for each pixel, and one screen worth of data is stored in the frame memory. Furthermore, the image processing means 2 extracts some closed areas appearing on the screen by picking up common areas of brightness levels or tracing the locus of changing points of brightness levels. The data regarding the closed area extracted in this way is supplied to the object recognition means 3.

物体認識手段3では、画像処理手段2からのいくつかの
閉じた領域に関するデータと予め記憶されている各種の
物体に関するデータとを比較し、閉じた領域が三次元座
標を測定すべき物体を表す画像であるか否かを判定する
。なお、いかなる物体を三次元座標を測定すべき物体と
するかについては予め定められている。三次元座標を測
定すべき物体すなわち対象物の画像であると判定された
閉じた領域に関するデータは二次元位置算出手段4に供
給される。
The object recognition means 3 compares the data regarding some closed areas from the image processing means 2 with the data regarding various objects stored in advance, and determines that the closed area represents the object whose three-dimensional coordinates are to be measured. Determine whether it is an image. Note that it is determined in advance what kind of object is to be the object whose three-dimensional coordinates are to be measured. Data regarding the closed area determined to be an image of the object, ie, the object whose three-dimensional coordinates are to be measured, is supplied to the two-dimensional position calculation means 4.

二次元座標算出手段4では、入力データに基づいて対象
物に関する閉じた領域の幾何学上の重心点の座標を算出
して、その算出結果を三次元座標算出手段5および距離
センサ制御手段6に対して出力する。
The two-dimensional coordinate calculation means 4 calculates the coordinates of the geometric center of gravity of a closed area related to the object based on the input data, and sends the calculation results to the three-dimensional coordinate calculation means 5 and the distance sensor control means 6. Output against.

距離センサ制御手段6は距離センサ7の測定方向および
測定タイミングを制御するものであり、距離センサ制御
手段6および距離センサ7とで距離測定手段10が構成
されている。距離センサ7はカメラlの近傍において移
動体に取り付けられており、レーザ光射出部7a、レー
ザ光受光部7bおよび可動反射器であるビームスキャナ
部7cから構成されている。距離センサ制御手段6の指
示に基づいてレーザ光射出部7aから射出されたレーザ
光はビームスキャナ部7cの反射鏡で反射される。こと
ときの反射鏡の角度は距離センサ制御手段6によって反
射光が対象物に向かうように定められている。対象物で
反射されたレーザ光の一部は入射光と同じ光路を逆に進
み、ビームスキャナ部7cの反射鏡で反射されてレーザ
光受光部7bに入射する。距離センサ7はレーザ光射出
部7aから射出されたレーザ光がレーザ光受光部7bに
戻ってくるまでの時間を計測し、光速との関係から対象
物までの距離を算出する。対象物までの距離データは三
次元座標算出手段5に供給される。
The distance sensor control means 6 controls the measurement direction and measurement timing of the distance sensor 7, and the distance sensor control means 6 and the distance sensor 7 constitute a distance measurement means 10. The distance sensor 7 is attached to a moving body near the camera 1, and is composed of a laser beam emitting section 7a, a laser beam receiving section 7b, and a beam scanner section 7c which is a movable reflector. A laser beam emitted from the laser beam emitting section 7a based on an instruction from the distance sensor control means 6 is reflected by a reflecting mirror of the beam scanner section 7c. In this case, the angle of the reflecting mirror is determined by the distance sensor control means 6 so that the reflected light is directed toward the object. A portion of the laser light reflected by the object travels in the opposite direction along the same optical path as the incident light, is reflected by the reflecting mirror of the beam scanner section 7c, and enters the laser light receiving section 7b. The distance sensor 7 measures the time it takes for the laser beam emitted from the laser beam emitting section 7a to return to the laser beam receiving section 7b, and calculates the distance to the object from the relationship with the speed of light. The distance data to the object is supplied to the three-dimensional coordinate calculation means 5.

三次元座標算出手段5では、二次元座標算出手段4から
の二次元座標データおよび距離センサ7からの距離デー
タに基づいて三次元座標を算出する。
The three-dimensional coordinate calculation means 5 calculates three-dimensional coordinates based on the two-dimensional coordinate data from the two-dimensional coordinate calculation means 4 and the distance data from the distance sensor 7.

以上説明したカメラl、画像処理手段2、物体認識手段
3、二次元座標算出手段4、三次元座標算出手段5、距
離測定手段10によって三次元座標計測装置8が構成さ
れている。
The three-dimensional coordinate measuring device 8 is constituted by the camera l, the image processing means 2, the object recognition means 3, the two-dimensional coordinate calculating means 4, the three-dimensional coordinate calculating means 5, and the distance measuring means 10 described above.

三次元座標算出手段5で算出された三次元座標データは
、さらに物体運動予測手段9に供給される。物体運動予
測手段9では一時点前あるいはそれ以前の同一対象物に
関する三次元座標データを記憶しおり、これらのデータ
と最新の三次元座標データとを比較して、本装置が搭載
されている移動体を原点として当該対象物の相対移動速
度や相対移動方向を算出する。そして、さらに、算出さ
れた相対移動速度や相対移動方向に基づいて移動体を原
点とする対象物の将来の運動や将来の到達点を予測する
。かかる予測に基づいて、移動体と対象物とが衝突する
可能性が高まったと判断した場合には、警報信号を出力
する。たとえば、移動体からみた対象物の方向(角度)
が時間の経過に係わらず変化せず、その間の距離だけが
短縮している場合にはいずれ衝突することが考えられる
The three-dimensional coordinate data calculated by the three-dimensional coordinate calculating means 5 is further supplied to the object motion predicting means 9. The object motion prediction means 9 stores three-dimensional coordinate data regarding the same object at a point in time or before, and compares these data with the latest three-dimensional coordinate data to determine whether the moving object on which this device is mounted The relative moving speed and relative moving direction of the object are calculated using the origin as the origin. Further, the future movement and future destination of the object with the moving body as the origin are predicted based on the calculated relative movement speed and relative movement direction. Based on this prediction, if it is determined that the possibility of collision between the moving body and the object has increased, an alarm signal is output. For example, the direction (angle) of the object as seen from the moving object.
If the distance does not change regardless of the passage of time, and only the distance between them decreases, it is possible that a collision will occur someday.

また、対象物との距離が時間経過と共に徐々に短縮して
おり、予め定められた所定の距離(ガードライン)より
も短くなった場合には衝突する可能性が高まったという
ことがいえる。また、このとき、警報信号だけでなく対
象物の将来の運動や将来の到達点の予測結果から、衝突
を回避するための情報を作り出すこともできる。衝突回
避情報には、移動体の移動すべき方向を示唆する情報や
、速度の増減を示唆する情報等が含まれる。
Furthermore, the distance to the object is gradually decreasing over time, and when it becomes shorter than a predetermined distance (guard line), it can be said that the possibility of collision has increased. Furthermore, at this time, information for avoiding collisions can be generated not only from the warning signal but also from predictions of the object's future movement and future destination. The collision avoidance information includes information that suggests the direction in which the moving object should move, information that suggests an increase or decrease in speed, and the like.

警報手段11は、表示手段12と警報音発生手段13と
で構成されており、物体運動予測手段9からの警報信号
に基づいて表示手段12は警報表示を行い、警報音発生
手段13は警報音を発生する。なお、表示手段12は物
体運動予測手段9がらの衝突回避情報に基づいて移動体
の移動すべき方向等をモニタ表示することができる。
The alarm means 11 is composed of a display means 12 and an alarm sound generation means 13. The display means 12 displays an alarm based on the alarm signal from the object movement prediction means 9, and the alarm sound generation means 13 produces an alarm sound. occurs. The display means 12 can monitor and display the direction in which the moving body should move based on the collision avoidance information from the object motion prediction means 9.

つぎに、このような衝突警報装置を車輌に搭載した場合
の具体的動作について説明する。
Next, the specific operation when such a collision warning device is mounted on a vehicle will be explained.

カメラ1は前方に広がる所定の視野範囲を走査し、画像
信号を出力する。この画像信号は画像処理手段2におい
て画素毎にディジタル化され、1画面分がフレームメモ
リに記憶される。画像処理手段2ではさらにフレームメ
モリ内のデータに基づき、画面上から閉じた領域を捜し
出す。いま、例えば前方に本車輌と同一方向に移動する
車輌がいたとすると、その車輌の背面形状が閉じた領域
の一つとして抽出される。もちろん、視野範囲内のその
他の様々な物体の形状も閉じた領域として同時に抽出さ
れる。このようにして抽出された複数の閉じた領域に関
するデータは物体認識手段3に供給される。本例の物体
認識手段3は抽出された閉じた領域が車輌か否かを判断
するように予め設定されており、形状や明るさ等から車
輌と判定した閉じた領域についてのデータを二次元座標
算出手段4に供給する。二次元座標算出手段4ではその
領域の重心点を算出し、その重心点の二次元座標を距離
センサ制御手段6に供給する。距離センサ7は距離セン
サ制御手段6により、前記二次元座標点を狙ってレーザ
光を射出する。物体認識手段3での判定に誤りがなけれ
ば、このレーザ光は前方を走る車輌のある部分に入射し
、その反射光の一部がレーザ光受光部7bに戻る。これ
によって、前方を走る車輌までの相対距離が測定され、
その距離データが三次元座標算出手段5に供給される。
The camera 1 scans a predetermined field of view extending forward and outputs an image signal. This image signal is digitized pixel by pixel in the image processing means 2, and one screen's worth is stored in a frame memory. The image processing means 2 further searches for a closed area on the screen based on the data in the frame memory. For example, if there is a vehicle moving in the same direction as the current vehicle in front of the vehicle, the shape of the back of the vehicle is extracted as one of the closed regions. Of course, the shapes of various other objects within the field of view are also simultaneously extracted as closed regions. The data regarding the plurality of closed regions extracted in this way is supplied to the object recognition means 3. The object recognition means 3 in this example is set in advance to determine whether the extracted closed area is a vehicle or not, and the data regarding the closed area determined to be a vehicle based on the shape, brightness, etc. is stored in two-dimensional coordinates. It is supplied to calculation means 4. The two-dimensional coordinate calculation means 4 calculates the center of gravity of the area, and supplies the two-dimensional coordinates of the center of gravity to the distance sensor control means 6. The distance sensor 7 uses the distance sensor control means 6 to emit a laser beam aiming at the two-dimensional coordinate point. If there is no error in the determination by the object recognition means 3, this laser light is incident on a certain part of the vehicle running ahead, and a part of the reflected light returns to the laser light receiving section 7b. This measures the relative distance to the vehicle in front of you,
The distance data is supplied to the three-dimensional coordinate calculation means 5.

三次元座標算出手段5では二次元座標算出手段4からの
二次元座標データとこの距離データとから三次元座標を
算出する。この三次元座標データは物体運動予測手段9
に供給され、過去の同一対象物に関する三次元座標デー
タと比較される。物体運動予測手段9ではこれらのデー
タから対象物の将来の運動等を予測して、衝突の可能性
を判断し、衝突の可能性が高まれば警報信号を出力する
。警報手段11ではこの警報信号に基づいて所定の警報
を実行する。
The three-dimensional coordinate calculation means 5 calculates three-dimensional coordinates from the two-dimensional coordinate data from the two-dimensional coordinate calculation means 4 and this distance data. This three-dimensional coordinate data is used by the object motion prediction means 9
and is compared with past three-dimensional coordinate data for the same object. The object movement prediction means 9 predicts the future movement of the object from these data, determines the possibility of collision, and outputs a warning signal if the possibility of collision increases. The alarm means 11 executes a predetermined alarm based on this alarm signal.

なお、カメラ1の視野範囲内に複数台の車輌が存在する
場合は、画像処理手段2において各車輌に対応する閉じ
た領域が抽出されるとと共に、物体認識手段3において
それぞれの領域が車輌であると判別されることから、距
離センサ7によって各車輌に対してそれぞれ1回ずつ距
離測定を行うことになる。1画面中にて抽出された車輌
と思われる領域の三次元座標の算出は、およそ0.5秒
程度で行われることが望ましく、本装置によれば容易に
達成することが可能である。0.5秒毎に前方を走る車
輌の三次元座標を測定すれば、その三次元座標の変化か
ら当該車輌の運動方向や相対速度を容易に導くことがで
きる。
If there are multiple vehicles within the field of view of the camera 1, the image processing means 2 extracts a closed region corresponding to each vehicle, and the object recognition means 3 extracts a closed region corresponding to each vehicle. Since it is determined that there is a vehicle, the distance sensor 7 measures the distance for each vehicle once. It is desirable to calculate the three-dimensional coordinates of a region that is thought to be a vehicle extracted in one screen in about 0.5 seconds, and this can be easily accomplished with the present device. By measuring the three-dimensional coordinates of a vehicle running ahead every 0.5 seconds, the direction of movement and relative speed of the vehicle can be easily derived from changes in the three-dimensional coordinates.

なお、カメラlとしてカラーTVカメラを用いれば、画
像処理手段2における領域の抽出や物体認識手段3にお
ける対象物の認定において、色彩の違いを利用すること
ができる。
Note that if a color TV camera is used as the camera l, the difference in color can be utilized in extracting an area by the image processing means 2 and recognizing an object by the object recognition means 3.

また、二次元座標算出手段4では、演算の容易性から、
選択された領域の重心点の二次元座標を算出しているが
、重心点でなくともよい。
In addition, in the two-dimensional coordinate calculation means 4, for ease of calculation,
Although the two-dimensional coordinates of the center of gravity of the selected area are calculated, it does not have to be the center of gravity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の衝突警報装置によれば、カ
メラを用いて測定すべき物体の存在およびその二次元座
標を検出した後、距離測定手段を用いて当該物体までの
距離を測定することにより三次元座標を算出し、この三
次元座標データに基づいて衝突を予測するものであるの
で、短時間に精度良く衝突を予測することができる。
As explained above, according to the collision warning device of the present invention, after detecting the presence of an object to be measured and its two-dimensional coordinates using a camera, the distance to the object is measured using a distance measuring means. Since three-dimensional coordinates are calculated and collisions are predicted based on this three-dimensional coordinate data, collisions can be predicted with high accuracy in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示すブロック図である。 1・・・カメラ、2・・・画像処理手段、3・・・物体
認識手段、4・・・二次元座標算出手段、5・・・三次
元座標算出手段、6・・・距離センサ制御手段、7・・
・距離センサ、8・・・三次元座標計測装置、物体運動
予測手段9、IO・・・距離測定手段、11・・・警報
手段。
The figure is a block diagram showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Camera, 2... Image processing means, 3... Object recognition means, 4... Two-dimensional coordinate calculation means, 5... Three-dimensional coordinate calculation means, 6... Distance sensor control means ,7...
- Distance sensor, 8... Three-dimensional coordinate measuring device, object motion prediction means 9, IO... Distance measuring means, 11... Alarm means.

Claims (1)

【特許請求の範囲】[Claims]  移動体に取り付けられ所定の視野範囲を光学的に走査
して画像信号を出力するカメラと、前記画像信号に基づ
いて画面から特徴的な領域を抽出する画像処理手段と、
画像処理手段で抽出された領域が予め定めた物体である
か否かを判定する物体認識手段と、物体認識手段により
所定物体を示すものと判定された画像領域の内部にある
適当な点の二次元座標を算出する二次元座標算出手段と
、前記二次元座標に基づいて決定される方向に存在する
物体と当該移動体との距離を測定する距離測定手段と、
距離測定手段の測定した距離データと二次元座標算出手
段の算出した二次元座標データとに基づいて三次元座標
を算出する三次元座標算出手段と、三次元座標算出手段
が算出した三次元座標データの時間的推移から当該物体
の将来の相対運動状態および位置を予測し、当該物体と
当該移動体との衝突の可能性が高まった場合に警報信号
を出力する物体運動予測手段と、前記警報信号に基づい
て所定の警報を行う警報手段とを備えた衝突警報装置。
a camera attached to a moving object that optically scans a predetermined viewing range and outputs an image signal; an image processing means that extracts a characteristic area from a screen based on the image signal;
An object recognition means for determining whether the area extracted by the image processing means is a predetermined object, and an appropriate point within the image area determined by the object recognition means to indicate the predetermined object. two-dimensional coordinate calculating means for calculating dimensional coordinates; distance measuring means for measuring the distance between an object existing in a direction determined based on the two-dimensional coordinates and the moving body;
a three-dimensional coordinate calculation means for calculating three-dimensional coordinates based on distance data measured by the distance measurement means and two-dimensional coordinate data calculated by the two-dimensional coordinate calculation means; and three-dimensional coordinate data calculated by the three-dimensional coordinate calculation means. an object motion prediction means for predicting the future relative motion state and position of the object from the temporal transition of the object, and outputting an alarm signal when the possibility of a collision between the object and the moving body increases; A collision warning device comprising a warning means for issuing a predetermined warning based on.
JP61072525A 1986-04-01 1986-04-01 Collision warning device Pending JPS62231190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072525A JPS62231190A (en) 1986-04-01 1986-04-01 Collision warning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072525A JPS62231190A (en) 1986-04-01 1986-04-01 Collision warning device

Publications (1)

Publication Number Publication Date
JPS62231190A true JPS62231190A (en) 1987-10-09

Family

ID=13491835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072525A Pending JPS62231190A (en) 1986-04-01 1986-04-01 Collision warning device

Country Status (1)

Country Link
JP (1) JPS62231190A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167688A (en) * 1987-12-24 1989-07-03 Fujita Corp Automatic measurement system for three-dimensional position
JPH02105087A (en) * 1988-08-25 1990-04-17 Messerschmitt Boelkow Blohm Gmbh <Mbb> Method and device for discriminating start and flight of body
EP0497428A2 (en) * 1991-01-31 1992-08-05 Matsushita Electric Works, Ltd. Interphone with television
JPH0511052A (en) * 1991-06-28 1993-01-19 Nec Corp Vehicle mounted type obstacle detecting apparatus
EP0654392A1 (en) * 1993-11-24 1995-05-24 Koyo Seiko Co., Ltd. Steering apparatus for vehicle
JP2001356170A (en) * 2001-07-09 2001-12-26 Nac Image Technology Inc Moving body measuring device using video camera
JP2010152839A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Vehicle surroundings monitoring device
JP2010197186A (en) * 2009-02-25 2010-09-09 Topcon Corp Object detector
JP2011530712A (en) * 2008-08-12 2011-12-22 ジェイケイ ヴィジョン アーエス A system for detecting and imaging objects on the ship's route.
GB2558356A (en) * 2016-10-20 2018-07-11 Ford Global Tech Llc Lidar and vision vehicle sensing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167688A (en) * 1987-12-24 1989-07-03 Fujita Corp Automatic measurement system for three-dimensional position
JPH02105087A (en) * 1988-08-25 1990-04-17 Messerschmitt Boelkow Blohm Gmbh <Mbb> Method and device for discriminating start and flight of body
EP0497428A2 (en) * 1991-01-31 1992-08-05 Matsushita Electric Works, Ltd. Interphone with television
JPH0511052A (en) * 1991-06-28 1993-01-19 Nec Corp Vehicle mounted type obstacle detecting apparatus
EP0654392A1 (en) * 1993-11-24 1995-05-24 Koyo Seiko Co., Ltd. Steering apparatus for vehicle
JP2001356170A (en) * 2001-07-09 2001-12-26 Nac Image Technology Inc Moving body measuring device using video camera
JP2011530712A (en) * 2008-08-12 2011-12-22 ジェイケイ ヴィジョン アーエス A system for detecting and imaging objects on the ship's route.
JP2010152839A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Vehicle surroundings monitoring device
JP2010197186A (en) * 2009-02-25 2010-09-09 Topcon Corp Object detector
GB2558356A (en) * 2016-10-20 2018-07-11 Ford Global Tech Llc Lidar and vision vehicle sensing
US10629072B2 (en) 2016-10-20 2020-04-21 Ford Global Technologies, Llc LIDAR and vision vehicle sensing

Similar Documents

Publication Publication Date Title
US10345447B1 (en) Dynamic vision sensor to direct lidar scanning
US11226413B2 (en) Apparatus for acquiring 3-dimensional maps of a scene
EP3872688A1 (en) Obstacle identification method and device, storage medium, and electronic device
US6678394B1 (en) Obstacle detection system
US20040066500A1 (en) Occupancy detection and measurement system and method
JP3727400B2 (en) Crossing detection device
JPH11510600A (en) Method and apparatus for quickly detecting the position of a target mark
JPH08313632A (en) Alarm generator, alarm generating method and vehicle mounting alarm generator
KR102151815B1 (en) Method and Apparatus for Vehicle Detection Using Lidar Sensor and Camera Convergence
CN110031002A (en) Detect method, system and its sensor subsystem of obstruction
JP2018066609A (en) Range-finding device, supervising camera, three-dimensional measurement device, moving body, robot and range-finding method
JPS62231190A (en) Collision warning device
JPH1144533A (en) Preceding vehicle detector
KR20220146617A (en) Method and apparatus for detecting blooming in lidar measurements
JP3991501B2 (en) 3D input device
JPS62194413A (en) Three-dimensional coordinate measuring instrument
WO2022195954A1 (en) Sensing system
CN108195291B (en) Moving vehicle three-dimensional detection method and detection device based on differential light spots
US20220214434A1 (en) Gating camera
JPS6383604A (en) Three-dimensional coordinate measuring instrument
US11747481B2 (en) High performance three dimensional light detection and ranging (LIDAR) system for drone obstacle avoidance
US20220404499A1 (en) Distance measurement apparatus
US20230003895A1 (en) Method and apparatus for controlling distance measurement apparatus
JP2001183120A (en) Method and device for three-dimensional input
TWI792512B (en) Vision based light detection and ranging system using multi-fields of view