JPS62230932A - Method for cooling metallic body - Google Patents

Method for cooling metallic body

Info

Publication number
JPS62230932A
JPS62230932A JP7509886A JP7509886A JPS62230932A JP S62230932 A JPS62230932 A JP S62230932A JP 7509886 A JP7509886 A JP 7509886A JP 7509886 A JP7509886 A JP 7509886A JP S62230932 A JPS62230932 A JP S62230932A
Authority
JP
Japan
Prior art keywords
cooling
particles
height
solid particles
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7509886A
Other languages
Japanese (ja)
Inventor
Narimitsu Ishiwata
石綿 成光
Masamichi Ozaki
尾崎 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7509886A priority Critical patent/JPS62230932A/en
Publication of JPS62230932A publication Critical patent/JPS62230932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the rate of cooling of a hot metallic body when the metallic body is rapidly cooled in a fluidized bed, by specifying the particle size of solid particles and expansion ratio. CONSTITUTION:Solid particles 5 are charged into a vessel 6 and a fluidizing gas 7 is introduced into the vessel 6 through an introduction pipe 1, a wind box 2, and a dispersion plate 3 to fluidize the particles 5. A hot metallic body 4 is put in the resulting fluidized bed and cooled. In this cooling method, the average particle size of the particles 5 is regulated to <=100mum and expansion ratio calculated by dividing the height of the fluidized bed by the height of a fixed bed is regulated to >=1.5. The height of the fluidized bed is the height of a layer of the particles 5 fluidized with the gas 7, and the height of the fixed bed is the height of a layer of the particles 5 not fluidized with the gas 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は金属の性質の改良のための熱処理の内、高温
の金属塊等を急冷する方法に関するものである。待に空
気によって波動化している粉粒体の流動層中に、高温の
金属塊等を浸すことにより、大きな冷却速度でかつ清浄
に冷却する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method of rapidly cooling a high-temperature metal lump, etc., among heat treatments for improving the properties of metal. The present invention relates to a method for cleanly cooling a high-temperature metal lump or the like at a high cooling rate by immersing it in a fluidized bed of granular material that is undulated by air.

〔従来の技術〕[Conventional technology]

塊状等の金属(以下金属体という)の急冷方法としては
溶融塩に浸す方法が公知であり、かつ広く使用されてい
る。しか17、この方法は冷却後の金属体の表面に浴融
塩が付着[−1こねを除去するための作業が必要であり
、空気が汚染されるため、作業環境が悪く衛生上の間馳
がある○ 溶融塩急冷法の前記欠点を無くす方法として、流体の流
入および撹拌スフリーラ等の手段により流動化した粉粒
体の流動層中に高温の金属体を浸漬する方法が提案され
た。すなわち特願昭58−22690 (特開昭59−
150013 )においては、熱伝導率の良い粉粒体中
に所定温度に加熱された金属体を浸漬する方法である。
As a method for rapidly cooling a lump of metal (hereinafter referred to as a metal body), a method of immersing it in molten salt is known and widely used. However, this method requires work to remove the molten salt that adheres to the surface of the metal body after cooling [-1], which contaminates the air, resulting in a poor working environment and a sanitary problem. As a method to eliminate the above-mentioned drawbacks of the molten salt quenching method, a method has been proposed in which a high-temperature metal body is immersed in a fluidized bed of powder and granular material fluidized by means such as inflow of fluid and a stirrer. That is, Japanese Patent Application No. 58-22690 (Japanese Unexamined Patent Publication No. 59-
150013) is a method in which a metal body heated to a predetermined temperature is immersed in powder or granular material having good thermal conductivity.

〔発明が解決しようとする間塵点〕[The gap that the invention attempts to solve]

浴融廖を用いる急冷方法は作業性が悪く、N墳衛生上問
題があり、塩を溶融処理するための設備が必要であるた
め多大の費用が必要である・一方公知の渾、動層急冷方
法においては粉粒体の粒子径を特定してないため、高温
金属体の冷却作用はあまり大きくない。高温金属体は、
流動化ガスと流動する粉粒体両方で冷却作用を受けるが
、一般に固体表面とガス間の熱伝達率よりも固体表面と
固体粒子の接触による熱伝導率の方が著しく太きいため
、後者が高温金属体冷却における律速段階となる。
The quenching method using a bath melting chamber has poor workability, poses problems in terms of Nfuneral hygiene, and requires equipment for melting the salt, which requires a large amount of cost.On the other hand, the well-known quenching method using a water bath or a moving bed Since the method does not specify the particle size of the powder, the cooling effect on the high-temperature metal body is not very large. High temperature metal bodies are
Both the fluidizing gas and the fluidized powder and granules receive a cooling effect, but the latter is generally the case because the thermal conductivity due to contact between the solid surface and solid particles is significantly higher than the heat transfer coefficient between the solid surface and the gas. This is the rate-limiting step in cooling high-temperature metal bodies.

固体壁面と固体粒子の熱伝導率は接触面積が大きい根太
きくなるが、公知の流動層では粉粒体の粒子径を符定し
てないため、冷却速度は充分ではなかった。
Thermal conductivity between the solid wall surface and the solid particles increases as the contact area increases, but in known fluidized beds, the particle size of the powder is not specified, so the cooling rate is not sufficient.

流動層を用いる急冷方法が、作業性・環境衛生上はるか
に優れているにもかかわらず埋東上普及しない理由は、
冷却速度が溶融塩冷却法に比べて小さいからである。
The reason why the quenching method using a fluidized bed has not been widely used in the underground market even though it is far superior in terms of workability and environmental hygiene is as follows.
This is because the cooling rate is lower than that of the molten salt cooling method.

〔間亀を解決するための手段〕[Means to resolve the gap]

上記の間地点を解決するため、この発明では、本体容器
6内に同体粒子5を入れ、本体容器6の下部に分散板3
・ウィンドボックス2を設け、ウィンドボックス2には
導入管1を設置する構成とした。前記固体粒子は、高温
金属体壁面と固体粒子の接触面積を大^くするため、一
定値以下の粒子径と12、具体的には100μm以下と
(7た。
In order to solve the above-mentioned problem, in the present invention, the homogeneous particles 5 are placed in the main container 6, and a dispersion plate 3 is placed in the lower part of the main container 6.
- A wind box 2 is provided, and the introduction pipe 1 is installed in the wind box 2. In order to increase the contact area between the solid particles and the wall surface of the high-temperature metal body, the solid particles have a particle diameter of 12 μm or less, specifically 100 μm or less (7 μm).

〔作用〕[Effect]

上記の技術的手段は次の様に作用する。 The above technical means works as follows.

本体容器6内に粒子径100μm以下の固体粒子5を入
れ、導入管1より空気等の流動化ガス7を送入する。流
動化ガス7はウィンドボックス2に入り、分散板3にて
tミは均一に分散され固体粒子5内を気泡となって上昇
する。この時に生ずる気泡の上昇力がいわゆる流動層を
形成する一流動層では激しい攪拌・混合作用が行なわれ
るのその結果、金属体4は本体容器6内で流動している
同体粒子5に激しく接触することKよって冷却され、固
体粒子5は流動化ガスに接かすることにより冷却される
Solid particles 5 having a particle diameter of 100 μm or less are placed in the main container 6, and a fluidizing gas 7 such as air is introduced through the introduction pipe 1. The fluidizing gas 7 enters the wind box 2, is uniformly dispersed by the dispersion plate 3, and rises inside the solid particles 5 in the form of bubbles. The rising force of the bubbles generated at this time forms a so-called fluidized bed.In the fluidized bed, intense stirring and mixing action takes place.As a result, the metal body 4 comes into violent contact with the same particles 5 flowing in the main container 6. The solid particles 5 are cooled by coming into contact with the fluidizing gas.

〔実施例〕〔Example〕

第1図・第3図・第4図・第5図はこの発明の一実施例
を示すものである。
1, 3, 4, and 5 show an embodiment of the present invention.

第1図に示すように、本体容器6内に粒子径40〜10
0μmおよび125〜350μmの鉄の固体粒子5を入
れる。第2図に示すように固体粒子5を本体容器6内に
入れ流動化ガスを流さ女いときの層高を固T層高という
。第1図に示すように固体粒子5を本体容器6内に入れ
流動化ガス7を流したときの層高を流動層高という○こ
の流動層高は流動化ガス7の送入量が大である根太とな
る。即ち、激しい流動状態となる。
As shown in FIG.
Solid iron particles 5 of 0 μm and 125-350 μm are introduced. As shown in FIG. 2, the layer height when the solid particles 5 are placed in the main container 6 and the fluidizing gas is flowed is called the solid T layer height. As shown in Fig. 1, the height of the bed when solid particles 5 are placed in the main container 6 and the fluidizing gas 7 is flowed is called the fluidized bed height. It becomes a certain joist. That is, it becomes a state of intense fluidity.

筒5図に示す4aは本体容器6内に入れ冷却を行なった
金属体である。8は70メルーアルメルを使用したシー
ス形熱電対で、金属体4aの中心部温度を測定するのに
用いる。9は吊り下げ金具で、金属体4aを吊シ下げる
のに用いる。
4a shown in the cylinder 5 figure is a metal body placed in the main container 6 and cooled. 8 is a sheathed thermocouple made of 70 Meru alumel, which is used to measure the temperature at the center of the metal body 4a. Reference numeral 9 denotes a hanging metal fitting, which is used to hang the metal body 4a.

流動層高÷固定層高で定義される膨張比を1.3゜1.
5 、1.7となるよう流動化ガスとして常温空気7の
流入量を変え高温金属体4aを、本体容器6内の鉄の固
体粒子5中に浸漬させその中心部温度の変化を記録1〜
だのが第3図および第4図である。
The expansion ratio defined as fluidized bed height ÷ fixed bed height is 1.3°1.
The high temperature metal body 4a is immersed in the solid iron particles 5 in the main container 6, and the change in the temperature at its center is recorded by changing the inflow amount of room temperature air 7 as a fluidizing gas so that the temperature becomes 1.7.
This is shown in Figures 3 and 4.

第3図では膨張比を1.5としており、第4図では固体
粒子径5は40〜100μmとしている。第3図より、
膨張比が同一では固体粒子径の小さい方が冷却速度は大
であることが分る。第4図より、鉄の固体粒子径が同一
では膨張比が大である程(即ち6it動状態が搬しい程
)冷却速度は大であることが分る。
In FIG. 3, the expansion ratio is 1.5, and in FIG. 4, the solid particle diameter 5 is 40 to 100 μm. From Figure 3,
It can be seen that when the expansion ratio is the same, the smaller the solid particle diameter, the faster the cooling rate. From FIG. 4, it can be seen that when the solid iron particle diameter is the same, the larger the expansion ratio (ie, the more severe the 6it dynamic state), the higher the cooling rate.

高温でオーステナイト組織の鋳鉄を急冷すると、オース
テナイト組織はそのまま低温度までもって来ることがで
き、その温間を保って変態が終るまで待てば全体をベー
ナイトなどの一様な組織とすることができることは一般
に知られておυ、冷却処理と恒温処理を分けたものは一
般に二段オーステンパ処理と言われている。
When cast iron with an austenite structure is rapidly cooled at a high temperature, the austenite structure can be brought to a lower temperature, and if the temperature is kept warm and the transformation is completed, the entire structure can be changed to a uniform structure such as bainite. Generally known as υ, the separation of cooling treatment and constant temperature treatment is generally referred to as two-stage austempering treatment.

この場合の急冷は870℃付近のものを100秒以内に
500℃付近以下にする冷却速度が必要である。
In this case, the rapid cooling requires a cooling rate that reduces the temperature from around 870°C to around 500°C or less within 100 seconds.

第6図において、膨張比が1.5では鉄の固体粒子径4
0〜100μmのものは前記冷却速度を満足しているが
、鉄の固体粒子径125〜350μmのものは満足j2
ていない。
In Figure 6, when the expansion ratio is 1.5, the iron solid particle size is 4
Those with iron solid particle diameters of 0 to 100 μm satisfy the above cooling rate, but those with iron solid particle diameters of 125 to 350 μm do not satisfy the cooling rate.
Not yet.

第4図において、鉄の同体粒子径40〜100μmでは
、膨張比1.5および1.7のものは前記冷却速度を満
足しているが、膨張比1.3のものは満足していない。
In FIG. 4, when the iron particles have a diameter of 40 to 100 μm, those with expansion ratios of 1.5 and 1.7 satisfy the above cooling rate, but those with expansion ratios of 1.3 do not.

なお、冷却速度は銅の固体粒子を用いても、鉄の固体粒
子とほとんど同様の結果を得た。即ち固体粒子の材質に
よる差はほとんどない。
Note that the cooling rate obtained using copper solid particles was almost the same as that obtained using iron solid particles. That is, there is almost no difference depending on the material of the solid particles.

高温金属体は流動化ガスと流動する固体粒子の両方で冷
却作用を受けるが、金属体表面とカス間の熱伝達率より
も金属体表面と固体粒子の接触による熱伝導率の方が著
しく大きいため、後者が高温金属体冷却における律速段
階となる。
A high-temperature metal body is cooled by both the fluidizing gas and the flowing solid particles, but the thermal conductivity due to contact between the metal body surface and the solid particles is significantly higher than the heat transfer coefficient between the metal body surface and the scum. Therefore, the latter becomes the rate-determining step in cooling the high-temperature metal body.

金属体光面と固体粒子の接触は、厳密に言えば、非常に
薄い流動化カスの膜を介した接触であり、この膜を介し
た接触部が冷却における律速段階となっているので、冷
却速度は固体粒子の材質による差はほとんど発生1−な
い。
Strictly speaking, the contact between the optical surface of the metal body and the solid particles is through a very thin film of fluidized scum, and the contact area through this film is the rate-limiting step in cooling. There is almost no difference in speed depending on the material of the solid particles.

金層体表面と固体粒子の接触部の冷却速度は単位時間当
りの接触面積に比例する。そして、この単位時間当り接
触面積は流動によって接触する粒子群の総表面積と粒子
群の接触回数に比例する。
The cooling rate of the contact area between the gold layer surface and the solid particles is proportional to the contact area per unit time. The contact area per unit time is proportional to the total surface area of the particles that come into contact with each other due to the flow and the number of times the particles come into contact with each other.

粒子群の総表面積は粒子径が小さい程大きくなる。The smaller the particle diameter, the larger the total surface area of the particle group.

粒子群の接解回数は倣しい流動層(即ち流動層高÷固定
層高で定義される膨張比が犬である程)である程多くな
る。
The number of times the particle group comes into contact with each other increases as the fluidized bed becomes more similar (ie, the expansion ratio defined by the height of the fluidized bed divided by the height of the fixed bed increases).

従って、粒子径が小さい程、膨張比が大きい程冷却速度
は大きくなる。
Therefore, the smaller the particle size and the larger the expansion ratio, the higher the cooling rate.

この発明による、固体粒子径100μm以下、膨張比1
.5以上とした流動層による冷却では870℃付近の高
温金属体を約100秒以内に500℃付近以下にするこ
とができ、いわゆる二段オーステンバ処理の冷却処理に
充分便用できる。
According to this invention, the solid particle diameter is 100 μm or less, and the expansion ratio is 1.
.. Cooling using a fluidized bed with a temperature of 5 or more allows a high temperature metal body at around 870° C. to be brought down to around 500° C. or less within about 100 seconds, making it sufficiently convenient for cooling treatment in so-called two-stage austempering.

なお恒温処理は電気式トンネル炉・バッチ炉その他のい
かなる形式の炉でもよい。
Note that the constant temperature treatment may be performed in an electric tunnel furnace, a batch furnace, or any other type of furnace.

〔発明の効果〕〔Effect of the invention〕

この発明は次のような特有の効果を有する。 This invention has the following unique effects.

高温の金属体を急冷するのに溶融塩を用いず、固体粒子
の流動層を用いているため、衛生上の問題か無く作業性
がよい。
Since a fluidized bed of solid particles is used instead of molten salt to rapidly cool a high-temperature metal body, there are no hygiene issues and workability is good.

固体粒子100μm以下、膨張比1.5埼上として流動
層冷却を行なっているため、従来からある一般の流動層
冷却では必ずしも充分でなかった冷却速度を大幅に越え
、いわゆる二段オーステンパ処理の冷却処理として使用
でき、その他の冷却処理にも、使用できる。
Because fluidized bed cooling is performed with solid particles of 100 μm or less and an expansion ratio of 1.5 μm or more, the cooling rate significantly exceeds the cooling rate that was not always sufficient with conventional general fluidized bed cooling, and is suitable for cooling in so-called two-stage austempering processing. It can be used as a treatment and can also be used for other cooling treatments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実励例を示す縦断面図である。第
2図は、第1図において流動化ガスを送入しない場合の
状態説明図である。 第5図は第1図の装置を用いて冷却を行なったときの金
属体を示す図である。 第6図・第4図は、第1図の装置を用いて高温金属体を
冷却したときの降温曲線を示す図である。 1:導 入 管    2:ウィンドボックス3 二分
  散  板      4 :金  属  体4a:
金 属 体   5:固体粒子 6:本体容器    7:流動化ガス 8:シース形熱電対   9:吊り下げ金具vt1図 第2図 ? 漆3 図 経通綺間 (秒) 第4図 径通片閘 (秒ジ
FIG. 1 is a longitudinal sectional view showing one practical example of the invention. FIG. 2 is an explanatory diagram of a state in which fluidizing gas is not introduced in FIG. 1. FIG. 5 is a diagram showing a metal body cooled using the apparatus shown in FIG. 6 and 4 are diagrams showing temperature drop curves when a high-temperature metal body is cooled using the apparatus shown in FIG. 1. 1: Inlet pipe 2: Wind box 3 Bidispersion plate 4: Metal body 4a:
Metal body 5: Solid particle 6: Main container 7: Fluidizing gas 8: Sheath type thermocouple 9: Hanging fitting VT1 Figure 2? Lacquer 3 Diagram 3 (Seconds) Diagram 4 Diagram 1 Lock (Seconds)

Claims (1)

【特許請求の範囲】[Claims] 本体容器下部に分散板を設置し、分散板下部にウィンド
ボックスを設置し、本体容器内に固体粒子を充てんし、
ウィンドボックスに接続されている導入管より流動化ガ
スを送入して本体容器内の固体粒子を流動化させ、この
固体粒子中にある高温金属体の冷却方法において、固体
平均粒子径を100μm以下とし、流動層高÷固定層高
で定義される膨張比を1.5以上として冷却することを
特徴とする金属体の冷却方法。
A dispersion plate is installed at the bottom of the main container, a wind box is installed at the bottom of the dispersion plate, and solid particles are filled into the main container.
In this method, solid particles in the main container are fluidized by introducing fluidizing gas through an inlet pipe connected to a wind box, and the solid particles are cooled to a temperature of 100 μm or less. A method for cooling a metal body, characterized in that cooling is performed with an expansion ratio defined as fluidized bed height divided by fixed bed height of 1.5 or more.
JP7509886A 1986-04-01 1986-04-01 Method for cooling metallic body Pending JPS62230932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7509886A JPS62230932A (en) 1986-04-01 1986-04-01 Method for cooling metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7509886A JPS62230932A (en) 1986-04-01 1986-04-01 Method for cooling metallic body

Publications (1)

Publication Number Publication Date
JPS62230932A true JPS62230932A (en) 1987-10-09

Family

ID=13566355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7509886A Pending JPS62230932A (en) 1986-04-01 1986-04-01 Method for cooling metallic body

Country Status (1)

Country Link
JP (1) JPS62230932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201418A (en) * 1987-11-10 1989-08-14 Union Carbide Corp Rapid quenching method
CN112334584A (en) * 2018-07-11 2021-02-05 安赛乐米塔尔公司 Method for controlling the cooling of flat metal products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201418A (en) * 1987-11-10 1989-08-14 Union Carbide Corp Rapid quenching method
CN112334584A (en) * 2018-07-11 2021-02-05 安赛乐米塔尔公司 Method for controlling the cooling of flat metal products

Similar Documents

Publication Publication Date Title
JPH08187547A (en) Production of metallic slurry for casting
US6035924A (en) Method of casting a metal article
SE432758B (en) FORM FOR GLASS SHAPING AND WAY TO MAKE IT
Heidary et al. Theoretical and experimental study on settling of SiC particles in composite slurries of aluminum A356/SiC
FR2527760B1 (en) METHOD FOR CONTROLLING THE TRANSFER OF HEAT BETWEEN A GRANULAR MATERIAL AND AN EXCHANGE SURFACE AND HEAT EXCHANGER FOR IMPLEMENTING THE METHOD
JPH01168334A (en) Fluidized bed equipped with heated liner
JPS62230932A (en) Method for cooling metallic body
CN102233417A (en) Centrifugal casting process for main pipeline of million kilowatt-grade nuclear power plant
US4315538A (en) Method and apparatus to effect a fine grain size in continuous cast metals
JPS6192758A (en) Long-sized metallic product
JPS63410A (en) Method and apparatus for forming high temperature direct reducing iron
JPH06504954A (en) Adjustment of flow rate of molten product
US3473600A (en) Apparatus for continuously casting materials
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
AU755695B2 (en) Method and apparatus for heat treating steel
Ziegler et al. Radial heat transfer in packed-fluidized bed
JPS6039133A (en) Manufacturing apparatus of alloy slurry
US2935420A (en) Method of coating metals
Khripchenko et al. STRUCTURE OF SOLIDIFIED ALUMINUM MELT IN CRUCIBLESOFCIRCULARANDSQUARECROSS-SECTIONS IN REVERSE REGIMES OF ROTATING MAGNETIC FIELD.
JPH0215852A (en) Method for continuously casting steel
McGee Slag Attack under Turbulent or Near‐Turbulent Flow Conditions
JPH0570826A (en) Manufacture of austempered ductile cast iron and austempered ductile cast iron obtained from the same
JPS6199621A (en) Dry type fluidized bed device for quick cooling
Hashimoto et al. Computer-aided scale-up and thermal design of coke combustion furnaces
Adamov et al. EXPERIMENTAL STUDY OF INCORPORATION OF REINFORCING BORON NITRIDE PARTICLES INTO ALIMINUM MELT BY MHD STIRRING AT DIRECTIONAL SOLODIFICATION.