JPS62230829A - Molding material - Google Patents

Molding material

Info

Publication number
JPS62230829A
JPS62230829A JP62025567A JP2556787A JPS62230829A JP S62230829 A JPS62230829 A JP S62230829A JP 62025567 A JP62025567 A JP 62025567A JP 2556787 A JP2556787 A JP 2556787A JP S62230829 A JPS62230829 A JP S62230829A
Authority
JP
Japan
Prior art keywords
carbon fiber
molding material
fiber
thermoplastic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62025567A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kawakatsu
川勝 義史
Katsumi Nakama
中間 克美
Hideki Nakai
秀樹 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP55127959A external-priority patent/JPS5756586A/en
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP62025567A priority Critical patent/JPS62230829A/en
Publication of JPS62230829A publication Critical patent/JPS62230829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To provide a molding material composed of a thermoplastic resin and a carbon fiber material coated with polyvinyl pyrrolidone and having excellent adhesivity between the carbon fiber and the resin, excellent impact resistance and electrical conductivity. CONSTITUTION:The objective molding material is composed of (A) carbon fiber produced by activating the surface of carbon fiber preferably by the treatment with potassium permanganate or nitric acid or the electrolytic treatment in an electrolyte solution, passing the surface-treated fiber through a solution obtained by dissolving polyvinyl pyrrolidone having a molecular weight of 10,000-360,000 in water, methanol, etc., at an amount of 0.5-10(wt)%, removing the solvent with infrared lamp, hot air, etc., and optionally cutting to 1-10mm long (the amount of polyvinyl pyrrolidone attached to the fiber is 1-10%) and (B) a thermoplastic resin. The molding material is preferably mixed and pelletized before molding.

Description

【発明の詳細な説明】 本発明はポリビニルピロリドン(以下「PvP」と略す
。)で表面被覆した炭素繊維材料と熱可塑性樹脂とから
なる成形材料に関するものである。本発明は炭素繊維強
化樹脂(以下「CFRPJという。)の機械的特性、特
に強度と衝撃強度を向上させると共にCFRPの電気特
性を向上させることのできる成形材料を提供することを
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding material made of a carbon fiber material whose surface is coated with polyvinylpyrrolidone (hereinafter abbreviated as "PvP") and a thermoplastic resin. An object of the present invention is to provide a molding material that can improve the mechanical properties of carbon fiber reinforced resin (hereinafter referred to as "CFRPJ"), particularly the strength and impact strength, as well as the electrical properties of CFRP.

炭N繊維は弾性率、耐摩耗性、電気特性、耐薬品性、軽
量性に優れているが、炭素繊維単独で使用されることは
少なく、樹脂、金属等の強化材として使用されるのが一
般である。特に、樹脂の強化材として、航空宇宙産業、
レジャー産業に幅広く使用されている。しかし、この炭
素繊維はその表面が本質的に不活性であり、樹脂との接
着性は良好とは言い難い。
Carbon-N fiber has excellent elastic modulus, abrasion resistance, electrical properties, chemical resistance, and light weight, but carbon fiber is rarely used alone, and is used as a reinforcing material for resins, metals, etc. It is common. In particular, it is used in the aerospace industry as a reinforcing material for resins.
Widely used in the leisure industry. However, the surface of this carbon fiber is essentially inactive, and its adhesion to resin cannot be said to be good.

炭素繊維と樹脂との接着性を向上させてCFRPの機械
的特性を向上させることは炭素繊維の補強効果を向上さ
せる上で重要な因子である。
Improving the adhesion between carbon fibers and resin to improve the mechanical properties of CFRP is an important factor in improving the reinforcing effect of carbon fibers.

炭素繊維、特に短繊維のものと、熱可塑性樹脂との接着
性の悪さは、炭素m維強化熱可塑性樹脂の衝撃強度の低
下となってあられれる。すなわら、炭素繊維と樹脂との
接着性が改善されていない炭素繊維強化熱可塑性樹脂に
m撃力が加わった場合、炭素繊維と樹脂との界面で容易
に剪断剥離現象が生じ、クラックの発生点となり、熱可
塑性樹脂単独の場合よりtIjJ撃強度は大幅に低下す
る。
Poor adhesion between carbon fibers, especially short fibers, and thermoplastic resins results in a decrease in the impact strength of carbon fiber-reinforced thermoplastic resins. In other words, when m impact force is applied to a carbon fiber-reinforced thermoplastic resin whose adhesion between the carbon fiber and the resin has not been improved, shearing and peeling phenomena easily occur at the interface between the carbon fiber and the resin, resulting in cracks. This is the point of occurrence, and the tIjJ impact strength is significantly lower than in the case of thermoplastic resin alone.

この炭素繊維強化熱可塑性樹脂の衝撃強度の低さは、ガ
ラス繊維強化熱可塑性樹脂と比較して衝撃強度以外の他
の特性が優れているにも拘わらず、その応用分野が制限
されている大きな原因の一つとなっている。
This low impact strength of carbon fiber-reinforced thermoplastic resins is a major problem that limits its application fields, even though it has superior properties other than impact strength compared to glass fiber-reinforced thermoplastic resins. This is one of the causes.

このような問題の解決法として、41111を選定する
こと、及び、炭素繊維を酸化剤処理したり或いは電解質
溶液中で通電処理するところの、いわゆる表面活性化を
行うこと、がそれぞれ提案されている。
As solutions to these problems, it has been proposed to select 41111 and to perform so-called surface activation, in which carbon fibers are treated with an oxidizing agent or treated with electricity in an electrolyte solution. .

しかし、この表面活性化処理のみでは、熱可塑性樹脂を
マトリックスとする場合、充分な効果をあげl!7 ’
、Jい。
However, this surface activation treatment alone is insufficiently effective when using thermoplastic resin as a matrix! 7'
, J.

一方、炭素繊維は導電性があることが知られているが、
CFRPとした場合、炭素繊維と樹脂との接着性を向上
させ、耐衝撃性等を向上させるとCFRPの導電性は一
般に低下すると言われている。
On the other hand, carbon fiber is known to be electrically conductive;
In the case of CFRP, it is said that if the adhesion between the carbon fiber and the resin is improved and the impact resistance etc. are improved, the electrical conductivity of CFRP will generally decrease.

本発明者等は、このような相反する問題を解決し、CF
RPの導電性を向上させると共に、その耐衝撃性等をも
向上させる方法について検討の結果、本発明に至ったも
のである。
The present inventors solved these contradictory problems and developed a CF
The present invention was developed as a result of studies on methods for improving the electrical conductivity of RP and also improving its impact resistance.

すなわら、本発明は、1〜10重最%のPVPで表面被
覆した炭素繊維材料と熱可塑性樹脂とからなる成形材料
である。特に、表面活性化処理をした炭素繊維を1〜1
0重量%のPVPで表rikim覆した炭素m雑材料と
熱可塑性樹脂とからなる成形材料である。
In other words, the present invention is a molding material made of a carbon fiber material whose surface is coated with 1 to 10% by weight of PVP and a thermoplastic resin. In particular, 1 to 1 carbon fibers that have been surface activated
This is a molding material consisting of a carbon miscellaneous material covered with 0% by weight of PVP and a thermoplastic resin.

本発明の成形材料は、樹脂との接着性の向上により、C
FRPの機械的特性を向上させることができ、しかも、
PVPで表面被覆しない炭素繊維を使用した場合のCF
RPに比較し、CFRPの導電性を大幅に向上させるこ
とができる。前記のように、炭素繊維と樹脂との接着性
が良いと一般に通電性は低下するど苫われるだけに、こ
のような本発明の効果は驚くべきことである。
The molding material of the present invention has C
It is possible to improve the mechanical properties of FRP, and
CF when using carbon fiber without surface coating with PVP
Compared to RP, the electrical conductivity of CFRP can be significantly improved. As mentioned above, such effects of the present invention are surprising because good adhesiveness between carbon fibers and resins generally leads to a decrease in electrical conductivity.

本発明のものを用いると、炭素繊維と樹脂との接着性が
良好で且つ導電性の良好なCFRPが1けられるが、こ
のCFRPは帯電防止性材料として、また、発熱体とし
て用いることができる。
When the product of the present invention is used, CFRP, which has good adhesion between carbon fibers and resin and good conductivity, is inferior to CFRP, which can be used as an antistatic material and as a heating element. .

例えば、炭*m維を表面活性化処理して、耐衝撃強度を
高めた場合のCFRPの体積固有抵抗について、本発明
の効果を対比例と共に示すと第1表の通りである。
For example, Table 1 shows the effects of the present invention on the volume resistivity of CFRP when carbon fibers are subjected to surface activation treatment to increase their impact strength, along with comparative examples.

第  1  表 (注) 炭素繊@ : 12,000フイラメントストランドC
FRP:炭素繊維/ナイロン66 = 20/ 80、
PVP:3ifi量% 表面活性化:電解、30℃、10%(Nl(−)zSO
,水溶液中、電流密度0.06 A l2S3 シャルピー衝撃強度:JIS  K7111体積固有抵
抗+ASTM−D 257、印加電圧10V 第1表から明らかな通り、未処理のものが衝撃強度を高
めると電気抵抗が高まる傾向を示しているのに対し、P
VP表面被覆処理したものは、衝撃強度を高めても電気
抵抗が高くならず逆に低下する傾向を示ずことが判る。
Table 1 (Note) Carbon fiber @: 12,000 filament strand C
FRP: carbon fiber/nylon 66 = 20/80,
PVP: 3ifi amount% Surface activation: Electrolysis, 30°C, 10% (Nl(-)zSO
, in aqueous solution, current density 0.06 A l2S3 Charpy impact strength: JIS K7111 volume resistivity + ASTM-D 257, applied voltage 10V As is clear from Table 1, as the impact strength of the untreated material increases, the electrical resistance increases. While P
It can be seen that in the case of the VP surface coating, even if the impact strength is increased, the electrical resistance does not increase, and on the contrary, the electrical resistance does not show a tendency to decrease.

更に、本発明の副次的効果として、押出機を用いて熱可
塑性樹脂と混練する際、ホッパーにおける落ち込みが極
めて優れており均一な混合物が容易に冑られることをあ
げることができる。
Furthermore, a secondary effect of the present invention is that when kneading with a thermoplastic resin using an extruder, the drop in the hopper is extremely excellent and a homogeneous mixture can be easily obtained.

例えば、炭素繊維ストランドに屑を変えてPvPを付与
し、押出機での混合テストをした結果を示すと第2表の
通りである。第2表のテストは、12,000フイラメ
ントのストランドを6mmに切断した炭素繊維を2kg
とナイロン66の8kgを■型ブレンダーで混合4%4
0+e−ベンド付スクリュ一式押出機のホッパーに一度
に投入し、小ツバ−内に残留した炭素繊維量を計量した
ものである。
For example, Table 2 shows the results of a mixing test using an extruder after adding PvP to carbon fiber strands instead of scrap. The test in Table 2 was conducted using 2 kg of carbon fiber, which was made by cutting 12,000 filament strands into 6 mm pieces.
Mix 8 kg of nylon 66 and 4% 4 in a ■ type blender.
The carbon fibers were charged at once into the hopper of a screw extruder with 0+e-bend, and the amount of carbon fibers remaining in the small flanges was measured.

第  2  表 この結果によれば、PVPの被覆mが1%以上になると
炭素織組残留率が急激に減少して1〜O%になり、した
がって、本発明のm維材料と樹脂との組成物がホッパー
への落ち込みに優れ混合性に優れていることが判る。
Table 2 According to the results, when the PVP coating m becomes 1% or more, the carbon structure residual rate rapidly decreases to 1 to 0%, and therefore, the composition of the m fiber material and resin of the present invention. It can be seen that the material falls into the hopper easily and has excellent mixing properties.

本発明において炭素繊維とは、アクリロニトリル系繊維
、レーヨン、ピッチ等を原料として得られる既知の炭素
1111iストランド及びチョツプドストランドである
。また、この炭素1!維は、表面活性化処理されている
ことの有無は問わないが、表面活性化処理のしである炭
素繊維の方が本発明による効果は著しい。
In the present invention, carbon fibers are known carbon 1111i strands and chopped strands obtained from acrylonitrile fibers, rayon, pitch, etc. as raw materials. Also, this carbon 1! Carbon fibers may or may not be surface activated, but carbon fibers that have not been surface activated will have a more significant effect according to the present invention.

ここで表面活性化処理としては、炭素繊維の表面を、過
マンガン酸カリウム、硝酸による処理或いは電解質溶液
中での電気分解処II&!笠、通常炭jlIlaNに対
し適用される既知の表面活性化処理が採用される。
Here, as the surface activation treatment, the surface of the carbon fiber is treated with potassium permanganate or nitric acid, or electrolyzed in an electrolyte solution II&! The known surface activation treatment applied to ordinary coal jlIlaN is employed.

炭素繊維の被覆材としてのPVPは、一般に市販されて
いるもので、その分子間は1万〜36万のものが使用さ
れる。このPvPは、水、メタノール、エタノール等の
アルコール類、クロロホルム或いはアルコール類とアセ
トンとの混合溶媒に溶解し使用される。
PVP as a coating material for carbon fibers is generally commercially available, and those having a molecular weight of 10,000 to 360,000 are used. This PvP is used by being dissolved in water, alcohols such as methanol and ethanol, chloroform, or a mixed solvent of alcohols and acetone.

炭素繊維の表面被覆の方法は、PVPを上記溶媒にて0
.5〜10重量%の溶液とし、この中に炭素繊維ストラ
ンドを浸漬通過させ、赤外線ランプ、熱風等で脱溶剤す
る。次いで、必要により 1〜+Onmに切断すること
によってPVPで表面被覆した炭素繊維のチョツプドス
トランドとすることもできる。
The method for coating the surface of carbon fibers is to coat PVP with the above solvent.
.. A 5 to 10% by weight solution is prepared, a carbon fiber strand is immersed in the solution, and the solvent is removed using an infrared lamp, hot air, or the like. Then, if necessary, the carbon fiber can be cut to a length of 1 to +Onm to obtain a chopped strand of carbon fiber whose surface is coated with PVP.

このPvPの被覆に当り、PVPの付着量は1〜10重
猷%とすることが必要である。1重量%より少いと、所
期の効果がなく、また、ホッパーからの落ち込みも悪く
作業性も低下する。
In this PvP coating, the amount of PVP deposited must be 1 to 10% by weight. If it is less than 1% by weight, it will not have the desired effect, and will not fall out of the hopper and will reduce workability.

10重量%より多いとCFRPの機械特性の向上効果が
不充分となる。
If it is more than 10% by weight, the effect of improving the mechanical properties of CFRP will be insufficient.

本発明における熱可塑性樹脂は、マトリックス樹脂、例
えば、ポリ塩化ビニル、ポリエチレン、ポリブチレンテ
レフタレート、ポリスチレン、ポリフエニレンサルフフ
イド、ポリアミド、ポリアセタール、ポリカーボネート
剪一般に炭素繊維と共に用いられる成形用熱可塑性樹脂
である。
The thermoplastic resin in the present invention is a matrix resin, such as polyvinyl chloride, polyethylene, polybutylene terephthalate, polystyrene, polyphenylene sulfide, polyamide, polyacetal, polycarbonate, or a molding thermoplastic resin commonly used with carbon fibers. .

本発明による成形材料は、直接スクリュ一式の射出成形
機のホッパーに投入して成形可能であるが、繊維の分散
性及び成形時の取扱性等を考慮すると、−〇混合ペレッ
トの工程を経るのが好ましい。
The molding material according to the present invention can be molded by directly feeding it into the hopper of an injection molding machine with a set of screws, but considering the dispersibility of fibers and ease of handling during molding, it is preferable to go through the process of -〇 mixed pellets. is preferred.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 アクリロニトリル97ffI 1%、アクリル酸メチル
3重量%の組合体組成のアクリロニトリル系繊維を予備
酸化処理及び炭素化処理して11だ炭素繊維ストランド
(単繊維直径7μ、12,000フイラメント)を30
℃、10%のrall?アンモン水溶液中、m流密度0
.06 A/m ’で3分間表面活性化処理し、これを
PVP(分子間4xlO” )3fflld%メチルア
ルコール溶液中に尋人して引出し、熱風にて乾燥し、P
VP付着量3.5重間%(対ストランド)のストランド
を得た。
Example 1 Acrylonitrile fibers having a combination composition of 1% acrylonitrile 97ffI and 3% by weight of methyl acrylate were pre-oxidized and carbonized to form 11 carbon fiber strands (single fiber diameter 7μ, 12,000 filaments).
°C, 10% rall? In ammonium aqueous solution, m flow density 0
.. The surface was activated at 0.06 A/m' for 3 minutes, poured into a 3fflld% methyl alcohol solution of PVP (intermolecular 4xlO''), dried with hot air, and
A strand with a VP adhesion amount of 3.5% by weight (based on the strand) was obtained.

このストランドを繊維長61Illlに切断し、チョツ
プドストランドとした。このチョツプドストランド1k
gとナイロン66の4JlとをV型ブレンダーで混合後
40+nベント付押出機を用い、シリンタ一温度260
〜290℃、スクリュー回転r&50rpmで押出し直
径約3mm 、長さ61m1のベレットを製造した。
This strand was cut to a fiber length of 61 Ill to obtain a chopped strand. This chopped strand 1k
After mixing 4JL of nylon 66 with 4JL of nylon 66 in a V-type blender, use a 40+N vented extruder and set the cylinder temperature to 260.
A pellet with a diameter of about 3 mm and a length of 61 ml was produced by extrusion at ~290° C. and a screw rotation of r&50 rpm.

このベレットを5オンス射出成形機を用い所定のテスト
ピースを作り、各種特性の測定をした。その結果を示す
と下記第3表の通りであった。
Predetermined test pieces were made from this pellet using a 5-ounce injection molding machine, and various properties were measured. The results are shown in Table 3 below.

実施例2 実施例1で用いた炭素繊維ストランドを表面活性化処理
することなく、PVPメチルアルコール溶液中を通して
PVP被慣し、実施例1と同様にしてテストピースを作
った。このテストピースの各種特性の測定結果を第3表
に示した。
Example 2 A test piece was made in the same manner as in Example 1, except that the carbon fiber strand used in Example 1 was passed through a PVP methyl alcohol solution and subjected to PVP treatment without surface activation treatment. Table 3 shows the measurement results of various properties of this test piece.

比較例として、PvP表面被覆処理をしない炭素繊維を
対象に、表面活性化処理したちの(イ)と、しないもの
(ロ)につき、同様のテストピースを作り、測定した結
果を第3表に示した。
As a comparative example, similar test pieces were made for carbon fibers that were not subjected to PvP surface coating treatment, one with surface activation treatment (a) and one without surface activation treatment (b), and the measurement results are shown in Table 3. Indicated.

ただし、引張強度、引張弾性率はASTM−D638、
曲げ強度、曲げ弾性率は、ASTM−0790によりそ
れぞれ測定した。
However, the tensile strength and tensile modulus are ASTM-D638,
The bending strength and bending modulus were each measured according to ASTM-0790.

第  3  表 実施例3 実施例1において、炭素繊維とマトリックス樹脂(ナイ
ロン6G)との混合比を変えて成形した場合の特性につ
いて、測定結果を示すと第4、艮、の通りであった。
Table 3 Example 3 In Example 1, the characteristics measured when molding was performed with different mixing ratios of carbon fiber and matrix resin (nylon 6G) were as shown in No. 4.

第  4  表 実施例4 実施例1で用いた表面活性化処理した炭素繊維ストラン
ドにPVPメタノール溶液を付与し、3.5φ量%のP
VPを有する炭素繊維チョップトス1−ランドとした。
Table 4 Example 4 A PVP methanol solution was applied to the surface-activated carbon fiber strands used in Example 1, and 3.5φ amount % of P was applied.
A carbon fiber chopped toss 1-land with VP was used.

このチョツプドストランドとポリアセタールとを20対
80のffqfit比で混合して押出機で成形し、所定
のテストピースを作り、各種特性を測定した。その結果
を示すと第5表の通りである。ポリアセタールの代りに
ポリカーボネートを使用した場合についても同表に示す
The chopped strands and polyacetal were mixed at an ffqfit ratio of 20:80 and molded using an extruder to make predetermined test pieces, and various properties were measured. The results are shown in Table 5. The same table also shows the case where polycarbonate is used instead of polyacetal.

第  5  表Table 5

Claims (2)

【特許請求の範囲】[Claims] (1)1〜10重量%のポリビニルピロリドンで表面被
覆した炭素繊維材料と熱可塑性樹脂とからなる成形材料
(1) A molding material consisting of a carbon fiber material whose surface is coated with 1 to 10% by weight of polyvinylpyrrolidone and a thermoplastic resin.
(2)表面活性化処理をした炭素繊維を1〜10重量%
のポリビニルピロリドンで表面被覆した炭素繊維材料と
熱可塑性樹脂とからなる特許請求の範囲(1)の成形材
料。
(2) 1 to 10% by weight of surface-activated carbon fiber
The molding material according to claim (1), comprising a carbon fiber material whose surface is coated with polyvinylpyrrolidone and a thermoplastic resin.
JP62025567A 1980-09-17 1987-02-07 Molding material Pending JPS62230829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62025567A JPS62230829A (en) 1980-09-17 1987-02-07 Molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP55127959A JPS5756586A (en) 1980-09-17 1980-09-17 Fiber material
JP62025567A JPS62230829A (en) 1980-09-17 1987-02-07 Molding material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55127959A Division JPS5756586A (en) 1980-09-17 1980-09-17 Fiber material

Publications (1)

Publication Number Publication Date
JPS62230829A true JPS62230829A (en) 1987-10-09

Family

ID=26363201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025567A Pending JPS62230829A (en) 1980-09-17 1987-02-07 Molding material

Country Status (1)

Country Link
JP (1) JPS62230829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324733A (en) * 2004-05-17 2005-11-24 Mitsubishi Engineering Plastics Corp Vehicle body front structure made of long fiber reinforced polyamide resin
JP2016211113A (en) * 2015-05-12 2016-12-15 王子ホールディングス株式会社 Non-woven fabric and fiber reinforced plastic compact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972496A (en) * 1972-10-24 1974-07-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972496A (en) * 1972-10-24 1974-07-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324733A (en) * 2004-05-17 2005-11-24 Mitsubishi Engineering Plastics Corp Vehicle body front structure made of long fiber reinforced polyamide resin
JP4535772B2 (en) * 2004-05-17 2010-09-01 三菱エンジニアリングプラスチックス株式会社 Long-fiber reinforced polyamide resin automobile body front structure
JP2016211113A (en) * 2015-05-12 2016-12-15 王子ホールディングス株式会社 Non-woven fabric and fiber reinforced plastic compact

Similar Documents

Publication Publication Date Title
US3702356A (en) Process for production of glass-filled thermoplastic pellets suitable for blending with thermoplastic
US5433906A (en) Composite of small carbon fibers and thermoplastics and method for making same
JPS5941246A (en) Fiber reinforced composite material
EP0062732B1 (en) Coated carbon fiber reinforced poly(vinylidene fluoride)
CA1264911A (en) Elongated molding granules and injection-molding process employing them
JPS627225B2 (en)
EP0368312B1 (en) Carbon fiber chopped strands and method of production thereof
JPS62230829A (en) Molding material
JPS6231107B2 (en)
EP0440970B1 (en) Molding granules, their manufacture and their use in the production of molded articles
JP2001329072A (en) Carbon fiber reinforced resin composite, molded article, and method for recovery of carbon fiber
JPH05112657A (en) Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material
JPS61287963A (en) Elongated molding fine particle and injection molding using the same
JPH02125706A (en) Manufacture of carbon fiber bundle
JPH022990B2 (en)
JPH11117179A (en) Metal-coated carbon fiber chopped strand, its production and fiber-reinforced thermoplastic resin composition and molded article produced by using the strand
JP3008481B2 (en) Short carbon fiber aggregate and fiber reinforced thermoplastic resin composition using the same as reinforcing material
JP2003181833A (en) Carbon fiber chopped fiber
JPH01271439A (en) Electrically-conductive plastic molding material
JP2002212876A (en) Carbon fiber for reinforcing thermoplastic resin, injection molding pellet including this carbon fiber, and thermoplastic resin molded body reinforced with carbon fiber
JP2991891B2 (en) Metal-coated carbon fiber chopped strand, method for producing the same, and fiber-reinforced resin composition
JPH02292334A (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition containing the same
JPH04153007A (en) Carbon fiber reinforced thermoplastic resin composition
JPS61254629A (en) Collected carbon fiber and short fiber chip formed therefrom
JPS6166616A (en) Short carbon fiber chip